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EXECUTIVE SUMMARY 

 

Unvalidated or unavailable Automatic Dependent Surveillance-Broadcast (ADS-B) and Global 

Position Systems (GPS) data poses security and safety risks to automated Unmanned Aircraft 

Systems (UAS) navigation and to Detect and Avoid (DAA) operations. Erroneous, spoofed, 

jammed, or drop outs of GPS data may result in unmanned aircraft position and navigation 

being incorrect. This may result in a fly away beyond radio control, flight into infrastructure, 

or flight into controlled airspace. Erroneous, spoofed, jammed, or drop outs of “ADSB-In” data 

may result in automated unmanned aircraft being unable to detect and avoid other aircraft or 

result in detecting and avoiding illusionary aircraft. For automated DAA, a false ADS-B track 

can potentially be used to corral the unmanned aircraft to fly towards controlled airspace, 

structures, terrain, and so on. This research is necessary to enable safe and secure automated 

small UAS (sUAS) navigation and safe and secure automated sUAS DAA operations. Goals 

for the project include reports and recommendations useful for Federal Aviation 

Administration (FAA) policy development and UAS standards development.  It is expected 

that this information will be used to better understand the risks and potential mitigations, and 

to help the FAA to reassess and refine FAA policy with respect to validation of ADS-B data.  

The A44 team has completed the Identification of Potential Mitigations report which fulfills 

Task 2 for the A44 ASSURE project.  Recorded ABS-B data was analyzed to expose potential 

risks and provide guidance on mitigation schemes.  The examination reveals drop outs and 

anomalies that occur in flight operations.  Based on the risk assessments in Task 1, the 

performer conducted a market survey of market solutions to mitigate loss of GPS and loss of 

ADS-B data as well as a market survey of market solutions to mitigate unvalidated GPS and 

unvalidated ADS-B In data. The market surveys include estimated costs, ease of 

implementation, and a preliminary assessment of the effectiveness of market solutions to 

mitigate the various risks identified in Task 1.   

The integrity of ADS-B and GPS navigation systems was analyzed to detect threats to the 

integrity and/or reliability of the data. These risks include erroneous, spoofed, jammed, and 

dropped data from GPS and/or ADS-B systems. Recorded ABS-B data was examined to expose 

potential risks and provide guidance on mitigation schemes.  Two primary pre-recorded data 

set types were used in this study; GPS data from the Dallas Fort Worth Airport and data from 

the OpenSky Network.  The results are informative and provide real-world assessment of GPS 

and ADS-B navigation data.   

Several mitigation schemes were evaluated for their effectiveness in jamming and spoofing 

conditions.  The mitigation schemes evaluated were optical flow, geomagnetic navigation, 

cellular signal navigation, Wi-Fi navigation, and the Eichelberger’s Collective Detection 

(ECD) method.  The results from these five systems indicate that most have an overall high 

effectiveness rating, while having varying effectiveness in the individual factors scored.  It 

should be noted that additional mitigation strategies were briefly reviewed but were not of 

sufficient interest by the team to include in the full evaluation. 

It is the A44 team opinion that flight and simulation testing should continue on all five of the 

mitigation methods and continued efforts be made in identifying drop outs and erroneous data 

in the current data sets along with new data sets obtained.  These efforts will be summarized in 

the A44 Task 3 Planning the Testing and Demonstration of Mitigations report.
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I. INTRODUCTION & BACKGROUND 
The FAA position communicated to RTCA Special Committee 228 is that UAS DAA 

systems should validate “ADS-B In” data before it is used to conduct Detect and Avoid 

(DAA). A risk assessment and exploration of potential solutions is needed to inform 

potential policy updates for different types of UAS and operations for both GPS validation 

and ADS-B In validation. Potential risks and/or mitigations examples considered at the onset 

of the project are listed below. 

• Potential Risk: If GPS data drops out or is jammed, the UAS may not know exactly 

where it is located and may fly away without anyone’s knowledge of where it is. Note 

that sUAS are not tracked by Air Traffic Control (ATC) radar. Potential mitigations 

include means to detect broad area GPS jamming or GPS dropouts. Examples: monitor 

the known GPS position of a fixed GPS receiver on a cell phone, ground control station, 

tower, and other UAS that is on the ground. Alternatively, have an independent means 

of temporary navigation and UAS tracking sufficient to cease operations safely. 

Examples: Inertial Measurement Unit (IMU) navigation, UAS beacons (Radio 

Frequency (RF) or optical), vision-based navigation, rough triangulation or signal 

direction finding from the ground using Command and Control (C2) Signal to Noise 

ratio or time of flight analysis, etc. 

• Potential Risk: If GPS signals are spoofed, the UAS may think it is in one location when 

it is actually in another location. This may result in the UAS crossing airspace 

boundaries, flying beyond radio control, sudden climbing to avoid terrain referenced 

onboard digital terrain elevation maps, etc. Potential mitigations could include means to 

detect broad are GPS spoofing. Examples: monitor the known GPS position of a fixed 

GPS receiver on a cell phone, Ground Control Station (GCS), tower, or other UAS that 

is on the ground. Alternatively, have an independent means of temporary navigation 

sufficient to cease operations. Potential examples may include: temporary IMU 

navigation, navigate by C2 signal strength, UAS beacons (RF or optical), vision-based 

navigation, etc. 

• Potential Risk: “ADS-B In” signals drop out or are jammed. This prevents UAS from 

detecting and avoiding other aircraft that are transmitting “ADS-B Out”. Potential 

mitigations could include a means to detect ADS-B dropouts and jamming to cease UAS 

operations when jamming is detected. Example: monitor the signal from a fixed “ADS-

B Out” source (potentially easy and low cost). Alternatively, potential mitigations could 

rely upon detecting jamming, have a means to safely cease DAA operations. 

• Potential Risk: A false “ADS-B In” signal is detected that harasses the UAS. If the UAS 

is automated to avoid collisions with other aircraft, there is the potential for false signals 

to harass and corral an automated UAS thereby directing it where a malicious actor desire 

it to fly (fly into infrastructure, terrain, controlled airspace, etc.). Potential mitigations 

could include having a means to validate “ADS-B In” tracks or detect false tracks. 

Example solutions: rough triangulation or signal direction finding from the ground using 

Signal to Noise ratio or time of flight analysis. Have an ability for overriding UAS 

automated collision avoidance on unvalidated “ADS-B In” tracks. Cease UAS 

operations when false (ADS-B In” tracks are detected. 

 

This project assesses the safety and security risks of unvalidated GPS and ADS-B In data used 

to support a variety of UAS operations to include primarily sUAS operations, while also 

providing data to unmanned cargo transport and remotely piloted passenger transport 
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operations where applicable. For sUAS operations, low cost and easy to implement mitigations 

commensurate with their safety and security risks, and are therefore is emphasized. 

 

Based on the risk assessment in Task 1, the performer conducted a market survey of available 

solutions to (1) mitigate loss of GPS and loss of ADS-B data as well as (2) unvalidated GPS 

and unvalidated ADS-B In data. The market surveys include estimated costs, ease of 

implementation, and a preliminary assessment of the effectiveness of market solutions to 

mitigate the various risks identified in Task 1 for the various UAS operations. The performer 

also investigated other potential methods, operational mitigations, strategic mitigations, or 

other means for addressing potential safety and security risks that were not identified through 

the market survey. These additional mitigations were assesses with the same criteria as the 

market survey to mitigate the risks identified in Task 1.  

 

GPS mitigation strategies for denied and/or jammed environments were explored and potential 

solution proposed.  Cybersecurity and counterintelligence measures were investigated to 

decrease the risk of disruption or takeover. Examination of recorded ABS-B data was 

conducted to expose potential risks and provide guidance on mitigation schemes. The 

examination reveals drop outs and anomalies that occur in flight operations.  While the exact 

cause may not be initially known, insight will be obtained to better focus on the most likely 

causes.  These strategies will also be assessed for their cost, ease of implementation, and ability 

to mitigate the risks identified in Task 1. 
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II. Risk Assessment of Potential Mitigations 
The mitigation strategies identified were evaluated using an assessment tool to provide a 

metric to the overall effectiveness.  The proposed assessment metrics assess the overall 

effectiveness of mitigation schemes.  Five things are evaluated to quantify the overall score to 

rank the proposed methods.  These factors are: 

1.) Cost 

2.) Technical Readiness 

3.) Ease of Implementation/Use 

4.) Size, Weight, and Power (SWaP) 

5.) Impact 

Each factor will be ranked with a numerical score from 1 to 5, with 1 being the “worst” and 5 

being the “best” in each category.  A detailed guide for each ranked factor is provided based 

on the effectiveness of the implementation of the mitigation scheme on a small UAS.  

Therefore, the factors are the added impact on the “standard’ operating configuration. 

Cost Rankings 

1- Cost over $1000 

2- Cost between $500 to $1000 

3- Cost between $250 to $500 

4- Cost between $100 to $250 

5- Cost under $100 

Technical Readiness  

1- Concept phase 

2- Initial prototype testing underway 

3- Prototype testing completed 

4- Experimental version available 

5- Commercially available 

Ease of Implementation/Use  

1- Extensive modifications/training required 

2- Major modifications/training required 

3- Moderate modifications/training required 

4- Minor modifications/training required 

5- Minimal modifications/training required 
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Size, Weight, and Power (SWaP) 

1- Weight greater than 1 kg or power greater than 1 kW 

2- Weight between 100 g to 1 kg and/or power between 100 W to 1 kW 

3- Weight between 10 g to 100 g and/or power between 10 W to 100 W 

4- Weight between 1 g to 10 g and/or power between 1 W to 10 W 

5- Weight less than 1 g and power less than 1 W 

Impact 

1- No impact 

2- Little impact 

3- Moderate impact 

4- Major impact 

5- Extensive impact 

The cumulative score of the ranked factors will generate a value that is indicative to the 

overall effectiveness.  Each factor in the total score has an equal weighting and the sum of all 

ranking produce the overall score.  A scoring breakdown is color coded to outstanding, high, 

medium, or low value to indicate the overall effectiveness as shown in Table 1. 

 

Table 1. Potential mitigation effectiveness scoring system 

Score Effectiveness 

5-10 Low 

10-15 Medium 

15-20 High 

20-25 Outstanding 

 

The scoring system provides a numerical score to aid in overall effectiveness, however this 

score is to be used for a guide to aid in identifying mitigation strategies with high 

effectiveness in the current state of development.  Some mitigation strategies may have great 

potential but are early in their development.  These strategies, while perhaps do not score 

high at this time, may have the potential to have a great impact with further development. 
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III. UAS Navigational Anomalies – Dropouts and Erroneous Data 

Potential Mitigations Assessment 
 

Messages broadcast failures, often referred to as “dropouts,” are common in unmanned aerial 

vehicles and can occur when a receiver fails to receive messages over time (Semke et al. n.d.; 

Tabassum and Semke 2018a; Shaukat et al. n.d.). In general, time instance of ‘last contact’ of 

flight is tracked to determine how often such message dropout can occur and this can vary 

across aircraft or small-scale unmanned aerial system types. Causes of message dropout are 

unknown and challenging to point out, as several factors could be responsible for the loss of 

message or GPS/ADS-B packets. Some potential causes include 1) high terrain environments; 

2) intentional jamming (e.g., at locations such as air force bases and critical infrastructures) ;3) 

fading phenomena. For example, fading in wireless systems can lead to multi-path induced 

distortion, which can affect certain UAS components (GPS, IMUs, or receivers). and it is 

important for operators on the ground to know when a dropout has occurred, as this information 

is routinely used for detect-and-avoid (DAA) procedures (Semke et al. n.d.). The integrity of 

navigation systems, such as ADS-B and GPS, must be analyzed to detect anything that 

threatens their integrity. UAS relies on a satellite infrastructure that provides positioning, 

navigation, and timing capabilities. GPS/ADS-B are critical sensors for realizing such 

capabilities, but these systems offer functions far beyond just navigation (U.S. Department of 

Transportation 2022a; 2022b). The FAA A44 Research Project aims to develop methods to 

detect and mitigate GPS and ADS-B risks for unmanned or autonomous aircraft systems. These 

risks include erroneous, spoofed, jammed, and dropped data from GPS or ADS-B systems. 

These risks cause aircraft navigation problems and can allow bad actors to control the aircraft, 

causing it to fly to unintended and potentially hazardous locations. Unmanned aircraft may also 

have trouble detecting and avoiding other aircraft, resulting in collisions. 

 

An assessment of a mitigation scheme using an artificial intelligence path prediction algorithm 

to aid navigation during periods of ADS-B/GPS dropout/erroneous detection was done.  The 

following are the rankings and brief description on how they were made. 

• Cost – Rank 3 

Futuristic algorithms can easily run on portable embedded hardware, and thus may come with 

pre-loaded mitigation software to address drop out or erroneous data handling. The team 

envisions aviation industry will design potential deep-learning or machine learning application 

that could be cost-effective, can process real-time flight data on board computer or may use a 

cloud-based infrastructure for data transfer, storage, and to process continuous streaming data 

parameters (latitude, longitude, altitude, or other positional/navigational related parameters. 

 

• Technical Readiness – Rank 1 

Currently, there is no software on the market to detect dropout rates or erroneous data 

handling, this project is still in its early concept phase, requiring end-to-end code 

development as well as Software Quality Testing prior to packaging and release. 

 

• Ease of Implementation/Use - Rank 3 

A miniature hardware board (e.g., Raspberry Pi, Jetson Nano, or similar device) can be 

mounted on any UAS and bundled with machine learning application to detect the 

dropouts in UAS. 



6 

 

 

• Size, Weight, and Power (SWaP) – Rank 2 

The hardware component, such as the Raspberry Pi 4, weighs approximately 46 grams 

and consumes approximately 5-15 watts., so rank 2 is appropriate for running any 

developed algorithms that may weigh under 200 grams. 

 

• Effectiveness – Rank 4 

The implementation of detecting dropout and erroneous data will assist path planning 

and address navigational problems, so we choose rank 4, as this solution may result in 

major impact. 

