

A11L.UAS.101 – A55 Identify Flight Recorder Requirements for Unmanned Aircraft Systems (UAS) Integration into the National Airspace System (NAS)

Literature Review

May 12, 2022

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use.

LEGAL DISCLAIMER

The information provided herein may include content supplied by third parties. Although the data and information contained herein has been produced or processed from sources believed to be reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, conclusions or recommendations provided herein. Distribution of the information contained herein does not constitute an endorsement or warranty of the data or information provided herein by the Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal Aviation Administration nor the U.S. Department of Transportation shall be held liable for any improper or incorrect use of the information contained herein and assumes no responsibility for anyone's use of the information. The Federal Aviation Administration and U.S. Department of Transportation shall not be liable for any claim for any loss, harm, or other damages arising from access to or use of data or information, including without limitation any direct, indirect, incidental, exemplary, special or consequential damages, even if advised of the possibility of such damages. The Federal Aviation Administration shall not be liable to anyone for any decision made or action taken, or not taken, in reliance on the information contained herein.

TECHNICAL REPORT DOCUMENTATION PAGE

Report No.2. Government Accession No.		3. Recipient's Catalog No.		
A11L.UAS.101_A55A11L.UAS.101_A55				
4. Title and Subtitle	5. Report Date			
Literature Review for ASSURE A55 Iden	tify Flight Recorder Requirements for	May 12, 2022		
Unmanned Aircraft Systems (UAS) Integrat (NAS)	6. Performing Organization Code			
7. Author(s)		8. Performing Organization Report No.		
James Higgins, PhD, Karley Branscomb, 9. Performing Organization Name and Ac	10. Work Unit No.			
University of North Dakota				
Embry-Riddle Aeronautical University		11. Contract or Grant No.		
Wichita State University		15-C-UASA11L.UAS.10115-C-UAS15- C-UASA11L.UAS.101		
12. Sponsoring Agency Name and Addres	s	13. Type of Report and Period Covered		
Federal Aviation Administration		Literature Review		
800 Independence Ave, SW		14. Sponsoring Agency Code		
Washington DC 20591		5401		
15. Supplementary Notes				

16. Abstract

Flight Data Recorders (FDRs) and Cockpit Voice Recorders (CVRs) have a long history within manned aviation. These systems have significantly contributed to safety by providing accurate and timely information to accident investigators to help understand what occurred. More recently, the industry has incorporated FDRs into voluntary safety programs and safety management systems. Although FDRs and CVRs have been well established within the manned aviation industry, their use with unmanned aircraft is still relatively new. The uniqueness and diversity of unmanned platforms also demonstrate that the requirements of FDRs and CVRs will be different than that of the manned requirements. Many Unmanned Aircraft Systems (UASs) can transmit real-time flight telemetry data from the platform to a Ground Control Station (GCS). This flight data is retrieved after a flight, much like a traditional FDR. Several federal regulations govern the use of FDRs and CVRs with manned aircraft. Even though the ultimate requirements for an unmanned FDR will likely be different from their manned counterparts, these regulations represent a good starting point to help build and design unmanned FDR and CVR requirements. The Federal Code also governs the requirements, standards, and use of recording devices. The international community has also recognized the value of FDRs and CVRs. The International Civil Aviation Organization (ICAO) has published several annexes that address recording standards. Similarly, the European Organization for Civil Aviation Equipment (EUROCAE) has issued several requirements and standards documents regarding these recording devices. Industry groups and private companies, including the American Society for Testing and Materials (ASTM), Radio Technical Commission for Aeronautics (RTCA), and Aeronautical Radio Inc. (ARINC), have also published and maintained recording standards. The Federal Aviation Administration (FAA) released guidance for FDRs and CVRs through the release of Technical Standard Orders (TSOs) and Advisory Circulars (ACs). Several regulators have issued requirements for the survivability of FDRs and CVRs in an aircraft accident. Researchers can utilize several different structural testing techniques to determine how these recording devices survive intact under impact force, fire, or underwater conditions. Modeling, or non-destructive techniques, can likely be used to verify the survivability of these devices when they are mounted on a UAS and experience these crash conditions. In some cases, destructive techniques will have to be utilized to determine post-accident survival, especially with fire and underwater conditions. Several examples of the types of data and parameters could be included in a requirements document for unmanned FDRs and CVRs. By examining contemporary telemetry streams of UASs, one can assess requirements germane to the unmanned operational environment. By analyzing all the above literature, there is little doubt that unmanned FDRs and CVRs can play a pivotable role in safety, similar to what is seen with the manned industry.