 

Assessment Score:  13-Medium 

 

The next three sections examine recorded ADS-B data to expose potential risks and provide 

guidance on mitigation schemes. It reveals dropouts and anomalies that occur during flight 

operations and provides critical information regarding the likelihood and extent of drop outs 

and/or erroneous data. While the exact cause may not be initially known, insight will be 

obtained to better focus on the most likely reasons. This study used multiple data set types: 

GPS data from the Dallas Fort Worth Airport (DFW), Alaska, and ADS-B data from the 

OpenSky Network. The results are detailed in three sections: 

 

• Section 1: Outlier Based GPS Dropout Detection in DFW Airport small-scale unmanned 

aerial Dataset 

• Section 2: Detection of ADS-B / GPS dropout using OpenSky Network Data. This section 

has two approaches for detection: 1) Z-score/ensemble scoring analysis; 2) NIC, NAC based 

criteria for validating GPS integrity check 

• Section 3: Imputation of GPS Dropout points using Machine Learning Models for OpenSky 

Network 

 

 

III.1. OUTLIER BASED GPS DROPOUT DETECTION 

III.1.1. ADS-B/GPS Dropout Detection on UAS Flights at Dallas Forth 

Worth (DFW) 

 
This study develops a statistical framework for identifying an upper bound for acceptable time 

delays between consecutive GPS messages. Time delays greater than this bound are considered 

instances of message dropout. It is anticipated that this methodology can easily be extensible 

to ADS-B data sets in addition to the GPS data presented here. 

 

GPS data were collected over 24 hours for UASs in the range of a telemetry receiver located 

at the Dallas Fort-Worth (DFW) Airport. Since many UASs only briefly entered the area over 

which signals could be received, the entire data set was initially filtered for flights containing 

at least 100 messages. This criterion provided flights with enough data to perform statistical 

analysis on the time delay between consecutive messages of unique flights, while flights 

containing fewer messages were discarded.  

 

Since the recorded flights were for random UASs entering the monitored region, it is difficult 

to establish what the actual time delay between the transmission of consecutive messages is for 
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a particular flight as there is no control data set with which to compare, and there is no way of 

accessing the onboard computer of the UASs to retrieve this data. Therefore, this work aims to 

estimate this time delay statistically from the messages received and determine an appropriate 

upper bound for this time delay. Consecutive messages separated by a time delay greater than 

this upper bound are considered instances of message dropout.   

 

Statistical outliers for the time delay between consecutive messages were defined as any time 

delay greater than the mean time delay (Δt̂) plus the root-mean-square-error (∆tRMSE) of the 

time delay multiplied by a constant k = 2, as shown in Eq. 1. 

 

Outliermin = Δt̂ + k × ∆tRMSE     (1) 

 

where ∆tRMSE, is defined as in Eq. 2, 

 

∆tRMSE =  √∑ (Δti − Δt̂)
2N

1       (2) 

 

Note that a value of 2 was chosen for k since smaller values removed all but the smallest Δt 

and larger values prevented large time delays (relative to the mean) from being classified as 

outliers. The values Δt̂ and ∆tRMSE were then recalculated with all detected outliers removed 

from the data set for a given flight. This procedure was repeated iteratively until no outliers 

remained and the final resulting upper bound for determining an outlier in the set was 

considered the minimum time delay between consecutive messages to be considered an 

instance of message dropout. 

 

The above procedure was implemented in Python which can be found at Github Repository 

where “dfw.py” identifies all flights in the data set containing more than 100 messages, and 

flightAnalysis.py performs the iterative outlier removal and defines a time span threshold used 

to identify dropout instances for each of these flights.  

 

The data set under analysis contained 33 flights that contained at least 100 messages. A 

summary of the data recorded for these flights is shown in Table 2.  

 

In Table 2, it can be seen that there were a variety of drones detected during the data recording 

interval. Also note how then maximum altitude varies between flights. Fig. 1 shows a box plot 

for the flight time, the maximum altitude, the filtered mean time interval (time delay between 

consecutive messages), and the upper bound of the RMSE filter (time delays above this value 

for a particular flight are considered dropout instances). 

 
Table 2. Summary of the 33 UAS flights containing more than 100 messages 

Flight 

ID 
Drone Type 

Flight Time 

(h:m:s) 

Upper 

Bound of 

RMSE 

Filter 

(seconds) 

Filtered 

Mean Time 

Interval 

(seconds) 

Filtered 

Mode Time 

Interval 

(seconds) 

Filtered 

Median 

Time 

Interval 

(seconds) 

36 P4 Series 0:17:49 5.030052 2.974843 2 2 

130 Mavic Mini 2 0:14:10 6.322372 3.627907 4 4 

https://github.com/jamisonjangula/DFW
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171 Mavic Mini 2 0:21:22 6.633531 3.829268 4 4 

199 Mavic Mini 2 0:15:26 6.248761 3.496815 4 4 

205 Mavic Air 2 0:06:38 6.276918 3.468085 4 4 

225 Mavic Mini 2 0:14:33 4.641503 2.709091 2 2 

247 Mavic Air 2 0:18:59 6.207391 3.776786 4 4 

282 Mavic Mini 2 0:22:28 6.238912 3.565574 4 4 

295 Mavic Mini 2 0:13:50 5.027758 3.064516 4 4 

487 Mavic Air 2 0:13:39 4.779035 2.813953 2 2 

625 Mavic Mini 2 0:20:24 5.0611 2.958333 2 2 

644 Mavic Air 2 0:12:56 12.0737 5.482353 2 5 

685 Mavic Mini 2 0:12:24 6.141757 3.457447 4 4 

829 M300 RTK 0:17:01 5.178542 3.263889 4 4 

855 M300 RTK 0:13:18 6.200319 3.650485 4 4 

917 Mavic 2 0:15:13 6.675467 3.569444 4 4 

994 Mavic Air 2 0:16:26 4.705989 2.724359 2 2 

1025 Mavic Mini 2 0:15:43 6.351594 3.493506 4 4 

1041 Mavic Mini 2 0:15:51 5.087642 3.084211 4 4 

1154 M300 RTK 0:22:29 6.413206 3.807229 4 4 

1172 Mavic 2 0:21:35 6.050304 3.591241 4 4 

1289 Mavic Air 2 0:12:16 5.18492 3.083333 4 4 

1296 Mavic Mini 0:18:25 6.137266 3.257353 2 3 

1344 Mavic Mini 2 0:14:00 6.278763 3.333333 2 4 

1398 Mavic Mini 2 0:16:21 10.18167 4.820755 2 4 

1412 Mavic Mini 0:18:33 6.99233 3.81203 2 4 

1526 Mavic Air 2 0:13:48 6.331115 3.51269 4 4 

1617 Mavic 2 0:21:29 8.271192 4.654412 4 4 

1689 M300 RTK 0:26:41 6.466892 3.605769 4 4 

1695 Mavic Mini 2 0:08:18 6.117624 3.373626 4 4 

1731 FPV 0:11:23 6.378759 3.62037 4 4 

1738 Mavic Mini 2 0:07:04 4.920513 2.935484 2 2 

1740 M300 RTK 0:25:51 6.299064 3.573643 4 4 
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Figure 1. Statistical results for all 33 flights analyzed. 

Fig. 1 shows that all flight durations were less than 30 min with an average flight time near 16 

min. The average maximum altitude was near 375 ft, and a typical time delay after outlier 

removal was approximately 3.5 seconds. The average upper bound for determining dropout 

instances was near 6.25 seconds for the flights analyzed. 

 

A sensitivity analysis is to be performed on the value of k used to define the minimum threshold 

of an outlier. The detection of outliers has been seen to be highly dependent on this value and 

it is intended to identify the optimal value of this parameter for defining dropout instances. 

Additionally, the median and mode of the time delay will be used (in place of the mean) for 

detecting dropout instances to see how they compare with the current method. 

 

For example, Table 3 illustrates that for Mavic mini 2, the average number of messages 

reported per 1-min window can vary from 11-18; 14-27 for every two minutes and 20-52 for 

every three minutes.  

Table 3 displays the mean calculations for each of the 33 flights that has at least 100 entries. 

There is a common trend showing that the aggregate values decline slightly when expanding 

to 2 minutes and 3 minutes rolling mean analysis. The overall highest aggregate is with the 

M300 RTK drone with a total of 9.54. The greatest drop between intervals can be seen within 

the Mavic Mini series, dropping from 8.21 seconds to 6.68 seconds from the 1-minute mean to 

the 2 minute mean. 

Table 3. Dynamic Rolling Mean window analysis for detecting message reporting frequency. 

Drone 

Type 

Num. of 

Flights 

Flight 

Time 

1 Minute 

Mean/Average 

No. of Messages 

2 Minute 

Mean/Average No. of 

Messages 

3 Minute 

Mean/Average No. of 

Messages 

Total No. 

of 

Messages 

P4 Series 1 0:17:49 3.2686 19.7 3.2645 37.2 3.2667 55.8 335 

Aggregate Value 3.2686 19.7 3.2645 37.2 3.2667 55.8 335 

2 0:14:10 5.7624 11.4 5.7653 22.7 5.7381 31.8 159 
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Mavic 

Mini 2 

3 0:21:22 5.5013 12.4 5.4153 22.4 5.2956 30.9 247 

4 0:15:26 4.9929 12.7 4.9121 23.9 4.9250 31.8 191 

5 0:14:33 7.0531 11.3 6.3307 22.6 5.7528 31.6 158 

6 0:22:28 5.2742 13.0 4.9086 25.9 4.7977 35.6 285 

7 0:13:50 9.8383 8.0 9.2437 14.7 9.4028 20.6 103 

8 0:20:24 3.3522 18.4 3.3446 36.7 3.3473 52.4 367 

9 0:12:24 6.5980 10.8 6.9181 21.5 6.3902 25.8 129 

10 0:15:43 8.8624 8.0 8.2100 15.0 8.1759 20.0 120 

11 0:15:51 7.5969 9.3 7.2707 17.4 7.1956 23.2 139 

12 0:14:0 7.4411 8.9 7.1915 16.5 7.1215 23.2 116 

13 0:16:21 7.4868 9.0 7.3081 17.0 7.0890 22.7 136 

14 0:8:18 5.9062 13.4 5.0051 21.4 4.8425 35.7 107 

15 0:7:4 4.0392 15.6 4.1553 27.3 4.8425 36.3 109 

Aggregate Value 6.4075 11.6 6.1414 21.8 6.0655 30.1 169.0 

Mavic 

Air 2 

16 0:6:38 4.1252 14.6 4.0018 25.5 3.9858 34.0 102 

17 0:18:59 7.5923 9.2 7.0802 18.5 7.0994 23.7 166 

18 0:13:39 6.8513 10.7 6.6455 18.3 6.3794 25.6 128 

19 0:12:56 8.0372 8.5 7.8029 14.6 8.0008 20.4 102 

20 0:16:26 5.0192 14.0 4.9076 26.1 4.7372 34.8 209 

21 0:12:16 9.1065 9.1 8.1710 18.2 6.8722 27.3 109 

22 0:13:48 4.0079 15.1 3.9473 30.1 3.9381 42.2 211 

Aggregate Value 6.3914 11.6 6.0795 21.6 5.8590 30.0 146.7 

M300 

RTK 

23 0:17:1 8.7417 8.4 8.5434 14.0 8.7069 21.0 126 

24 0:13:18 6.2346 11.2 5.9937 19.1 6.0583 26.8 134 

25 0:22:29 13.134 7.1 11.045 13.5 10.549 16.9 135 

26 0:26:41 10.641 7.6 9.8213 13.5 9.6629 19.4 175 

27 0:25:51 8.9525 8.2 8.4705 15.2 8.3761 21.9 197 

Aggregate Value 9.5408 8.5 8.7748 15.1 8.6707 21.2 153.4 

Mavic 2 

28 0:15:13 7.6689 8.4 8.1407 14.6 8.6594 23.4 117 

29 0:21:35 8.4391 9.4 7.1333 17.9 7.0158 28.1 197 

30 0:21:29 8.3854 9.5 7.8058 16.4 7.6738 25.7 180 

Aggregate Value 8.1644 9.1 7.6933 16.3 7.7830 25.7 164.7 

Mavic 

Mini 

31 0:18:25 8.3382 10.6 6.6295 20.1 6.2721 30.2 181 

32 0:18:33 8.0766 9.9 6.7350 19.8 6.7538 25.4 178 

Aggregate Value 8.2074 10.3 6.6822 20.0 6.5128 27.8 179.5 

FPV 33 0:11:23 5.3383 12.1 5.3871 22.2 5.1617 33.3 133 

Aggregate Value 5.3383 12.1 5.3871 22.2 5.1617 33.3 133 
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(a) (b) 

 

(c) 

Figure 2. Time block calculations for DFW flight data 

 

The box plots in Figure 2 display the calculations gathered for the mean, median, and mode for 

DFW flights ranging between 6-12 minutes, 12-15 minutes, and 15-27 minutes. This allowed 

for a broader visualization at where the data stands regarding the duration of the flight time. 

 

III.1.2. NIC, NAC based criteria for validating GPS integrity check using 

OpenSky Data 
 

In this study, Automatic Dependent Surveillance-Broadcast (ADS-B) data from open sky 

network is used to detect dropouts. UND’s team have designed an easy-to-use program that 

simplifies querying the Open Sky-Network data base, while also adding key performance 

metrics to the state vectors data which was previously in a separate table, and thus simplifying 
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the pre-processing steps to track GPS interference activities. We also designed an interface 

showcasing a Dashboard that points to “GPS interference hotspots” to serve as an additional 

safety measure for civilian aircrafts against known and unknown sources of GPS interference. 

Open sky network is a non-profit, crowd sourced, off the shelf ADS-B receiver network that 

collects data from volunteers all over the world since 2013. This data is processed and stored 

in a central database. The database contains positional – Airborne and Surface, Identification, 

Velocity, operational status, and uncertainty metrics transmitted by aircrafts with ADS-B in 

the range of volunteer operated sensors. 

The ADS-B is a device or unit on aircrafts that broadcasts aircraft state parameters at regular 

intervals without interrogation, which is an improvement on the previously used Mode S which 

required interrogation for message transmission. 

 

 

Figure 3. ADS-B System Overview 

Automatic is a reference to the fact that the ADS-B transmits information without the need of 

operator intervention and Dependent indicates that the ADS-B depends on other air data 

systems like altimeters and GNSS Global Navigation Satellite Systems (GNSS) like the Global 

Positioning System (GPS) etc. to obtain the information that it transmits. 

The information transmitted by the ADS-B are described in the Table 4. 

Table 4. Types of Broadcast ADS-B 

Message Type Information Transmitted 

Identification Callsign, Wake Vortex Category 

Airborne 

Position 
Position, Altitude 

Surface Position Position, speed and track angle 

Airborne 

Velocity 

Vertical rate, GNSS and Baroaltitude difference, Ground Speed, Air 

Speed 

Operational 

Status 

Airborne status message, Surface status message, Capacity class, 

Operational mode, ADS-B version number, NIC supplement – A, 

Navigational accuracy category – position, Source integrity level, 

Horizontal reference direction, SIL supplement 
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Metrics to Track Uncertainty in Navigation Related Parameters 

The ADS-B version 2 also broadcasts the following parameters (in addition to parameters listed 

above) as an indication of the accuracy or quality of the positional information being 

transmitted.  

1. Navigation integrity category (NIC): NIC is an indicator of the accuracy the transmitted 

position. The higher the value of NIC, higher the position accuracy, and vice versa (Z. 

Liu et al. n.d.). 

2. NIC replaced the Navigational Uncertainty Category (NUCp) parameter, which was 

used in Version 1 of ADS-B.  

3. Navigation Accuracy Category (NAC): It is another metric that could be seen as a 

complementary indicator of NIC and can be used to determine the horizontal and 

vertical bounds of the position. 

4. Surveillance Integrity Level (SIL): Probability estimation of measurements exceeding 

the containment radius. 

We focused on NIC parameter, looking at how it is stored in the Open Sky Network database, 

and a method by which it is unified with state_vectors_data4 and queried together to integrate 

and produce data which combines state_vectors_data4 and the NIC parameter which resides in 

a separate table. 

 

NIC: NIC is a clear indication of the accuracy of the position obtained by the on board GNSS 

system (Z. Liu et al. n.d.). The acceptable value of NIC is 7. Any values of 6 and below are 

indicators of abnormality (Federal Aviation Administration 2016). Thus, one can easily 

determine GPS interference activities by monitoring NIC. A loss in positional information for 

at least 10 seconds, followed by a drop in NIC (with 0 being complete loss) constitute a 

compromise in GPS Integrity (Z. Liu et al. n.d.). 

 

GPS Jamming Exercises and Notices to Air Men (NOTAM): 

There are timely exercises conducted by the military where the GPS signal in a pre-defined 

area and time. These exercises are a serious threat to civil aviation (IEEE Spectrum, n.d.). There 

have been numerous reports of aircrafts losing GPS connectivity due to these exercises.  

Notices are issued for hazards / change in facilities or conditions which is essential to personnel 

concerned with flight operations (Airport Authority of India 2022). These notices are also 

issued for GPS jamming events. The White Sands Missile Range seemed to be one of the 

hotspots for these exercises (estaff 2021; IEEE Spectrum, n.d.; Harris 2021). 

 

NIC in OpenSky Database: The OpenSky database holds NIC in a separate table, in which 

the NIC is logged between timestamps (Min time and Max time) instead of a single timestamp 

as used the state vectors data. To get to drawing conclusions and analyze areas of interference, 

it would first be required to combine NIC with the state vectors data4. Our github Repository; 

open_sky (DECS Research 2022)  does exactly this with a few bells and whistles. Given a 

query for the state_vectors_data4 table, it connects to the OpenSky IMPALA database, runs 

the query, saves the data obtained from the query to disk, once saved, it obtains the unique 

identifiers of aircrafts in the data obtained. With these unique aircrafts, it then queries the 

position_data4 table, obtains the NIC value, matches the timestamps, and creates files for each 
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aircraft, with the NIC and NAC value (where available) combined. It is also able to catch 

authentication time out errors, which if occurs, the query resumes from the last obtained call 

to rerun, thus automating the process of obtaining data from open sky which is a time-

consuming task, thus freeing the user from waiting for queries to complete. On successfully 

obtaining the data from the remote database, it becomes easily available for analysis and 

processing. 

The OpenSky database holds NIC in a separate table, in which the NIC is logged between 

timestamps (min. time and max. time) instead of a single timestamp as used the state vectors 

data. To get to drawing conclusions and analyze areas of interference, it would first be required 

to combine NIC with the state vectors data4. Our Github Repository; open_sky (DECS 

Research 2022)  does exactly this with a few bells and whistles. Given a query for the 

state_vectors_data4 table, it connects to the OpenSky IMPALA database, runs the query, saves 

the data obtained from the query to disk, once saved, it obtains the unique identifiers of aircrafts 

in the data obtained. With these unique aircrafts, it then queries the position_data4 table, 

obtains the NIC value, matches the timestamps, and creates files for each aircraft, with the NIC 

and NAC value (where available) combined. It is also able to catch authentication time out 

errors, which if occurs, the query resumes from the last obtained call to rerun, thus automating 

the process of obtaining data from open sky which is a time-consuming task, thus freeing the 

user from waiting for queries to complete. On successfully obtaining the data from the remote 

database, it becomes easily available for analysis and processing. 

 

Analysis of a GPS Jamming events. Now that the absence of NIC data from OpenSky was 

overcome and we had information on Jamming events, we tried to manually find an occurrence 

of GPS Interference in an area as described in NOTAMs. On analysis of a NOTAM on 19th 

April 2021, the area of interference was marked and queried from the OpenSky database. Fig. 

4a shows an overview of all the aircrafts queried from the database at the time of the GPS 

interference described in the NOTAM. 

 

 

 

(a) (b) 

Figure 4. (a) Visual View of number of OpenSky Aircrafts Queried on 19th April 2021 (b) Reported 

Locations where NIC Level are less than 7. 

On manual inspection of the data, we were able to find the previously mentioned pattern in 

aircrafts, and an example is show in Fig. 5. However, it is worthy to note that they were very 

scarce. 
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Figure 5. Possible GPS Interference. 

Using NIC to Detect GPS Integrity Locational Hotspots. According to (Federal Aviation 

Administration 2016), a drop of NIC below 7 is considered abnormal. And now that we have 

a method to easily access NIC data along with the state vectors data, we will be looking at 

identifying GPS interference Hot Spots (areas of NIC drop below normal levels) using this 

data. We will create a dashboard that shows areas around the earth (that are in range of 

OpenSky receivers) where a drop in NIC has occurred, serving as an additional safety measure 

that can warn pilots about areas where unknown and known interference has occurred. Fig. 4b 

is an example of such a visual. 

 

Additional criteria to explore further for ADS-B related anomalies: 

Criteria – 1: Transmission Rates of ADSB:If there is no change in NIC/NAC/SIL, the ADSB 

transmits at a constant rate. However, if there is a change in these parameters, it would cause 

the ADSB to transmit at a higher rate (approximately 24 seconds as per (J. Sun, n.d.)). 

Detecting this increase in the transmission rate could serve as an additional criterion for any 

change in NIC/NAC/SIL. 

 

Criteria – 2: Message Reporting Frequency. Filtering out messages from a single sensor and 

monitoring the number of messages received by that sensor for a given aircraft could help in 

detecting the increase in transmission rate. This could serve as an additional confirmation for 

change in key parameters. Simple statistical methods can be used to find a higher rate of 

transmission from normal transmission rates.  The methods suggested by (Darabseh, Bitsikas, 

and Tedongmo 2019) highlighted a few drawbacks, one of which is the inability to use NAC 

as a parameter as it is not recorded for every single received message. The use of message 

count instead of NAC itself can help overcome this issue. (Murrian et al. 2020) have been able 

to use Low earth-orbiting satellites to detect GPS jamming incidents, we can use this data as a 

reference to check for these patterns in those areas. 

Aircraft data was obtained from the OpenSky Network (Schäfer et al. 2014) using their API to 

pull 9 days of global data from their database with a myriad of features (see Fig. 6). These 

datasets were then parsed for unique ICAO24 aircraft tags which then had their data filtered 

and saved into individual files. There was difficulty distinguishing a dropout from an aircraft 

https://opensky-network.org/datasets/raw/
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making multiple trips due to ADS-B sensors being switched off for short lengths of time on the 

runway. This was mitigated by choosing a threshold of ≥15 minutes to separate the dataset into 

unique trips. Once these datasets were separated, the statistical analysis began. The columns of 

interest are the following: time, lat, lon, velocity, geoaltitude, and lastcontact. “lastcontact” is 

the column important to the calculation of dropouts. 

An analysis of each flight using statistical methods allowed data to be scored and categorized 

as a dropout, noise, normal, or erroneous packet. Machine learning models were applied to 

predict these labels using only latitude, longitude, velocity, geo-altitude, and dropout length. 

 

 
Figure 6. GPS/ADS-B Dropout Detection Framework. 

Dropouts are defined as “larger than average time differences between communications” 

(Tabassum and Semke 2018b). A dropout is calculated by finding the difference between the 

current “lastcontact” and the previous. 

Table 5. Batch data details 

Batch Unique Aircraft Data Points Dataset Type 

1 55 691,764 Training 

2 2 201,624 Testing 

3 2 241,891 Testing 

 

This is the basis for all calculations that follow, as it effectively measures the latency of ADS-

B responses. ADS-B responses are supposed to come at a regular interval, normally every 2 

seconds. Variations in dropout length indicate the extremity of the deviation from this interval. 

The mean, median, and mode of the dropout lengths were calculated, as well as the standard 

deviation and z-score of each point. The average dropout length was extremely skewed because 

of the extremity of some values, resulting in the difference between normal values and noise 

becoming unclear. To mitigate this, a method of calculating deviation from the mode was 

developed by replacing the average with mode in the standard deviation formula. This 
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eliminated the skew of the dataset and allowed the calculation of a modal z-score. Next, a 

simple moving average using a window of 25 was applied. Finally, a rolling signal-to-noise 

ratio was applied using methods similar to one researched for Wi-Fi offloading (Kumar and 

Gupta 2018). This can be used to find a threshold for separating dropouts from noise. The 

datasets were not injected with noise or modified in any way as they already contained a good 

number of points corresponding to each category. After statistics were calculated for each data 

point, they were scored based on how many values they were greater than. For example, if a 

dropout length exceeded three standard deviations it would get three points. Point values 

ranged from 0 to 10 and were based on average, mode, standard deviation, mode deviation, 

simple moving average, and signal-to-noise ratio. An examination of the points revealed a clear 

noise threshold score of 4 points. Points with a dropout length less than 0 were labeled as 

’erroneous’. Scores of 1 were labeled ’normal’, scores 2 to 4 were labeled ’noise’, and scores 

greater than 4 were labeled as ’dropout’. 

The data is now prepared to train the SciKit Learn models (Pedregosa FABIANPEDREGOSA 

et al. 2011; Buitinck et al. 2013). The input features for each model are the same: ’lat’, ’lon’, 

’velocity’, ’geoaltitude’, and ’dropout  length’. The output is the label of the data point: 

’erroneous’, ’normal’, ’noise’, or ’dropout’. Time series is excluded from the model on purpose 

so that it will not learn to detect past events that cause dropouts (weather, geomagnetic events, 

etc.) whilst training. Three machine learning models were attempted for the classification task: 

Random Forest Classifier, Support Vector Classifier with Linear Kernel, and K-Nearest 

Neighbor Clustering. Three “batches” of data were prepared as model inputs [Table 5]. Batch 

1 was used for training as it is the most diverse. Each model was tested on Batches 2 and 3. 

The Random Forest Classifier was trained using SciKit Learn’s Random Forest Classifier 

model. An analysis of feature importance during testing showed ’dropout length’ as the best 

predictor of labels, and removing it caused prediction accuracy to drop significantly. The use 

of different datasets was necessary to make sure the model was not overfitting. Random Forests 

generally do not overfit because it is an ensemble model of many different trees. The 

parameters were tuned using grid search cross validation with five folds (SciKit Learn’s 

GridSearchCV), and then the best parameters were used for prediction. The best parameters 

were: {bootstrap = True, max depth = 80, max features = ’auto’, min samples leaf = 5, min 

samples split = 8, n estimators = 100, random state = 42}. Efforts to prove that the model was 

overfitting yielded no evidence, so it can likely be generalized. Random Forest also boasts 

impressive performance, fitting the model in as little as 15 seconds. 

The K-Nearest Neighbor model was very practical to optimize. The performance was great 

which allowed the number of neighbors to be varied and plotted in a reasonable amount of 

time. Analysis of the number of neighbors, ’k’, from 1 to 30 2 showed a steep decline from 1 

that began leveling out around 5. Lower values of ’k’ correspond to a smaller window size 

which is essentially a measure of locality. The accuracy vs ’k’ plot indicates that the model is 

more accurate when the locality is increased, which is not unusual for clustering. 

GridSearchCV was used to optimize hyperparameters, resulting in a single model with poor 

performance. The best parameters were algorithm=ball tree, n_neighbors=25. 
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Table 6. Comparison of model classification reports 

Model Metric 

  Batch   

 Batch 2   Batch 3  

RF 

index precision recall 
f1-

score 
support precision recall 

f1-

score 
support 

dropout 0.396 0.466 0.428 1093 0.590 0.459 0.516 4029 

erroneous 0.986 1.000 0.993 17872 0.996 1.000 0.998 62434 

noise 0.963 0.957 0.960 93078 0.792 0.877 0.833 83828 

normal 0.964 0.965 0.965 89581 0.892 0.810 0.849 91600 

accuracy  0.962   0.877  

KNN 

index precision recall 
f1-

score 
support precision recall 

f1-

score 
support 

dropout 1.000 0.014 0.027 1093 1.000 0.011 0.023 4029 

erroneous 0.451 0.211 0.288 17872 0.449 0.141 0.214 62434 

noise 0.493 0.483 0.488 93078 0.362 0.509 0.423 83828 

normal 0.463 0.527 0.493 89581 0.398 0.452 0.423 91600 

accuracy  0.476   0.384  

SVM 

index precision recall f1-

score 

support precision recall f1-

score 

support 

dropout 0.922 0.218 0.352 1093 0.898 0.255 0.397 4029 

erroneous 0.988 0.623 0.764 17872 0.998 0.871 0.930 62434 

noise 0.490 1.000 0.657 93078 0.449 0.999 0.620 83828 

normal 0.000 0.000 0.000 89581 0.000 0.000 0.000 91600 

accuracy  0.518   0.575  

 

The Support Vector Classifier was tested on the same data and with multiple kernels. Initially 

linear, polynomial, sigmoid, and gaussian kernels were tested. The runtime of all kernels except 

linear was too poor to be practical, which is why linear was chosen. It very quickly became 

apparent that this model’s performance was significantly worse than the other methods, with 

an average runtime of ∼5 minutes. Iterating on this model was impractical because of this poor 

performance. 