17. Key Words		18. Distribution Statement			
19. Security Classification (of this report) Unclassified	20. Security (this page)	Classification (of	21. No. of Pages	22. Price	
	Unclassified				

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

NOTICE		I
LEGAL DIS	SCLAIMER	II
TECHNICA	AL REPORT DOCUMENTATION PAGE	III
TABLE OF	TABLES	VII
TABLE OF	ACRONYMS	VIII
EXECUTIV	/E SUMMARY	IX
1 INTRO	DUCTION	
1.1 Bac	ckground	
1.2 His	tory	
1.3 Pur	pose/Significance	
2 DESIG	N AND OPERATION STANDARDS	
2.1 Cur	rrent Manned Aircraft	
2.2 Uni	manned Aircraft	
2.2.1	Airborne	
2.2.2	Ground-Based (C ² /Telemetry)	
	T AND VOICE RECORDER STANDARDS	
3.1 Uni	ited States Regulations	
3.1.1	14 CFR 23	
3.1.2	14 CFR 25	
3.1.3	14 CFR 27	
3.1.4	14 CFR 29	
3.1.5	14 CFR 91	7
3.1.6	14 CFR 121	
3.1.7	14 CFR 125	9
3.1.8	14 CFR 129 Operations	9
3.1.9	14 CFR 135	9
3.1.10	14 CFR 830	
3.1.11	49 USC 1114	
3.1.12	49 USC 1154	
3.1.13	49 USC 20137	
3.1.14	49 USC 44901	
3.2 ICA	AO Annexes	11

TABLE OF CONTENTS

	3.2	2.1	Annex 6	11
	3.2	2.2	Annex 10	12
	3.2	2.3	Annex 11	12
	3.2	2.4	Annex 12	12
	3.3	Indu	ıstry	13
	3.3	8.1	American Society for Testing and Materials (ASTM)	13
	3.3	3.2	Radio Technical Commission for Aeronautics (RTCA)	13
	3.3	3.3	ARINC Aeronautical Radio Inc	13
	3.4	EUR	ROCAE MOPS	13
	3.4 Pro		ED-55/ED-112A Minimum Operational Performance Specification for ed Airborne	
			ED-155 Minimum Operational Performance Specification for Lightweight ng Systems	0
	3.5	Gaps	s Between Manned and Unmanned Recorders	16
4 OF			ENTS AND INCIDENTS INVESTIGATION IN TECHNICAL STAND	
2	4.1	Tech	hnical Standard Orders	16
2	4.2	Adv	isory Circulars	17
5	TE	EST M	IETHOD AND METRICS FOR DATA RECORDER SURVIVAILITY	18
4	5.1	Mod	lelling/Non-destructive	18
4	5.2	Dest	tructive	18
6	LI	TERA	ATURE REVIEW CONCLUSION	18
7	R	EFER	RENCES	20
8	AP	PENI	DICES	23
8	8.1	App	endix A	23
8	3.2	App	endix B	54

TABLE OF TABLES

Table 1. Airworthiness Standards for Cockpit Voice Recorders	4
Table 2. Airworthiness Standards for Flight Data Recorder	6
Table 3. AC 20-141B Appendix 5 Parameters	17

TABLE OF ACRONYMS

AC	Advisory Circulars
ADRS	Aircraft Data Recording Systems
ADS-B	Automatic Dependent Surveillance-Broadcast
ARINC	Aeronautical Radio Inc
ATS	Air Traffic Services
ASTM	American Society for Testing and Materials
BAU	Deployable Beacon Airfoil Unit
CARS	Cockpit Audio Recording Systems
CVR	Cockpit Voice Recorder
CFR	Code of Federal Regulations
C2	Command and Control
COTS	Commercial Off-the-Shelf
DFDR	Digital Flight Data Recorder
EUROCAE	European Organization for Civil Aviation Equipment
FAA	Federal Aviation Administration
FDR	Flight Data Recorder
GCS	Ground Control Station
GOTS	Government Off-the-Shelf
IFR	Instrument Flight Rules
ICAO	International Civil Aviation Organization
ISR	Intelligence, Search and Rescue
LOS	Line of Sight
MHz	Megahertz
MOPS	Minimum Operational Performance Specifications
NAS	National Airspace System
NTSB	National Transport Safety Board
PANS	Procedures for Air Navigation Services
RF	Radio Frequency
RTCA	Radio Technical Commission for Aeronautics
RCC	Rescue Coordination Centre
SAR	Search and Rescue
SARP	Standards and Recommended Practices
TSO	Technical Standard Order
UHF	Ultrahigh Frequency
UAV	Unmanned Aerial Vehicle
UA	Unmanned Aircraft
UAS	Unmanned Aircraft Systems
USC	United States Code
VHF	Very High Frequency
VFR	Visual Flight Rules

EXECUTIVE SUMMARY

Flight Data Recorders (FDRs) and Cockpit Voice Recorders (CVRs) have a long history within manned aviation. These systems have significantly contributed to safety by providing accurate and timely information to accident investigators to help understand what occurred. More recently, the industry has incorporated FDRs into voluntary safety programs and safety management systems.

Although FDRs and CVRs have been well established within the manned aviation industry, their use with unmanned aircraft is still relatively new. The uniqueness and diversity of unmanned platforms also demonstrate that the requirements of FDRs and CVRs will be different than that of the manned requirements. Many Unmanned Aircraft Systems (UASs) can transmit real-time flight telemetry data from the platform to a Ground Control Station (GCS). This flight data is retrieved after a flight, much like a traditional FDR. Several federal regulations govern the use of FDRs and CVRs with manned aircraft. Even though the ultimate requirements for an unmanned FDR will likely be different from their manned counterparts, these regulations represent a good starting point to help build and design unmanned FDR and CVR requirements.

After an extensive review of the available literature, including Federal, international, and industry sources, the research team is confident in the current research plan and recommends no changes. The one area for which there might be some limiting factors is with the destructive testing techniques. Due to the expense of such testing, the team may have to rely upon calculation and estimation where non-destructive testing is not available or appropriate. This is not anticipated to change the cost or timeline of the project.

This literature review confirms the importance of FDRs and CVRs to unmanned operations. The improvements in safety from having requirements for these devices are expected to follow the same improvements seen in the manned industry. Without the development of these requirements, the unmanned industry's integration into the National Airspace System (NAS) will likely be slower than needed.

1 INTRODUCTION

1.1 Background

Flight Data Recorders (FDRs) are devices that store flight information made by an aircraft or airborne platform while in flight which can later be recalled and reviewed. In the case of an aircraft accident, FDRs are essential to help investigators determine the underlying causes. There are other important uses for flight data stored on FDRs, including use for proactive and predictive hazard identification.

What constitutes flight data? Flight data at its most basic level includes information about altitude, airspeed, and heading. However, most aircraft have the capability to record many more parameters at increased refresh rates and fidelity. Contemporary FDRs can store massive amounts of data, with the most modern commercial jets able to store terabytes of data for each flight.

Although FDRs are widely used across the manned aviation industry, their use with unmanned systems has not yet achieved widespread adoption. Additionally, there are no regulatory standards yet published or approved for unmanned FDRs.

1.2 History

The concept of using FDRs can be traced back to the 1950s where a few aircraft around the world were equipped with analog recorders which used mechanical recording means and photography [1]. Modern generation flight recorders have greatly improved and in some cases can record and store over 3,000 parameters [2].

Development of FDRs occurred in four generations [3]. The first generation used analog recorders during the 1950s. The second generation, occurring in the 1960s, used wire recorders with more capabilities. The third generation used tape media and lasted from the early 1970s to the mid-1980s. The fourth and current generation started with the Airbus A320 and includes the now standard solid-state capabilities.