III.2.3. Results 
Of the three models tested, Random Forest Classifier (RF) was the clear best. K-Nearest 

Neighbor Clustering (KNN) provided useful insight but was poor, and Support Vector Machine 

Classifier with Linear Kernel (SVM) was poor. The ’accuracy’ and ’precision’ metrics were 

used to analyze performance, but all metrics are shown in Table 6. The metrics precision, recall, 
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f1-score, and support are calculated from ratios of true positives (tp), false positives (fp), false 

negatives (fn), and number of occurences of each actual (not predicted) label in the test set. 

Precision is the ratio of true positives versus true positives plus false positives (Buitinck et al. 

2013). 

The Random Forest Classifier has impressive runtime and greater than 87% overall accuracy 

for both batches (see Table 6). It was able to correctly predict erroneous, noise, and normal 

data with 79% to 99% precision. However, dropout precision was only greater than 39%. These 

results are good, but dropout prediction is the core purpose of this project, and the model does 

not classify that category particularly well. 

K-Nearest Neighbor Clustering performed poorly for both test sets. The plot of accuracy vs 

number of neighbors (k) indicates high locality for the data points, which may mean that the 

data is highly dependent on its closest neighbors (see Fig. 7). Larger numbers of neighbors 

could be causing the clusters to ignore minute details and misclassify data. The optimized KNN 

model had greater than 38% accuracy overall, but the precision for all categories except 

dropouts was between 36% to 49%. The dropout precision was 100%, likely due to 

misclassification. 

  

(a) (b) 

Figure 7. KNN Accuracy vs Number of Neighbors (k) for (a) Batch 2 and (b) Batch 3. 

 

The Linear Support Vector Classifier was very poor and provided little useful information. The 

accuracy was greater than 51% for both test sets (see Table 6). The precision for dropouts and 

erroneous was 89% to 98% and noise was around 49%. ”Normal” labels were never predicted 

by the model resulting in mass misclassification. The runtime performance was very slow for 

linear kernel (∼5 minutes) even with the Intel® Extension for Scikit-learn which improves 

performance. The polynomial, gaussian, and sigmoid kernels have time complexities that can 

reach O(n2) or O(n3) in some cases (Bottou and Lin, n.d.; Simon and List 2009), which is 

probably why training never finished for Batch 1 with ∼700,000 data points. The accuracy and 

f1-score for the linear kernel were probably so poor because the features are too complex to 

classify well with a straight line through a hyperplane. 
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III.2.4. Conclusion 
The Random Forest Classifier is easily the best model in terms of classification accuracy and 

performance but struggles to classify dropouts. K-Nearest Neighbor Clustering is not a good 

fit for this problem but was able to provide insight into the locality of dropouts. The Linear 

Support Vector Classifier is not a good fit for this problem because the linear kernel is too 

simple to achieve accurate results and the dataset is too large for use with polynomial, gaussian, 

or sigmoid kernels. 

III.2.5. Problems and Future Work 
Deleting duplicate data received from multiple sensors at the same time is a temporary fix and 

should be investigated further. Separating trips by finding time differences ≥15 minutes was 

decided by a judgement call and needs revisited. Labelling data based on statistics is unreliable 

because the categories are not well-defined. The score thresholds were decided based on 

judgement calls after analysing plots. The ‘erroneous’ category does not encompass all causes 

of erroneous data and should be expanded. More training data is needed to improve the Random 

Forest Classifier’s dropout prediction accuracy. Future work will include researching duplicate 

data causes, better trip splitting, refining label definitions, and Random Forest Classifier 

improvement. The K-Nearest Neighbor Clustering and Linear Support Vector Classifier 

models will not be the focus of future work but may be revisited if a future use is found for 

them. The Random Forest Classifier will be improved by training it on more batches of data as 

well as a direct approach to hyperparameter optimization. 

III.3. Imputation of GPS/ADS-B Dropout using OpenSky Network 
 

The goal of this section of the project is to investigate the ADS-B metadata from an open-

source sensor network and use a machine learning framework to impute missing data points 

for GPS/ADS-B such as position, direction, etc. This section first reviews related work for 

imputation and then presents the dataset collection and features. Next, it covers the machine 

learning methods that will be used for this project. Lastly, the experimental section where 

data analysis was carried out and the corresponding results are presented. 

 

The data from the OpenSky Network were downloaded using a Python script. The information 

was arranged by day and hour in each parquet file. These files contain all the aircraft's 

abstracted observations for that hour. The main components of the dataset are timestamps, 

positions (i.e., latitude, longitude, and altitude), velocity, and heading. This study was taken 

from February 19, 2022, to February 27, 2022, with six flights totaling approximately 60,100 

points. Table 7 lists the characteristics of the OpenSky dataset. 

 
Table 7. Features of the OpenSky dataset 

Field 

Name 
Field Purpose Sample Data 

time 

the Unix (epoch) timestamp for which the state vector was 

valid. Each aircraft was active within the coverage of 

OpenSky ADS-B Receivers at that second. 

1479957078 
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icao24 

the 24-bit ICAO transponder ID can be used to track specific 

airframes over different flights. This ID should never change 

during a registration period of an airframe, which doesn't 

change very often. 

780db8  

lat last known latitude of the aircraft in decimal degrees.  118.59931  

lon last known longitude of the aircraft in decimal degrees. 22.916793 

geoaltitude the actual height of aircraft above sea level in meters. 8839.2 

 

Pre-processing data aims to transform raw data into a more usable and effective format for 

subsequent processing steps. Each flight was broken down into individual trips. For an aircraft, 

split points were defined as two consecutive points in time designated as the last point of one 

track and the first point of another track. The tracks were split into 15-minute intervals, 

assuming that the flight time had passed since the last contact and tagged with numeric 

numbering with "trackId" and saved as a separate parquet file. These data files will be used to 

train machine learning models. 

The overview of the Machine Learning Framework for Imputing ADS-B/GPS Dropout Data is 

shown in Fig. 8. pySpark, a Python API for Apache Spark, was used to process the feature 

columns (an open-source distributed computing framework and set of libraries for real-time, 

large-scale data processing). The percentage of missing values (the "missing rate") is then 

introduced to these data at 10%, 20%, and 30% at random and continuous intervals. The 

missing values are then imputed using machine learning algorithms. After the values are 

derived using machine learning algorithms, they are forwarded to the validation section, which 

evaluates the performance of each machine learning algorithm using MAE and RMSE metrics. 

 

Figure 8. Overview of machine learning framework for imputing ADS-B/GPS dropout data. 

The Bayesian Ridge, Random Forest, Adaptive Boosting, Extra-Tree Regressor, and k-Nearest 

Neighbor regression methods were investigated in this study. 
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(i) The Bayesian Ridge technique is a regression model with a regularization parameter. It's 

an estimator that uses a calculation with an additional regularization term equal to the sum 

of the values' squares to assume and predict the target. 

(ii) Random Forest (RF) algorithm is used for classification, and regression tasks. This is a 

machine learning algorithm that creates the number of trees during the training period and 

then provides the individual trees' output class. The RF algorithm deals with various types 

of missing data. When the tree grows, the imputation is done adaptively, and all missing 

values are replaced at the end of each iteration. 

(iii) The Adaboost algorithm, also known as adaptive boosting, loops a weak classifier. The 

weight of objects for classification is redistributed after each call and the incorrectly 

classified objects increase with each iteration, and the new classifier focuses on these 

objects. Calculating average weighted classifiers is used to make predictions. As the 

method continues to attempt to correct the data's incorrect classifications. 

(iv) Extra Tree Classifier is a modified version of bagging classifiers. It uses standard tree 

techniques, but with the added goal of increasing efficiency and accuracy. The difference 

between other tree-based algorithms is the split of the node as they are randomly selected 

cut points and building trees using total learning samples. 

(v) k-Nearest Neighbor (k-NN) Imputation is another technique for imputing a missing score. 

It first finds the most similar records in the dataset using the Euclidean distance. The 

technique uses the mean value over the nearest neighbors. This method performs well on 

datasets having a strong local correlation structure. However, this method is 

computationally expensive for large datasets, because finding the most suitable -nearest 

neighbors is based on searching the whole dataset. 

The experimental settings are listed in Table 8. Each experiment is executed five times, with 

different missing rates of 10%, 20%, and 30% (randomly and continuously), and evaluated 

using two metrics: mean absolute error (MAE) and root mean square error (RMSE). The MAE 

and RMSE are defined in Equations (3) and (4) respectively. 

MAE =
1

n
∑ |xi − xî|
n
i=1      (3) 

RMSE = √
1

n
∑ |xi − xî|
n
i=1     (4) 

 

Table 8. Overview of the experimental settings. 

Imputation Methods 
Hyperparameter Settings 

Name Values 

BRR - - 

RF, ABR, ETR n_estimators (10, 50, 100) 

k-NN 
n_neighbors 

weights 

(1, 2, 3, 4, 5, 10, 20, 30, 50) 

(uniform, distance) 

 

Note: All the above Imputation methods ran with multiple iterations - 50, 100, 200, 300, and 

400 times to compute the results with missing ratios of 10%, 20%, 30% (RANDOMLY and 

CONTINUOUSLY) 
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This study described a machine-learning approach to impute flight data. Our experiments 

demonstrated different percentages of missing rates like 10%, 20%, and 30% randomly and 

continuously for five different machine learning methods such as Bayesian Ridge, Random 

Forest, Adaboost, Extra Tree, and k-NN. Results show that k-NN performed better compared 

to other machine learning models to impute the parameters such as latitude, longitude, and 

geoaltitude. Fig. 9  and Fig. 10  shows the MAE and RMSE Score of 10% Imputed Results for 

10% random missing rate of data points and the overall score for 10%, 20% and 30% random 

missing rates score has been shown in Table 9. 

 

 
(a) 

 

 
(b) 
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(c) 

Figure 9. Comparison of MAE score for (a) latitude – 10% randomly imputed, (b) longitude – 10% 

randomly imputed, and (c) geoaltitude – 10% randomly imputed. 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 10. Comparison of RMSE score for (a) latitude – 10% randomly imputed, (b) longitude – 10% 

randomly imputed, and (c) geoaltitude – 10% randomly imputed. 

Table 9. Overall MAE and RMSE Score for Random 10%, 20% and 30%  Imputed Results for 

different Machine Learning Models 

10% 

Iterations 

Latitude Longitude Geoaltitude Latitude Longitude Geoaltitude 

MAE MAE MAE RMSE RMSE RMSE 

Bayesian Ridge 

50 0.492830079 1.072055268 66.69919011 0.40998854 1.550869284 73.80599744 

100 0.492830079 1.072055268 66.69919011 0.40998854 1.550869284 73.80599744 

200 0.492830079 1.072055268 66.69919011 0.40998854 1.550869284 73.80599744 
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300 0.492830079 1.072055268 66.69919011 0.40998854 1.550869284 73.80599744 

400 0.492830079 1.072055268 66.69919011 0.40998854 1.550869284 73.80599744 

 
Random Forest  

50 0.42503186 0.207037769 85.79975775 1.845060287 0.951028196 383.5995599 

100 0.425272302 0.205772608 84.98609983 1.845658094 0.947752522 381.8742073 

200 0.425025621 0.205588445 85.37631901 1.845061456 0.948046729 382.8347347 

300 0.425039307 0.206982654 85.59228839 1.845123707 0.9505982 382.2870004 

400 0.424999395 0.206152139 84.76511212 1.845013614 0.949825357 381.4528691 

 
Ada Boost Regression 

50 0.419165228 0.512959996 70.36778214 1.828666381 2.660371428 304.5048345 

100 0.357435959 0.080153501 63.13325494 1.713001257 0.400138272 275.1160451 

200 0.419147449 0.513065477 67.68864518 1.824295366 2.660755977 296.8066023 

300 0.42296628 0.10185721 62.96341611 1.842142721 0.504132463 269.3876638 

400 0.423140092 0.100634107 63.1645789 1.84217706 0.503919208 276.4536648 

 
Extra Tree Regressor 

50 0.262449672 0.178762603 45.13388782 1.256953514 1.213501815 214.3165176 

100 0.2676982 0.140112999 45.54510798 1.271853629 0.851870076 215.888596 

200 0.25384151 0.135195912 44.06861921 1.22039445 0.735435379 210.0778027 

300 0.263733453 0.197530451 49.86125902 1.225211218 1.096061922 220.7851158 

400 0.270658265 0.152120967 45.97270213 1.189685226 0.9764261 208.2632972 

 
K-NN (Uniform) 

1 0.027532166 0.066613315 9.662930198 0.522493125 0.999307847 118.8085095 

2 0.027487276 0.066568082 9.641451088 0.520611007 0.993298562 123.0517479 

3 0.027419963 0.066353669 9.455552998 0.517350793 0.987595268 119.6967444 

4 0.027383505 0.064974578 8.651886915 0.476222426 0.898431802 112.2230434 

5 0.027399683 0.064794468 8.562564323 0.472245738 0.890847045 109.9124322 

10 0.027428692 0.065292114 8.464688216 0.455827012 0.86521706 104.773125 

20 0.027161867 0.066208489 8.398535101 0.421477021 0.81622559 97.32200922 

30 0.027063793 0.065744485 8.312910983 0.400315326 0.773790004 91.99387661 

50 0.02743398 0.06683715 8.498259174 0.3881106 0.737222914 88.03382786 

 K-NN (Distance) 