1.3 Purpose/Significance

Originally, FDRs were used almost exclusively for accident investigation and recreation. The safety theory behind accident investigation revolves around the concept that if an accident occurs, there were likely accident precursors that were either undetected or incorrectly assessed. After an investigatory process is completed, the hope is any precursors could be identified and then shared with others with the intent of not repeating previous accidents. Although necessary, this process is completely reactionary, and the manned industry has evolved to using these recorders in more proactive and predictive situations

Walker [3] explains, "Instead of a post hoc accident analysis tool, something that needs an accident as a 'lagging indicator' of future risks, black boxes can be used as a predictive safety assurance tool, a supplier of 'big data' from which leading indicators of strategic risks can be derived in novel ways (page 14)."

This study will seek to establish minimum standards for unmanned FDRs. Because the development and deployment of manned FDRs is very robust and industry-permeating, the natural starting point for a thorough examination of unmanned standards will start on this manned side.

However, it is very clear from the onset of this project that standards for manned FDRs can diverge for those of unmanned operations. Accordingly, an independent analysis of needed standards on the unmanned side will not make any assumptions or necessarily attempt to construct parallels between the two sides.

Even though the primary focus will be on accident investigation and other safety reactive measures, the ability to use unmanned flight data within contemporary Safety Management Systems, like Flight Operations Quality Assurance or Flight Data Monitoring, will also be considered.

2 DESIGN AND OPERATION STANDARDS

2.1 Current Manned Aircraft

Design standards are detailed in the applicable aircraft certification regulations, including 14 Code of Federal Regulations (CFR) 23 (Part 23) and 25 (Part 25). Part 23 covers normal category aircraft while Part 25 describes the standards for transport category aircraft. Typically, Part 23 aircraft are for smaller and lighter aircraft, like those used in general aviation; while Part 25 aircraft include commercial air carrier aircraft. Both parts describe the required for flight performance, flight characteristics, aircraft structures, design and construction, powerplants, and other aircraft systems.

2.2 Unmanned Aircraft

An Unmanned Aircraft System (UAS), or Unmanned Aerial Vehicle (UAV), is an aircraft that operates without an onboard pilot but is either controlled autonomously or manually by an operator on ground using a remote controller. This is achieved by several elements or systems both onboard the aircraft (airborne) and ground based (Command and Control(C2)/telemetry).

2.2.1 Airborne

A large percentage of UAS's components are airborne. A typical UAS consists of the following basic elements:

2.2.1.1 The Airframe

This can range from materials like foam (polystyrene or Styrofoam), to composites like carbon fiber and carbon glass depending on the mission of the UAS. Generally, foam materials are used for light duty aircraft and short hour flights while composite materials are used for heavy duty and longer flights.

2.2.1.2 The Propulsion System

The system gives the forward movement to UASs (fixed wings), it can range from the simple electric brushless motors and propellers (form small UASs) to gas powered engines for larger UASs. The propulsion system to be used for any UAS depends on the operations to be performed by the UAS.

2.2.1.3 Avionics System

The word Avionics is derived from "aviation" and "electronics". Avionics generally refers to all electronic components onboard an aircraft (UAS) except for the power distribution system. The avionics system of an aircraft is sometimes referred to as the brain power of the system, as literally every output of the aircraft is as a result of the operation of one or several parts of the avionic systems. The avionic setup for an autonomous aircraft is quite different from a manual one. Autonomous aircraft make use of autopilot systems for operation which can either be Commercial-Off-The-Shelf (COTS) such as Pixhawk, Micropilot, etc., or Government-Off-The-Shelf (GOTS) autopilot system for larger UAVs, along with other avionics components like actuators (e.g., servos), signal cables, receiver, electronic speed controller, etc.

2.2.1.4 Detect and Avoid Technology

This is any form of device or technology that works out obstacle avoidance in an unmanned aircraft. This is an assistive device for small UAS operators to avoid collision with fixed or moving obstacles in its path. But this is a must-have component if UASs are to be integrated into the manned airspace to fulfil the "well-clear" criteria of aircraft operating in such airspace. Some of the currently available technologies for this are Automatic Dependent Surveillance-Broadcast (ADS-B) technology, airborne radars, etc.