1 0.027532166 0.066613315 9.662930198 0.522493125 0.999307847 118.8085095 

2 0.027484898 0.066566884 9.640831459 0.520610997 0.99329856 123.0526078 

3 0.027416004 0.066351613 9.457178016 0.517350773 0.987595263 119.6973065 
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4 0.027350133 0.064931037 8.646724263 0.475982231 0.898158033 112.1622027 

5 0.027368772 0.064759 8.559351435 0.472113297 0.890699001 109.8792518 

10 0.027403484 0.065253267 8.471833034 0.456803176 0.865817011 104.8702989 

20 0.027172885 0.06628078 8.455892749 0.429489914 0.828011282 99.48241624 

30 0.027038094 0.065566315 8.344993921 0.416535875 0.796425152 96.07001966 

50 0.027027155 0.066206696 8.404728221 0.407426537 0.774048722 93.69566042 

20% 

 
Bayesian Ridge 

50 1.001440618 2.143181566 136.1931786 2.531412876 5.867462823 397.2331747 

100 1.001440618 2.143181566 136.1931786 2.531412876 5.867462823 397.2331747 

200 1.001440618 2.143181566 136.1931786 2.531412876 5.867462823 397.2331747 

300 1.001440618 2.143181566 136.1931786 2.531412876 5.867462823 397.2331747 

400 1.001440618 2.143181566 136.1931786 2.531412876 5.867462823 397.2331747 

 
Random Forest  

50 0.853284114 0.415601724 168.6988073 2.596711308 1.352138522 530.0751282 

100 0.853561791 0.536176789 168.8326134 2.597923895 1.803540036 528.0109163 

200 0.853439108 0.56689016 168.6252493 2.597926228 1.952584616 529.8238888 

300 0.853580378 0.473358532 168.6626488 2.598405781 1.576363706 527.2290532 

400 0.853707719 0.545762927 169.2392705 2.598183749 1.859514906 529.0909613 

 
Ada Boost Regression 

50 0.871732081 0.203017736 117.4987618 2.655199092 0.711810066 361.2073629 

100 0.863576912 1.082943185 136.9195778 2.635761525 3.889943035 423.5410716 

200 0.863443755 0.202337852 121.6230968 2.634549672 0.711218723 374.0147052 

300 0.871807053 1.083035116 140.5211972 2.65513633 3.889613126 439.0857848 

400 0.863088226 1.082146455 142.5492147 2.628829265 3.88879694 447.3231389 

 
Extra Tree Regressor 

50 0.524985546 0.386929886 101.2159513 1.645688844 1.486674822 324.112877 

100 0.543263843 0.364148455 89.65644609 1.818989312 1.605462529 308.0580219 

200 0.555658527 0.322224604 99.11257941 1.799297804 1.388422627 327.7662453 

300 0.533402841 0.31483182 97.09117162 1.706439102 1.347140134 313.0170087 

400 0.526922365 0.353347737 94.23093472 1.785606704 1.556056105 319.0003721 

 
K-NN (Uniform) 

1 0.052211182 0.127278725 18.99541256 0.719008661 1.381194445 178.0572183 

2 0.051842919 0.126288816 18.57815862 0.710195059 1.366574837 176.6601792 

3 0.051185014 0.125186043 18.16247219 0.70086535 1.35335673 174.9776793 
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4 0.05168486 0.122932079 16.22559244 0.658401553 1.251413762 164.3371914 

5 0.052217724 0.123335397 16.23879129 0.658822834 1.242233206 163.7276441 

10 0.05292779 0.124996161 16.25345809 0.636590946 1.201081894 159.2767255 

20 0.052253532 0.124361673 15.95882572 0.586177933 1.114839486 148.8045905 

30 0.053433 0.126237675 16.24964947 0.560844059 1.056164844 143.1783207 

50 0.053388274 0.127037339 16.57420856 0.537819862 1.006760928 138.7271754 

 K-NN (Distance) 

1 0.052211182 0.127278725 18.99541256 0.719008661 1.381194445 178.0572183 

2 0.051836202 0.126283592 18.58254421 0.71019495 1.366574789 176.6668969 

3 0.051117866 0.125096168 18.15650435 0.700669255 1.353138856 174.9372343 

4 0.051532657 0.122719808 16.199979 0.658018854 1.250981768 164.2515226 

5 0.052031155 0.123073788 16.20697591 0.658201012 1.241554636 163.5994479 

10 0.052746927 0.124678887 16.23010066 0.635550864 1.199813024 159.0842087 

20 0.052093002 0.123885512 15.93096025 0.599952129 1.134303066 151.6275712 

30 0.052410167 0.124219034 15.94515483 0.586250379 1.093532826 147.9187539 

50 0.052514625 0.125333568 16.0520285 0.576108152 1.068014177 145.4699985 

30% 

 
Bayesian Ridge 

50 1.481995801 2.143181566 136.1931786 3.072484836 5.867462823 397.2331747 

100 1.481995801 2.143181566 136.1931786 3.072484836 5.867462823 397.2331747 

200 1.481995801 2.143181566 136.1931786 3.072484836 5.867462823 397.2331747 

300 1.481995801 2.143181566 136.1931786 3.072484836 5.867462823 397.2331747 

400 1.481995801 2.143181566 136.1931786 3.072484836 5.867462823 397.2331747 

 
Random Forest  

50 1.26599161 0.777679427 246.8213853 3.15871517 2.151855922 630.4123546 

100 1.265159075 0.891332245 247.9101044 3.154628379 2.537227123 634.3379042 

200 1.265532773 0.790574805 247.5010923 3.158079278 2.202231468 630.5059797 

300 1.265471489 0.684391522 245.309928 3.153226028 1.859195283 627.8685357 

400 1.26454382 0.849562411 247.5201958 3.155991989 2.394856967 630.8843684 

 
Ada Boost Regression 

50 1.08121137 1.525872855 195.6110509 2.968547826 4.678705472 505.4460438 

100 1.275760996 1.588925663 193.8276628 3.18232925 4.713468159 489.722142 

200 1.26389592 1.588496314 210.1241655 3.152522516 4.711412569 531.0752002 

300 1.076725248 1.526513568 199.7008029 2.961372944 4.68209517 505.7816625 

400 1.079563902 1.5266325 194.4847214 2.956299362 4.682976969 488.7769995 
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Extra Tree Regressor 

50 0.822731562 0.434137247 144.2886901 2.140863437 1.57749114 371.4550778 

100 0.790392108 0.567727916 137.1704646 2.105545942 1.9165919 358.4916387 

200 0.751915396 0.512453231 130.3635017 2.059046699 2.120848806 359.2821502 

300 0.817057063 0.494198593 140.4390633 2.207896161 1.779435214 384.7146917 

400 0.796255525 0.594635932 152.2765229 2.238883754 1.832526833 404.6523813 

 
K-NN (Uniform) 

1 0.083244152 0.199689815 29.54889967 0.909392718 1.729831857 218.5401873 

2 0.083442615 0.198942091 28.92848386 0.902454397 1.706595759 210.8261937 

3 0.083633938 0.198581052 28.34331582 0.897467745 1.695498829 206.4820601 

4 0.088766893 0.203467828 26.63933825 0.863811621 1.592937046 195.4626876 

5 0.08878445 0.203383042 26.55753335 0.856483298 1.577391569 193.0639326 

10 0.089752713 0.204640682 26.28673135 0.821027034 1.501998923 181.4859477 

20 0.089077668 0.204994889 26.023339 0.754367911 1.399694222 167.9504325 

30 0.08890798 0.205905968 26.17631093 0.717047994 1.329433915 159.1185822 

50 0.088564849 0.206263468 26.68409487 0.694794175 1.279744994 153.4732661 

 K-NN (Distance) 

1 0.083244152 0.199689815 29.54889967 0.909392718 1.729831857 218.5401873 

2 0.083510275 0.19905265 28.9434169 0.903136178 1.707372206 210.9957507 

3 0.083636973 0.198605527 28.34929065 0.897745681 1.695816912 206.5570702 

4 0.08866672 0.203347662 26.62579183 0.863974692 1.593128587 195.5080095 

5 0.088635996 0.203190576 26.54187277 0.856481442 1.577361464 193.0511823 

10 0.089058851 0.20363571 26.26429506 0.821477257 1.503713989 182.447644 

20 0.088283274 0.203061797 25.9146774 0.779312391 1.432432211 173.5492318 

30 0.088531605 0.20444206 26.02757937 0.763150203 1.395277302 169.3763042 

50 0.088372588 0.204886743 26.06445309 0.755763824 1.374126643 167.1227356 

 

In future, other data fields, such as velocity and heading, will be explored. In addition, deep 

learning approaches such as GAIN (Generative Adversarial Imputation Networks), MIDAS 

(Multiple Imputation with Denoising Autoencoders), and LSTM (Long Term Short Memory) 

imputation approaches will also be extended. 
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IV. GPS and ADS-B Signal Jamming Potential Mitigation 

Assessment 
 

Jamming is the process of interfering and blocking radio communications using frequency 

transmitting devices at the same working frequency as the target device. The jamming 

transmission introduces interference noise to the target signal which can introduce inaccuracies 

or cause the signal to dropout entirely. GPS and ADS-B functionality is based on RF 

transmission, making UAV operations vulnerable to jamming effects. (Yu 2012) (Leonardi and 

Piracci 2018). For the ADS-B signal Jamming Risk Classes, jamming is defined as the 

intentional and illegal process of interfering and blocking radio communications using 

frequency transmitting devices at the same working frequency as the target device.  A jamming 

intervention may introduce noise to the main signal which can introduce inaccuracies, or even 

block and replace the desired data with the jamming signal.(Yu 2012) (Leonardi and Piracci 

2018). GPS jamming methods are low-cost and increasingly accessible to the general public, 

introducing increased potential for jamming occurrences to impact GPS-informed navigation 

in UAV operations. For instance, UAV operations within urban areas take place in 

concentrated RF environments with high levels of noise, degraded signals, signal reflection, 

and other RF issues, disrupting operations relying on location and position determination using 

GPS signaling, and therefore impacting ADS-B effectiveness.  

GPS and/or ADS-B jamming events that impact one or more drone operations in the NAS is 

expected to be a frequent event.  Four mitigation schemes have been identified and assessed.  

The four schemes evaluated are optical flow, geomagnetic navigation, cellular signal 

navigation, and Wi-Fi navigation. 

 

IV.1.  Mitigation Strategy: OPTICAL FLOW 
Optical flow techniques are solutions based on natural behaviors observed by insects and birds. 

These algorithms analyze pixel motion between two two-dimensional images as a projection 

of the three-dimensional motion of the objects relative to the visual sensor (Chao 2013. The 

navigation information obtainable through optical flow fields includes rotational and 

transnational velocities along terrain information expressed in body frame. Moreover, four 

methods are commonly used for navigation purposes corresponding to differential methods, 

region-based matching processes, phased-based methods and fusion based methods. For 

navigation purposes, the most common method is the Lucas and Kanade approach, which 

calculates the velocity of features found and tracked over two consecutive images. This method 

assumes slight changes between the images, constant brightness, and smooth spatial motion 

(Fontani 2014). Before obtaining a vector field, this algorithm requires reliable features in the 

images for further tracking using feature detection algorithms as the Shi-Tomasi, Features from 

Accelerated Segment (FAST), Scale Invariant Feature Transform (SIFT) and Speeded-up 

Robust Features (SURF) corners. 

There exist multiple approaches to determine the optical flow from video sequences based on 

early image processing. Most of them are governed by the assumptions of constant brightness, 

small motions, and spatial smoothness. Along with the advances of efficient optical flow 

procedures, new applications have seen the inclusion of such methods as navigation of fixed 

wings and unmanned vehicle systems. Consequently, sensor hardware and reference motion 
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models are sections that require emphasis in optical flow developments for vehicle navigation 

purposes. 

Motion Models based on optical flow are defined as projections of 3D relative motions into the 

observed 2D plane from the camera. This motion field should match the apparent motion when 

the assumptions are held, which corresponds to the optical flow (Zhang 2016). The motion 

fields obtained by the motion models serve as a reference for optical flow obtained by the 

computer vision algorithms. Here, important information such as the angular and translational 

velocities can be obtained or estimated for navigation. Two major approaches for deriving ideal 

motion field estimation are presented and denotes as the pin-hole image plane approach and 

spherical imaging surface, which are models based on biological eyes and compound eyes 

respectively. 

Finally, by integrating ideal camera motion models along with algorithms of feature detection 

and tracking for optical flow calculations, Bayesian estimations may be integrated to obtain 

better estimations of the velocity by including inertial information (Sum 2013). This 

combination allows to eliminate noise due to images imperfections and outlawyers in feature 

selections. Among these Bayesian methods, a regular commonly used approach is the Kalman 

Filter, which integrates optical flow calculation into the ideal model and data provided by 

gyroscopes and accelerometers. 

Cost – Rank 2 

The cost implementation of this type of mitigation strategy can vary between a cost ranking of 

3-4, based on the selection of camera and processing algorithm to be selected to compute the 

optical flow. Low-cost platforms can run optical flow under the cost of $250 with acceptable 

performance since the most common implementation does not require high-end cameras and 

complex algorithms. A clear example of a low-cost UAV capable of running optical flow 

satisfactory is the Mambo Parrot drone with a total cost of $150. For more advanced 

applications, the cost can increase based on the level of accuracy and mission requirements. 

Technical Readiness - Rank 4 

Optical flow has a ranking 4 since some systems are commercially available and is a common 

feature included in commercial high-end drones from DJI, Skydio, Sony among other brands. 

It provides advantages not only in pose estimation but also obstacle avoidance and path 

planning. The Pixhawk flight controller, one of the most used platforms for UAV research and 

development, offers for example as a peripheral a camera for an included optical flow 

algorithm.  