2.2.1.5 Launch and Recovery System

This has to do with the system of launching and recovering the UAS which may be on ground as in catapult launch, bungee etc., which remains on ground and the aircraft on recovery lands on its belly or the use of wheels that goes airborne with the UAS and is recovered with the wheels also. Larger UASs make use of wheels for launch and recovery, while smaller aircraft use other means.

2.2.1.6 Payload

This is any component, device or system integrated into an unmanned aircraft to carry out specifically the mission of the UAS, this could be cameras (for Intelligent, Surveillance and Reconnaissance (ISR), survey, data capture, etc.), actuators with attached materials (for UAS delivery, etc.). The payloads in themselves don't contribute to the flight of an unmanned aircraft, but they give purpose and meaning to unmanned aircraft. It helps perform the mission of the aircraft. The type of payload to be integrated still largely depends on aircraft mission.

2.2.2 Ground-Based (C²/Telemetry)

This has to do with all UAS C2 operations that take place on the ground. These operations are carried out from the Ground Control Station (GCS). The GCS consists of a set of hardware and software ground-based equipment that enables UAS crew to communicate, command and control the UAS directly or through some preset parameters for autonomous flights. The GCS can range from a small handheld remote controller with integrated screen, laptop computers to large 5-10 UAS crew members workspace (portable or fixed GCS). A good GCS is designed to be ergonomic which contributes immensely to the smooth operation of an unmanned aircraft and consequently reduces crash probability.

C2 has to do with the communication link between the UAS and the crew on ground (GCS) to the end that control and overall management of the aircraft is guaranteed and effected. The C2 links to be established depends on the range of aircraft (UAS) operations.

For Line of Sight (LOS) Drones, Radio Frequency links (RF links) such as Very High Frequency (VHF) or Ultrahigh Frequency (UHF) are used. But for very short ranges, say, 1km or less, Wi-Fi is typically used. Beyond Line of Sight drones, which are often bigger drones with ISR capabilities (like military drones), use some sort of Satellite Communication such as iridium. Protected spectrum can also be used for high altitude, sensitive operations. Protected Spectrum is a part of RF spectrum that deals with critical application C2 links.

3 FLIGHT AND VOICE RECORDER STANDARDS

Different institutions define different standards for flight and voice recorders. Therefore, standards of the US, the International Civil Aviation Organization (ICAO) and the European Organization for Civil Aviation Equipment (EUROCAE) are summarized and evaluated. The gaps between manned and unmanned flight recorders are also taken into consideration.

3.1 United States Regulations

3.1.1 14 CFR 23

This document describes the Cockpit Voice Recorder (CVR), and FDR required standards and installation method for Normal Category Airplanes. The required standards CVR and FDR for Normal Category Airplanes can be found in the second column of Tables 1 and 2 respectively.

3.1.2 14 CFR 25

This document describes the CVR, and FDR required standards and installation method for Transport Category Airplanes. The required standards CVR and FDR for Transport Category Airplanes can be found in the third column of Tables 1 and 2 respectively.

3.1.3 14 CFR 27

This document describes the CVR, and FDR required standards and installation method for Normal Category Rotorcraft. The required standards CVR and FDR for Normal Category Rotorcraft can be found in the fourth column of Tables 1 and 2 respectively.

3.1.4 14 CFR 29

This document describes the CVR, and FDR required standards and installation method for Transport Category Rotorcrafts. The required standards CVR and FDR for Transport Category Rotorcrafts can be found in the fifth column of Tables 1 and 2 respectively.

Table 1. Airworthiness Standards for Cockpit Voice Recorders. AIRWORTHINESS STANDARDS				
COCKPIT VO	ICE RECO	ORDER		
	Category	•		Transport Category Rotorcraft
	[4]	[5]	[6]	[7]
STANDARDS				
All installed cockpit recorder must record all voice communication in the airplane by radio,		YES	YES	YES
on flight deck by flight crewmembers, on airplane's interphone system, audio signal				