Ease of Implementation/Use – Rank 3 

Optical flow can be categorized as 3 with moderate modifications. Its implementation could be 

relatively easy based on the platform selected. For custom development often public libraries 

for algorithms selection are available as for example OpenCV which requires minor to 

moderate modifications depending on the final scope of implementation. Other platforms as 

Ardupilot and Pixhawk require minor modification for implementations of this system and 

Commercial drones do not require any manipulation at all from the final user in terms of 

algorithm manipulation or hardware integrations. 

Size, Weight, and Power (SWaP) - Rank 3 
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This parameter can be adjustable based on the vehicle requirements since a wide variety of 

combinations of cameras and computer boards can be performed, selections from different 

sizes, weights and power consumptions characteristics. 

The camera size is small in general as for example the CelePixel, CeleX5-MP or the PX4Flow, 

although It can vary from one inch by one-inch chipsets to boxes of couple inches as for 

example the DVXplorer and DAVIS346, which may include additional utilities or even 

microcontrollers. Additionally, to the camera, often is required a microcontroller that runs the 

algorithm if the camera does not provide. This element can be often the main Flight controller 

or additional companion bords of average sizes of 3 to 4 inches which are small for the average 

UAV dimension. Industrial UAVS may use bigger elements proportional to the size of the 

vehicle. Currently commercial vision cameras consume less than 800mW in total. 

Impact– Rank 4 

The implementation of Optical flow has provided significant improvement in sensing and 

navigation capabilities for UAVs. And it’s a feature that can be found in commercial UAVS 

with high autonomous capabilities. Notwithstanding, this mitigation strategy still has its own 

set of limitations and weaknesses as for example its application over areas with even 

characteristics as  constant colors or patterns, where the algorithm cannot perform a strong 

feature detection and therefore provides erroneous or null data. 

 Effectiveness Score – 16 High 

 

IV.2. Mitigation Strategy: GEOMAGNETIC NAVIGATION 
One alternative proposed even before the GPS era is the terrain navigation technique based on 

geomagenetic contours. Back in 1940, Goodyear Aircraft corp. Started developing the 

Automatic Terrain Recognition and Navigation System (ATRAN), a radar-map matching 

system capable of correcting the flight path deviation by correlating measurements from a radar 

scanning antenna with a series of maps on board a missile. Later in 1958, this was successfully 

demonstrated at Holloman AFB by using a three-axis precision magnetometer attached to a 

plane and finding the best fit between the geomagnetic profile measured during the flight and 

the corresponding profile in a stored map. With these initiatives, a foundation for modern 

geomagnetic navigation was established. 

Once terrain information was proven to be highly reliable for navigation, terrain maps 

constructed in previous years were used for conceptual proofs and testing. The company E-

systems pioneered terrain navigation implementations and developed a successful terrain 

contour matching system known as TERCOM in 1973. The company conducted experiments 

using maps made in 1895, which were sufficiently similar to the vertical profiles measured at 

the test to achieve a match. Around the same concept, E-systems developed an abnormal 

contour matching system based on geomagnetism, called MAGCOM, and the use of 

geomagnetic anomaly data was carried out as a terrain map. 

The main component covers more than 95% of the total magnitude while the component due 

to the anomalies rounds 4\% of the sum. The remaining 1% comes from disturbances, including 

diurnal variations. This magnitude became an interesting source of information because it has 

a unique characteristic. It can be described as a vector, with a direction and magnitude, and it 

can be decomposed along different axis (Goldenberg, 2006). Generally, the magnetic field 

vector is resolved under three components, along with the coordinate axis NED: Geographical 

North, East, and Downward direction perpendicular to the surface. The projection of the 
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magnetic field vector into the horizontal plane, called the horizontal component, always points 

to the geomagnetic north. The angle between the horizontal component and the geographical 

North is called magnetic declination. The angle between the magnetic vector and the horizontal 

plane is the magnetic inclination (Zhou 2021). 

The key concept is to use the time-invariant characteristics of the crustal field to improve the 

estimation of the inertial navigation system (Canciani 2017) (Cuenca 2021). The use of the 

Earth magnetic field for position reference relies on the anomalies on the field due to the crustal 

rocks, generating a fingerprint of the area that can be represented by vertical contours of 

topography. 

In geomagnetic matching, the previous existence of information about the test area's magnetic 

field is required to use correlation techniques for the matching process. Hence, a geomagnetic 

database is required before the execution of the algorithm. Currently, maps for the core and 

anomaly components are available for public use at the National Oceanic and Atmospheric 

Administration (NOAA) website, but these databases are suitable if high resolution is not a 

constraint for the navigation algorithm. For navigation in small local areas the geomagnetic 

map must be built experimentally from field measurements. 

Cost – Rank 3 

Geomagnetic navigation can be sensitive to the selection of the sensors. Geomagnetic 

Matching processes in areas with high features as local or indoor environments allow the use 

of low-cost sensor while it is recommended to use better quality sensor for outdoor 

applications. The prices my range from 15 USD as the LIS3MDL 3 Pololu compass or 

Pimoroni LSM303D, to 260 USD as the MGL SP-6 or 370 USD as the GMU 11 which is 

meant for industrial aircrafts.  

Technical Readiness – Rank 1 

The geomagnetic navigation is a promising alternative metho for navigations similar as terrain 

navigation currently under testing and research process. It has been proposed and tested by the 

Goodrich Corporation and currently is undergoing field testing performed by the US Airforce 

and academic research groups. Researchers have shown satisfactory results of geomagnetic 

navigation under favorable magnetic conditions as presented by the Airforce Institute of 

Technology. 

Ease of Implementation/Use - Rank 2 

Due to the novelty of the concepts and is development stage, it requires a mayor understanding 

for implementation of this type of algorithm since no open libraries and commercial devices 

provide yet this capability. Therefore, its implementations require trained personal capable of 

modifying the architecture of this type of system in all levels of complexity. This includes the 

geomagnetic database integrations, the guidance system adequacy to integrate the geomagnetic 

matching process and the corresponding algorithms and the measurement postprocessing to 

remove different sources of identified noises. 

Size, Weight, and Power (SWaP) – Rank 4 

The sensor weight and consumption powers is low. Models as the Garmin GMU 11 for 

industrial and heavy implementations weights 72 g with a power consumption of 1.4W for 

while the most common cases with UAVs developed with MEMS technologies have 

magnetometers as the LIS3MDL and similar with weights around 0.6 to 1 gram with power 

consumption of 10 to 100mW for a raking of 5. 
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Impact – Rank 4 

The impact of this technology is considerable especially for cases where GPS technology is 

not available or weak since it provides with an additional sources of position information that 

do not relies on active signals. Its impact on position accuracy is low but its robustness under 

different weather, terrain and even and cybersecurity conditions suggests this methodology as 

a potential mitigation strategy for UAV navigation, especially in urban environments. 

Assessment Score:  14-Medium 

 

IV.3. Cellular Signal Navigation 
Utilizing cellular networks, specifically 5G, has been a popular topic in relation to the future 

of UAS commercial operations. Where most current UAS regulations limit flight to visual line 

of sight (VLOS), and market-available drones primarily utilize radio frequencies as a command 

link, innovations and adoption of 5G cellular networks as a communication platform introduce 

new possibilities for beyond visual line of sight flight (BVLOS) and expanded operation in 

urban areas for the commercial UAS industry. 

Furthermore, this provides existing and expanding infrastructure to enhance positioning of 

UAV navigation. A 5G networked drone can theoretically utilize the connected network base 

stations to produce a position solution that could supplement and improve the GNSS-based 

position, or act as a failsafe in areas of low GNSS availability or environment of higher RF 

interference. 

The potential for 5G positioning techniques have been primarily explored in the context of 

similar applications utilizing 5G networks, like autonomous vehicle navigation. Some UAS-

based positioning algorithms have been tested through simulation. Actual flight test case 

studies are sparse in the available literature and requires further exploration to realize the most 

accurate and safe version of commercial BVLOS UAS operation, especially in urban 

environments. 

Cost – Rank 2 

Experimental flight testing has included a software defined radio platform (SDR) such as an 

USRP E312 to facilitate the processing of cellular signals, and an antenna add-on, additionally. 

These components well exceed the $1000 threshold off the shelf (Abdallah & Kassas, 2021). 

However, 5G capable drones have been released and are projected to increase in availability as 

5G infrastructure progresses (Qualcomm, 2021). Assuming antenna and capability are 

available off the shelf, additional cost to the UAS unit would be much lower. 

Technical Readiness -  Rank 3 

Systems are still within the experimental phase, and BVLOS flight is not currently permitted. 

Case studies utilizing cell signal positioning demonstrate sub-meter accuracy potential in near 

urban environments based on flight testing (Abdallah & Kassas, 2021), (Shamaei & Kassas, 

2018), (Khalife & Kassas, 2017). No commercial systems readily available, though cellular 

connectivity in market-available UAS is promising and projected. Infrastructure for UAS 

BVLOS 5G corridors are also being tested for operations in urban areas (sUAS News, 2021). 

Ease of Implementation/Use – Rank 4 

Open source options currently exist off the shelf for testing cellular positioning (4G) as analog 

for 5G-based navigation, and further adoption of 5G capabilities in market-available drones 
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will mean most hardware infrastructure available on UAS as is (Parrot, 2021) (Qualcomm, 

2021). Further implementation for cellular-based positioning would be software related. 

Currently, off-the-shelf retrofitting of SDR and antenna onto UAS is most achievable (based 

on published methods of initial flight tests), with algorithm written or adapted for carrier phase 

filtering and processing of cell signals (4G/5G) (Abdallah & Kassas, 2021), (Shamaei & 

Kassas, 2018).  

Size, Weight, and Power (SWaP) - Rank 2 

Based off published testing, 446g SDR with internal battery of unknown weight, though very 

likely within the margins of the rank 2 listed <1kg weight (Abdallah & Kassas, 2021). Antenna 

component could vary in size while remaining under rank maximum weight. Similar 

components could weigh less but unlikely to reduce weight enough to meet Rank 3 

specification levels. Further built-in availability of 5G capabilities in drones will likely improve 

this ranking, utilizing stock antenna and cellular signal processing capability. 

Impact – Rank 4 

Potential for UAS cell signal-based positioning as a supplement navigational system is 

promising, offering potentially submeter accuracy or better (Zeng, Y., 2020) (Abdallah & 

Kassas, 2021). Characteristics of urban areas include increased signal density and interference 

for UAS operations. Considering this fact, this method opportunistically utilizes one of those 

interference sources to diversify signal input and mitigate jamming/interference scenarios. 

Effectiveness Score 15 – HIGH 

 

IV.4.  Wi-Fi Navigation 
Utilizing Wi-Fi signal navigation as a failsafe or secondary system to inform a GNSS and IMU 

system onboard a UAS in the case of dropout or jamming in the urban environment could be 

viable, but limited by lack of published flight testing. Mitigation rating is based on foundation 

of literature documenting indoor UAS testing and non-UAS applications outdoors such as 

pedestrian navigation.  

Cost – Rank 3 

Signal antenna and processor needed to receive and localize the signals. A simplified approach 

in indoor navigation utilized a Raspberry Pi 3B+, ($40-$100). It is inferred a more robust (and 

costly) processor may be needed to work through a denser and more dynamic signal 

environment outdoors in the urban environment. Non-built in wifi antenna may be needed to 

expand signal receiving capability (Li, Sensors, and 2022, n.d.; Kapoor et al. n.d.; Raspberry 

2021). 

Technical Readiness -  Rank 2 

Literature on Wi-Fi positioning for pedestrian navigation in the urban canyon, and published 

tests of UAS Wi-Fi positioning in an indoor setting are available. Published testing of the 

system in the urban environment, on-board is sparse and would require further experimental 

trials. Conceptual phase (Cheng, et al., 2014) (Li and Zhang, 2022) 

Ease of Implementation/Use – Rank 2 

Modular addition of a processor with custom or selected software and an included Wi-Fi 

antenna, or separate antenna component, to be retrofitted on UAS. Hotspot database component 

to recognize and process Wi-Fi hotspots along the trajectory will need to be identified, loaded, 
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and regularly updated in preparation for operation. With no commercially available product, 

implementation and operation training necessary. 

Size, Weight, and Power (SWaP) - Rank 3/4 

Literature exploring indoor navigation used a Raspberry Pi 3B+, weighing about 60g with a 

built in Wi-Fi antenna. It’s a possibility that outdoor navigation will require a more robust Wi-

Fi antenna array. Assigned current rank with potential for similar or slightly heavier setup (Li 

and Zhang, 2022). 

Impact – Rank 2 

Utilizing Wi-Fi signal navigation as a failsafe or secondary system to inform a GNSS and IMU 

system onboard a UAS in the case of dropout or jamming in the urban environment could be 

viable based on indoor testing and non-UAS applications outdoors. Some potential challenges 

with this approach include the flying height of UAS operations and its relationship with 

vertically degrading signal strength of hotspots at ground level; The sourcing, updating, and 

storage needs of hotspot data for trilateration could cause an overestimate in the ratings listed 

above (Cheng, et al., 2014) (Kapoor, et al., 2014). Would be less effective as a mitigation 

technique in agricultural areas due to lower density of signal sources. Rank reduced by one due 

to lack of project-specific flight testing to draw conclusions. 

 

Effectiveness Score 12 – MEDIUM 
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V.  ECD, GPS and ADS-B Signal Spoofing Potential Mitigation 

Assessment 

Many methods have been proposed to detect and mitigate GPS spoofing. The lion's share of 

the research focuses on detecting spoofing attacks. Methods of spoofing mitigation are often 

specialized or computational burdensome. This report highlights the brilliant value-added 

research by Dr. Manuel Eichelberger on the mitigation and recovery of GPS spoofing 

(Eichelberger 2019). ECD implementation and evaluation show that the robustness of 

collective detection (CD) can be exploited to mitigate spoofing attacks with some 

modifications. (Eichelberger 2019)shows that multiple locations, including the actual one, can 

be recovered from scenarios in which several signals are present. ECD does not track signals. 

It works with signal snapshots. It is suitable for snapshot receivers, which are a new class of 

low-power GPS receivers (Eichelberger 2019; H. Liu et al. 2007). 