		r	[
navigation or approach aids, passenger				
loudspeaker by flight crew members and all				
datalink communication (if installed)				
Cockpit -mounted area microphone must be	YES	YES	YES	YES
positioned to cover ALL communications in				
the flight deck, with intelligible recording				
under flight cockpit noise conditions				
	VEC	VEC	VEC	VEC
Each Cockpit recorder must record all		YES	YES	YES
communications (even sidetones) without				
interruption, on separate channels				
First Channel for first pilot				
station				
Second Channel for Second				
pilot station				
• Third Channel for cockpit				
mounted area microphone.				
Fourth Channel for all communication				
devices from third and fourth crew member				
station.				
	YES	YES	YES	YES
All cockpit voice recorder must have:	ILS	ILS	IES	1 5
Reliable electrical power				
Always powered				
• Prevent all erasure feature by				
stopping the recorder				
automatically within 10 minutes				
after a crash.				
• Preflight check of recorder's				
proper operation through visual or				
aural means.				
Independent power source				
Unaffected by external				
electrical failure.				
In a separate container always or a				
combination unit when used with a flight data				
recorder (Provided all necessary				
requirements for both recorders are met).				
Recorder container must be installed such that	YES	YES	YES	YES
container rupturing and heat damage to the				
recorder is minimized.				
Cockpit voice recorder with bulk erasure	YES	YES	YES	YES
device must be installed such that inadvertent				
operation and device actuation is minimized				
during crash impact.				
Each recorder container must be bright	YES	YES	YES	YES
orange or yellow, have reflective external			110	
surface to facilitate under water location and				

have underwater locating device	on	or		
inseparably adjacent to it in a crash.				

AIRWORTHINESS STANDARDS				
FLIGHT DATA RECORDER				
	Normal Category	Transport Category Airplanes		Transport Category Rotorcraft [7]
STANDARDS	MEG	MDG	MEG	MEG
 Each Flight Recorder must: Be Supplied with airspeed, altitude and directional data from sources that meet the requirements and functionality of aircraft system level Vertical acceleration sensor is rigidly attached and located longitudinally within the approved center of gravity limits of the aircraft or rotorcraft. Receive electrical power from the most reliable bus and remain powered for as long as possible without jeopardizing emergency operation of aircraft or rotorcraft. Have aural of visual preflight checks of recorder for proper recording of storage medium data. Be unaffected by electrical failure external to the recorder. In a separate container always or a combination unit when used with a cockpit voice recorder (Provided all necessary requirements for both recorders are met). Prevent all erasure feature by stopping the recorder automatically within 10 minutes after a crash. 		YES	YES	YES
Each non-ejectable record container is installed locations where container eruption probability from crash impact and subsequent damage to the record from fire is minimized.		YES	YES	YES

Table 2. Airworthiness Standards for Flight Data Recorders.

Flight recorders reading of airspeed, altitude and heading must correlate with the first pilot corresponding reading, covering the aircraft's operational range of airspeed, altitude and 360 degrees of heading.		YES	YES	YES
Each recorder container must be bright orange or yellow, have reflective external surface to facilitate under water location and have underwater locating device on or inseparably adjacent to it in a crash.		YES	YES	YES
Recorder container must be installed such that container rupturing and heat damage to the recorder is minimized.		YES	YES	YES
Evaluation of all novels, unique or operational characteristics of aircraft for possible modification of flight recorders dedicated parameters.	YES	YES	YES	YES

3.1.5 14 CFR 91

This CFR highlights the general operating and flight rules of cockpit voice recorder and FDR as it relates to aircraft and rotorcraft, and states:

No holder of an air carrier operating certificate, operating certificate, or an operator other than the holder of an air carrier or commercial operator certificate may conduct any operation with an aircraft except under the following circumstances:

- Transport an aircraft with faulty FDR or CVR only to a place where repair of it is to be made.
- Continue a flight as planned, if the FDR and CVR becomes inoperative after aircraft has taken off.
- Conduct airworthiness test for which FDR or CVR is turned off to test it or other communication equipment.
- Ferry newly acquire aircraft from the place of possession to a place where FDR and CVR would be installed.
- Operate an aircraft for more than 15 days while the FDR and CVR is removed for repair with a maintenance record of failure date and a placard in view of pilot to show how that the recorder(s) is faulty and for an additional 15 days (for longer repair time) as authorized by a certificated person with maintenance records of additional repair time.
- Flight recorders must be in continuous operation from take-off to landing.
- In the event of an accident, all records of FDR and CVR must be kept for 60 days
- All aircraft manufactured after April 7, 2010, must meet the requirements for FDR and CVR as stated in the table above.