ADS-B's high dependency on communication and navigation (GNSS/ GPS) systems causes the 

system to inherit the vulnerabilities of those systems. This results in more opportunities 

(threats) to exploit those vulnerabilities. Advancements in computers, connectivity, storage, 

hardware, software, and apps are major aids to malicious parties who wish to carry out spoofing 

and other threats by exploiting the vulnerabilities of ADS-B.  Another main vulnerability of 

ADS-B systems is their broadcast nature without security measures, which can easily be 

exploited to cause harm. 

In this section, four primary concepts result from the investigation: 

1) That UAS / drones are a mobile deployment agent. They are capable of Cyber-Spoofing 

navigation signals in the air by acting as a rogue access point, HAPs unit, mobile malicious 

signal generator, or interference medium to the ground control, friendly airborne unit, 

CBRN asset, or any other mechanism/system requiring localization or position fix via GPS 

/ GNSS. 

2) That GPS spoofing detection and mitigation for GNSS / GPS systems can be solved 

using the brilliant ECD algorithm for detection, mitigation, and recovery. 

3) ADS-B is a subset of the larger receiver localization problem. Solutions that apply to the 

larger vector space, GNSS / GPS, also are valid for the subset, ADS-B, if computational 

hardware or cloud computing are available. 

4) ECD Mitigation Assessment of ECD shows a cumulate score of 15 with extensive 

IMPACT and High Effectiveness. Further Stage 2 simulation work is cost-effective and 

highly recommended.  

Definition: Spoofing - A Cyber-weapon attack that generates false signals to replace valid ones. 

GPS Spoofing is an attack to provide false information to GPS receivers by broadcasting 

counterfeit signals similar to the original GPS signal or by recording the original GPS signal 

captured somewhere else at some other time and then retransmitting the signal. The Spoofing 

attack causes GPS receivers to provide the wrong information about position and time 

(Humphreys et al., n.d.)(Tippenhauer et al. 2011). GPS Spoofed UAS / drones may deliver 

signals against any target (CBRN assets included) that requires accurate position fix or 

localization (Nichols, Sincavage, et al., n.d.). 
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It is important to understand that both GPS (part of the GNSS family) and ADS-B systems are 

vulnerable to spoofing attacks on both manned and unmanned aircraft. In general, GPS 

vulnerabilities translate down to the more specific ADS-B subset, which has vulnerabilities in 

its own right. This summary report details the brilliant work of Dr. Michael Eichelberger on 

Robust Global Localization using GPS and Aircraft Signals. He describes a functional tool 

known as CD to detect, mitigate and counter spoofing (and jamming) attacks on all stages of 

GPS.(Eichelberger 2019)  The tool has been nicknamed ECD to honor Dr. Manuel 

Eichelberger’s brilliant doctoral research. ECD is Dr. Manuel Eichelberger’s advanced 

implementation of CD to detect and mitigate spoofing attacks on GPS or ADS-B signals 

GPS is ubiquitous and is incorporated into so many applications (aircraft, ship, car /truck 

navigation; train routing and control; cellular network, stock market, CBRN assets, and power 

grid synchronization) that it makes a "rich" target for spoofing a receiver perceived location or 

time. Wrong information in time or space can have severe consequences. 

ATC is partially transitioning from radar to a scheme in which aircraft (A/C) transmit their 

current location twice per second through ADS-B messages. This system has been mandated 

in Europe and has been well underway in the US since 2020. The A/C determine their location 

using GPS. If the onboard GPS receiver estimates a wrong location due to spoofing, wrong 

routing instructions will be delivered due to a wrong reported A/C location, leading to an A/C 

crash. 

Ships depend heavily on GPS. They have few reference points to localize themselves apart 

from GPS. Wrong location indication can strand a ship, cause a collision, push off course into 

dangerous waters, ground a ship, or turn a ship into a ghost or a missile. In 2017 multiple 

incidents in the Black Sea and South China Seas have been documented (Nichols et al. 

2019)(Nichols et al. 2019). 

While planes and ships suffer spoofing attacks in the location domain, an attacker may also try 

to change the perceived time of a GPS receiver. Cellular networks rely on accurate time 

synchronization to exchange data packets between ground antennas and mobile handsets in the 

same network cell. Also, all neighboring network cells need to be time-synchronized for 

seamless call handoffs of handsets switching cells and coordinating data transmissions in 

overlapping coverage areas. Since most cellular ground stations get their timing information 

from GPS, a signal spoofing attacker could decouple cells from the common network time. 

Overlapping cells might send data simultaneously and frequencies, leading to message 

collisions and losses.  Failing communications networks can disrupt emergency services and 

businesses. (Eichelberger 2019) 

V.1.  ECD Definitions 

There are several definitions that are crucial in the discussion of the ECD method and are 

provided 

SPOOFING - Threats and weaknesses show that large damages (even fatal or catastrophic) can 

be caused by transmitting forged GPS signals. False signal generators may cost only a few 

hundred dollars of software and hardware. 

A GPS receiver computing its location wrongly or even failing to estimate any location can 

have different causes. Wrong localization solutions come from 1) a low signal-to-noise ratio 
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(SNR) of the signal (examples: inside a building or below trees in a canyon); 2) reflected 

signals in multipath scenarios, or 3) deliberately spoofed signals.(Eichelberger 2019) discusses 

mitigating low SNR and multipath reflected signals. Signal spoofing (#3) is the most difficult 

case since the attacker can freely choose each satellite's signal power and delay individually.  

GPS SYSTEM & SIGNALS - The GPS system and signals are well documented. See(“2020-

SPS-Performance-Standard,” n.d.) 

CLASSIC RECEIVERS - Classical GPS receivers use three stages when obtaining a location 

fix. They are Acquisition, Tracking, and Localization. 

Acquisition. The relative speed between satellite and receiver introduces a significant Doppler 

shift to the carrier frequency. GPS receiver locates the set of available satellites. This is 

achieved by correlating the received signal with satellites' known C/A codes. Since satellites 

move at considerable speeds. The signal frequency is affected by a Doppler shift. So, the 

receiver must correlate the received signal with C/ A codes with different Doppler shifts. 

Tracking. After a set of satellites has been acquired, the data contained in the broadcast signal 

is decoded. Doppler shifts and C /A code phase are tracked using tracking loops. After the 

receiver obtains the ephemeris data and HOW timestamps from at least four satellites, it can 

compute its location.  

Localization. Localization in GPS is achieved using signal time of flight (ToF) measurements. 

TVs are the difference between the arrival times of the HOW timestamps decoded in the 

tracking stage of the receiver and those signal transmission timestamps themselves. The local 

time at the receiver is unknown, and the localization is done using pseudo ranges. The receiver 

location is usually found using least-squares optimization.  

A main disadvantage of GPS is the low bit rate of the navigation data encoded in the signals 

transmitted by the satellites. The minimal data necessary to compute a location fix, which 

includes the ephemerides of the satellites, repeats only every 30 seconds (Eichelberger 2019). 

A-GPS (ASSISTED GPS) – REDUCING THE STARTUP TIME - Assisted GPS (A-GPS) 

drastically reduces the startup time by fetching the navigation data over the Internet, commonly 

connecting via a cellular network. Data transmission over cellular networks is faster than 

decoding the GPS signals and normally only takes a few seconds. The ephemeris data is valid 

for 30 minutes. That data can reduce the acquisition time since the available satellites and their 

expected Doppler shifts can be estimated. The receiver still needs to extract the HOW 

timestamps from the signal with A-GPS. However, these timestamps are transmitted every six 

seconds, which translates to how long the A-GPS receiver takes to compute a location fix 

(Eichelberger 2019). 

COURSE – TIME NAVIGATION - Course-Time Navigation (CTN) is an A-GPS technique that 

drops the requirement to decode the HOW timestamps from the GPS signals. The only 

information used from the GPS signals is the phases of the C/A code sequences detected by a 

matched filter. Those C/A code arrival times are unambiguously related to the sub-

milliseconds; the deviation may be no more than 150 km from the correct values. Since the 

PRN sequences repeat every millisecond, without considering navigation data flips in the 

signal, CTN can, in theory, compute a location from one millisecond of the sampled 

signal.  Noise can be an issue with such short signal recordings because it cannot be filtered 
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out the same way with longer recordings of several seconds. The big advantage is that signal 

processing is fast and power-efficient and reduces the latency of the first fix. Since no metadata 

is extracted from the GPS signal, CTN can often compute a location even in the presence of 

noise or attenuation (van Diggelen 2009). 

SNAPSHOT RECEIVERS - Snapshot receivers aim at the remaining latency that results from 

the transmission of timestamps from satellites every six seconds. Snapshot receivers can 

determine the satellite modulo 1 ms ranges, which corresponds to 300 km.(Eichelberger 2019) 

COLLECTIVE DETECTION - Collective Detection (CD) is a maximum likelihood snapshot 

receiver localization method, which does not determine the arrival time for each satellite but 

rather combines all the available information and decides only at the end of the computation. 

This technique is critical to the (Eichelberger 2019) invention to mitigate spoofing attacks on 

GPS or ADS-B. CD can tolerate a few low-quality satellite signals and is more robust than 

CTN. CD requires a lot of computational power. CD can be sped up by a branch and bound 

approach, which reduces the computational power per location fix to the order of one second 

even for uncertainties of 100 km and a minute.  

ECD - Returning to Dr. Manuel Eichelberger’s CD – Collective detection maximum likelihood 

localization approach, his method can detect spoofing attacks and mitigate them. iThe ECD 

approach is a robust algorithm to mitigate spoofing. ECD can differentiate closer differences 

between the correct and spoofed locations than previously known approaches. COTS has little 

spoofing integrated defenses. Military receivers use symmetrically encrypted GPS signals, 

subject to a "replay" attack with a small delay to confuse receivers. 

 ECD solves even the toughest type of GPS spoofing attack, consisting of spoofed signals with 

power levels similar to the authentic signals.  ECD achieves median errors under 19 m on the 

TEXBAT dataset, the de-facto reference dataset for testing GPS anti-spoofing algorithms 

(Ranganathan, Ólafsdóttir, and Capkun 2016). FOR EACH LOCATION FIX, the ECD 

approach uses only a few milliseconds’ worth of raw GPS signals, so-called snapshots. This 

enables offloading the computation into the Cloud, allowing knowledge of observed attacks. 

Existing spoofing mitigation methods require a constant stream of GPS signals and tracking 

those signals over time. Computational load increases because fake signals must be detected, 

removed, or bypassed.  

Researchers have been trying to find a complete solution to the spoofing threat because of the 

overwhelming dependence on GPS in every sector, ranging from civilian to military. Haider 

and Khalid 2016 published an adequate survey of spoofing countermeasures up through 2016 

(Haider and Khalid 2016). 

V.2. GPS Spoofing Techniques 

There are three common GPS spoofing techniques with different sophistication levels. They 

are simplistic, intermediate, and sophisticated.  

The simplistic spoofing attack is the most commonly used technique to spoof GPS receivers. 

It only requires a COTS GPS signal simulator, amplifier, and antenna to broadcast signals to 

the GPS receiver. It was performed successfully by Los Almos National Laboratory in 2002 

(Warner and Johnston 2003). Simplistic spoofing attacks can be expensive as the GPS 
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simulator can run $400K and is heavy (not mobile). The available GPS signal does not 

synchronize simulator signals, and detection is easy. 

In the intermediate spoofing attack, the spoofing component consists of a GPS receiver to 

receive a genuine GPS signal and a spoofing device to transmit a fake GPS signal. The idea is 

to estimate the target receiver antenna position and velocity and then broadcast a fake signal 

relative to the genuine GPS signal. This spoofing attack is difficult to detect and can be partially 

prevented by using an IMU (Humphreys et al., n.d.). 

In sophisticated spoofing attacks, multiple receiver-Spoofer devices target the GPS receiver 

from different angles and directions. The angle-of-attack defense against GPS spoofing in 

which the angle of reception is monitored to detect spoofing fails in this scenario. The only 

known defense successful against such an attack is cryptographic authentication (Humphreys 

et al., n.d.). 

Note that prior research on spoofing was to exclude the fake signals and focus on a single 

satellite. ECD includes the fake signal on a minimum of four satellites and then progressively 

/ selectively eliminates their effect until the real weaker GPS signals become apparent 

(Eichelberger 2019). 

Haider’s detailed research on the above three attacks is available in (Haider and Khalid 2016) 

V.3. GPS SPOOFING RESEARCH  

Three research tracks are most relevant to ECD / CD: Maximum Likelihood Localization, 

Spoofing Mitigation algorithms, and Successive Signal Interference Cancellation (SIC). Note 

that historical spoofing research focuses primarily on detecting singular SPS source attacks. 

The focus on mitigation, correction, and recovery attending to multiple spoofing signals on 

multiple satellite attack surfaces is the hallmark of ECD. 

CD is a maximum likelihood GPS localization technique. It was proposed in 1996 but 

considered computationally infeasible at that time. The search space contained millions or 

more location hypotheses. Improvements in the computational burden were found using 

various heuristics. A breakthrough came with the proposal of a branch-and-bound algorithm 

that finds the optimal solution within ten seconds running on a single CPU thread (Bissig, 

Eichelberger, and Wattenhofer, n.d.). 

Most GPS spoofing defenses focus on detecting spoofing attacks. There is a lack of prior 

research for spoofing mitigation and recovering from successful attacks by finding and 

authenticating the correct signals.  In contrast to the extensive research on GPS spoofing, there 

is a lack of commercial, civil receivers with anti-spoofing capabilities. ECD inherently 

mitigates spoofing attacks. 

Spoofing hardware performing a sophisticated, seamless satellite-lock takeover attack has been 

built. Challenges associated with spoofing are matching the spoofed and accurate signals ' 

amplitudes at the receiver, which might not be in LOS and moving (Humphreys et al., n.d.). 

It is practically feasible for a Spoofer to erase the authentic signals at a 180-degree phase offset. 

This is one of the strongest attacks that can only be detected with multiple receiver antennas or 

a moving receiver. The Spoofer needs to know the receiver location more accurately than the 
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GPS L1 wavelength, 19 cm, to make signal erasure feasible. Receivers with only a single 

antenna cannot withstand such an erasure attack. ECD targets single-antenna receivers and 

does not deal with signal erasure. The original signals are still present in all other spoofing 

attacks, including signal replay and multiple transmission antenna implementations, and ECD 

remains robust.  Detecting multi-antenna receivers and differentiating signal timing 

consistencies are covered in (Tippenhauer et al. 2011). 

The GPS anti-spoofing work most relevant to ECD is based on the joint processing of satellite 

signals and the maximum likelihood of localization.   

ECD uses an iterative signal damping technique with spoofing signals similar to SIC. SIC 

removes the strongest received signals to find the weaker signals and has been used with GPS 

signals before. Previous work is based on a classical receiver architecture which only keeps a 

signal’s timing, amplitude, and phase. The ECD has its snapshot receiver based on CD, which 

directly operates in the localization domain and does not identify individual signals in an 

intermediate stage. It is impossible to differentiate between authentic and spoofed signals, a 

priori, ECD does not remove signals from the sample data. Otherwise, the localization 

algorithm might lose the information from authentic signals/ Instead, ECD dampens strong 

signals by 60% to reveal weaker signals. This can reveal localization solutions with lower CD 

likelihood (Eichelberger 2019). 

V.4. GPS Signal Jamming 

The easiest way to prevent a receiver from finding a GPS location is by jamming the GPS 

frequency band. GPS signals are weak and require sophisticated processing to be found. 

Satellite signal jamming considerably worsens the satellite signal acquisition results' signal-to-

noise ratio (SNR). ECD algorithms achieve a better SNR than classical receivers and tolerate 

more noise or stronger jamming (Eichelberger 2019). 

A jammed receiver is less likely to detect spoofing since the original signals cannot be 

accurately determined. The receiver tries to acquire any satellite signals it can find. The attacker 

only needs to send a set of valid GPS satellite signals stronger than the noise floor without 

synchronizing with authentic signals (Eichelberger 2019). 

There is a more powerful and subtle attack on top of the jammed signal. The Spoofer can send 

a set of satellite signals with adjusted power levels and synchronize to the authentic signals to 

successfully spoof the receiver.  So even if the receiver has countermeasures to differentiate 

the jamming, the Spoofer signals will be accepted as authentic (Nichols, Mumm Wayne D 

Lonstein Julie JCH Ryan Candice M Carter, and Jch, n.d.; Nichols, Mumm, et al., n.d.). 

Two of the most powerful GPS signal spoofing attacks are Seamless Satellite-Lock Takeover 

(SSLT) and Navigation Data Modification (NDM). ECD performance is assessed in each case. 

The most powerful attack is a seamless satellite-lock takeover. The original and counterfeit 

signals are nearly identical in such an attack concerning the satellite code, navigation data, code 

phase, transmission frequency, and received power. This requires the attacker to know the 

location of the spoofed device precisely so that ToF and power losses over a distance can be 

factored in. After matching the spoofed signals with the authentic ones, the Spoofer can send 

its signals with a small power advantage to trick the receiver into tracking those instead of the 

authentic signals. A classical receiver without spoofing countermeasures, like tracking multiple 
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peaks, cannot mitigate or detect the SSLT attack, and there is no indication of interruption of 

the receiver's signal tracking (Eichelberger 2019). 

The Navigation Data Modification (NDM) method is when an attacker has two attack vectors: 

modifying the signal's code phase or altering the navigation data—the former changes the 

signal arrival time measurements. The latter affects the perceived satellite locations. Both 

influence the calculated receiver location. ECD works with snapshot GPS receivers and is not 

vulnerable to NDM changes as they fetch information from other sources like the Internet. 

ECD deals with modified, wireless GPS signals (Eichelberger 2019). 

V.5. ECD ALGORITHM DESIGN 

ECD is aimed at single-antenna receivers. Its spoofing mitigation algorithm object is to identify 

all likely localization solutions. It is based on CD because 1) CD has improved noise tolerance 

compared to classical receivers, 2) CD is suitable for snapshot receivers, 3) CD is not 

susceptible to navigation data modifications, and 4) CD computes a location likelihood 

distribution which can reveal all likely receiver locations including the actual location, 

independent of the number of spoofed and multipath signals. ECD avoids spoofing pitfalls and 

signal selection problems by joining and transforming all signals into a location likelihood 

distribution. Therefore, it defeats the top two GPS spoofing signal attacks (Eichelberger 2019). 

Relating to the 4th point, spoofing and multipath signals are similar from a receiver's 

perspective. Both result in several observed signals from the same satellite. The difference is 

that multipath signals have a delay-dependent on the environment while spoofing signals can 

be crafted to yield consistent localization solutions at the receiver. Classical receivers can be 

modified to track an arbitrary number of signals per satellite instead of only one to detect 

spoofing and multipath signals. The set of authentic signals – one signal from each satellite – 

would have to be correctly identified in such a receiver. Any selection of signals can be checked 

for consistency by verifying that the resulting residual error of the localization algorithm is 

very small. This is a combinatorically difficult problem. For n satellites and m transmitted sets 

of spoofed signals, there are (m+ 1) n  possibilities for the receiver to select a set of signals. 

Only m + 1 of those will result in a consistent localization solution representing the actual 

location and m spoofed locations. ECD avoids this signal selection problem by joining and 

transforming all signals into a location likelihood distribution (Eichelberger 2019). 

ECD only shows consistent signals since just a few signals overlapping (synced) for some 

location hypotheses do not significantly accumulate. All plausible receiver locations – given 

the observed signals - have a high likelihood. Finding these locations in four dimensions, space 

and time, is computationally expensive (Bissig, Eichelberger, and Wattenhofer, n.d.). 

A fast CD leveraging branch and bound algorithm is employed to reduce the computational 

load compared to exhaustively enumerating all the location hypotheses in the search space. 

(Eichelberger 2019)describes the modifications to the B&B algorithm for ECD in copious 

detail in chapter 6.  

One of the key points under the receiver implementation concerns the correlation of C/A codes. 

The highest correlation is theoretically achieved when the C/A code in the received signal is 

aligned with the reference C/A code. Due to the pseudo-random nature of the C/A codes, a 

shift larger than one code chip from the correct location results in a low correlation value. Since 

one code chip has a duration of 1/1023 ms, the width of the peaks found in the acquisition 
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vector is less than 2% of the total vector size. ECD reduces the maximum peak by 60% in each 

vector. A detection for partially overlapping peaks prevents changes to those peaks. Reducing 

the signal rather than eliminating it has a little negative impact on the accuracy. Before using 

these vectors in the next iteration of the algorithm, the acquisition result vectors are normalized 

again. This reduces the search space based on the prior iteration. 

The ECD mitigation workflow for detection and mitigation of spoofing of GNSS with 

Collective Detection approach from Dr. Manuel Eichelberger is as follows: 

 

Step 1: receiver localization in space (3D space and time) 

Step 2: assessing pseudo-likelihood of the receiver location in the Collective Detection 

approach 

Step 3: Detection of spoofing, GNSS information is compromised, e.g., multiple locations 

present 

Step 4: determine which of the likely locations is correct, i.e., mitigate the spoofing. 

V.6. SIGNAL SPOOFING 

ADS-B signal spoofing attempts to deceive an ADS-B receiver by broadcasting fake ADS-B 

signals that resemble a set of normal ADS-B signals or by re-broadcasting genuine signals 

captured elsewhere or at a different time. Spoofing an ADS-B system is also known as message 

injection because fake (ghost) a/c is introduced into the air traffic. The system's vulnerability 

– having no authentication measures implemented at the systems data link layer – enables this 

threat. Spoofing is a hit on the security goal of Integrity. This leads to undesired operational 

decisions by controllers or surveillance operations in the air or on the ground. The threat affects 

both ADS-B IN and OUT systems. Spoofing threats are two basic varieties: Ground Station 

Target Ghost Injection / Flooding and Ground Station Target Ghost Injection / Flooding (ALI 

2019). 

Ground Station Target Ghost Injection / Flooding is performed by injecting ADS-B signals 

from a single a/c or multiple fakes (ghost) a/c into a ground station. This will cause single 

/multiple fake (ghost) a/c to appear on the controller’s working position (radar screen)  (ALI 

2019). 

Aircraft Target Ghost Injection / Flooding is performed by injecting ADS-B signals from a 

single a/c or multiple fake (ghost) a/c into an airplane in flight. This will cause ghost a/c to 

appear on the TCAS and CDTI screens in the cockpit to go haywire. Making the mess worse, 

the fake data will also be used by airborne operations such as ACAS, ATSAW, ITP, and others 

for aiding a/c navigation operations (ALI 2019). 

An a/c can look like it has vanished from the ADS-B-based air traffic by deleting the ADS-B 

message broadcast from the a/c. This can be done by two methods: destructive interference and 

constructive interference. Destructive interference is performed by transmitting an inverse of 

an actual ADS-B signal to an ADS-B receiver. Constructive interference is performed by 

transmitting a duplicate of the ADS-B signal and adding the two signal waves (original and 

duplicate). The two signal waves must be of the same frequency phase and traveling in the 
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same direction. Both approaches will result in being discarded by the ADS-B receiver as 

corrupt (ALI 2019). 

ADS-B message modification is feasible on the physical layer during transmission via datalinks 

using two methods: Signal Overshadowing and Bit-flipping. Signal overshadowing is done by 

sending a stronger signal to the ADS-B receiver, whereby only the stronger of the two colliding 

signals is received. This method will replace either the whole target message or part of it. Bit 

flipping is an algorithmic manipulation of bits. The attacker changes bits from 1 to 0 or vice 

versa. This will modify the ADS-B message and is a clear violation of the security goal of 

Integrity. This attack will disrupt ATC operations or a/c navigation. 

V.7. ECD Performance Assessment 
The proposed assessment metrics assess the overall effectiveness of mitigation schemes.  Five 

parameters are evaluated to quantify the overall score to rank the proposed methods.  These 

factors are: 

1.) Cost 

2.) Technical Readiness 

3.) Ease of Implementation/Use 

4.) Size, Weight, and Power (SWaP) 

5.) Impact 

 

Each factor will be ranked with a numerical score from 1 to 5, with 1 being the “worst” and 5 

being the “best” in each category.  A detailed guide for each ranking factor is provided based 

on implementing the mitigation scheme on a small UAS.  The ranking for each factor is 

provided for the ECD method. 

Cost Ranking - 3 

Technical Readiness - 2 

Ease of Implementation/Use - 3 

Size, Weight, and Power (SWaP) - 3 

Impact - 5 

 

Effectiveness score: 16 High  

The purposes of this section were to introduce the problem of Navigation Cyber-Spoofing; to 

recognize that GNSS / GPS / ADS-B systems, including CBRN mobile assets, are susceptible 

to Cyber Spoofing; that research has focused on detection rather than mitigation and recovery 

efforts; that ECD is a brilliant solution to part of the Cyber Spoofing problem as it does not 

exclude false signals but encompasses them into the algorithm; and lastly that in terms of the 

ASSURE44 mitigation schema, ECD Mitigation Assessment of ECD shows a cumulate score 

of 15 with extensive IMPACT and High Effectiveness. Further Stage 2 simulation work is 

cost-effective and highly recommended.  
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VI.  Summary and Conclusions 
 

This Identification of Potential Mitigations report fulfills Task 2 for the A44 ASSURE project.  

Examination of recorded ABS-B data was conducted to expose potential risks and provide 

guidance on mitigation schemes.  The examination reveals dropouts and anomalies that occur 

in flight operations.  Based on the risk assessments in Task 1, the performer conducted a market 

survey of market solutions to mitigate loss of GPS and loss of ADS-B data as well as a market 

survey of market solutions to mitigate unvalidated GPS and unvalidated ADS-B In data. The 

market surveys include estimated costs, ease of implementation, and a preliminary assessment 

of the effectiveness of market solutions to mitigate the various risks identified in Task 1.   

The integrity of navigation systems, such as ADS-B and GPS, was analyzed to detect threats 

to the integrity. These risks include erroneous, spoofed, jammed, and dropped data from GPS 

or ADS-B systems. Recorded ABS-B data was examined to expose potential risks and provide 

guidance on mitigation schemes. It reveals dropouts and anomalies that occur during flight 

operations.  Two primary data set types were used in this study: GPS data from the Dallas Fort 

Worth Airport and data from the OpenSky Network.  The results are informative and provide 

real-world assessment of GPS and ADS-B navigation data.  Thereby providing knowledge of 

how often and for how long dropouts and other erroneous data are occurring.  The type of 

machine learning algorithms and the associated settings that process the data more efficiently 

and effectively was studied.  In the studies it was observed that for sUAV flights the average 

maximum altitude was 375 ft., a typical time delay after outlier removal was approximately 

3.5 seconds, and the average upper bound for determining dropout instances was near 6.25 

seconds. 

Several mitigation schemes were evaluated for their effectiveness in jamming and spoofing 

conditions.  The mitigation schemes evaluated were optical flow, geomagnetic navigation, 

cellular signal navigation, WIFI navigation, and Eichelberger’s Collective Detection (ECD) 

method and the findings are summarized in Table 10. 

 

Table 10. Summary of the GPS and ADS-B risk mitigation methods 

Mitigations Scheme Condition Assessment Score Effectiveness 

AI Path Prediction Drop Outs 13 Medium 

Optical Flow Jamming 16 High 

Geomagnetic Navigation Jamming 14 Medium 

Cellular Signal Navigation Jamming 15 High 

W-Fi Navigation Jamming 12 Medium 

ECD Spoofing 16 High 

 

The study of these five systems indicate that most have an overall high effectiveness rating, 

while having varying effectiveness in each of the five factors scored.  It should be noted that 

additional mitigation strategies were briefly reviewed but were not of sufficient interest by the 

team to include in the full evaluation. 
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It is the A44 team opinion that flight and simulation testing should continue on all 5 of the 

mitigation methods and continued efforts be made in identifying dropouts and erroneous data 

in the current data sets along with new data sets obtained. 
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