All other rules for general operating and flight rules of CVR and FDR for aircraft and rotorcraft can be found here [8] which may not relate to UAVs.

3.1.6 14 CFR 121

3.1.6.1 Cockpit Voice Recorder (CVR)

- No certificate holder should operate pressurized large aircraft without an approved CVR installed.
- In the event of an accident requiring immediate notification of the National Transport Safety Board (NTSB) all recording of CVR must be kept for at least 60 days or longer, if required.
- All CVR from April 7, 2012, should retain at least 2 hours of recorded information using a standard recorder
- All other CVR requirements must be followed as stated in the CVR table above.

Other requirements for cockpit voice recorder under instrument and equipment requirements can be found [9] which may not be relevant to UAVs.

3.1.6.2 Flight Data Recorder

- No person may operate above 25,000ft any large aircraft (multi-engine or turbine powered) certificated before October 1, 1969, after September 30, 1969, after October 11, 1991 (with digital bus and Aeronautical Radio Inc (ARINC) 717 Digital Flight Acquisition Unit) or manufactured after October 11, 1991, unless it is equipped with one or more flight recorders that uses a digital method of recording, storing and readily retrieving data from the storage medium. This must be recorded in the parameters, ranges, accuracies, and sampling intervals as specified by paragraphs (a), (b), (c) and (d) respectively under Flight Data Recorder section of [9]. All installed flight recorders must operate continuously from takeoff roll to landing roll at an airport.
- All recorded data of the installed FDR must be kept for at least 25 hours of the operating time before erasure, and for at least 60days (or longer if required) in the event of an accident that requires immediate notification of the National Transport Safety board.
- All requirements for FDR installation should be carried out as specified in Table 2.

3.1.6.3 Digital Flight Data Recorder

No person may operate any turbine-engine-powered transport category airplane unless it is equipped with one or more aproned flight recorder that utilizes a digital method of recording, storing and readily retrieving the data from a storage medium. The 91 operational parameters required to be recorded by the digital flight data recorder can be found in paragraph (a) under Digital Flight Data Recorder of [9] The parameters to be recorded largely depends on the manufacturing date of the turbine-engine transport category airplanes also, which can be found in paragraphs (a) through (f) of Digital Flight Data Recorder in [9], whose dates may not be relevant to UAVs.

All flight recorders installed in this section must operate continuously from the airplane's take-off roll to its landing roll. All recorded data of the installed FDR must be kept for at least 25 hours of the operating time before erasure, and for at least 60 days (or longer if required) in the event of an accident that requires immediate notification of the NTSB.

All requirements for FDR installation should be carried out as specified in Table 2. All installed flight recorders must meet the requirements specified in the transport category airplane column of Table 2. Other Digital Flight Data Recorder requirements can be found in [9] which may not be relevant to UAVs.

3.1.6.4 Flight Data Recorder: Filtered Data

A flight data signal is said to be filtered if the original sensor signal is said to be changed in any way other than the changes necessary to achieve

I. Analog to digital conversion of the signal

II. Digital signal formatting to be Digital Flight Data Recorder (DFDR) compatible

III. Removal of high frequency component of a signal that is outside the operational bandwidth of the sensor.

A signal filtering is permitted only if it continues to meet the requirement of the ranges, accuracies and sampling intervals of the parameters measured else, the filtering must be removed or demonstrate and be approved by the Federal Aviation Administration (FAA) that the original signal can be reconstructed from the recorded data

All other requirements under this section can be found under Flight Data Recorder: Filtered Data in [9] which may have been summarized above or not relevant to UAVs.

3.1.7 14 CFR 125

This section describes the required parameters along with the range, accuracy (sensor input to DFDR readout), sampling interval (per second) and resolution readout of Air Carriers and Operators for Compensation or Hire: Certification and Operations for:

- Part 121 Operating Requirements: Domestic, Flag, and Supplemental Operations [10]
- Certification and Operations: Airplanes Having a Seating Capacity of 20 or More Passengers or
- a Maximum Payload Capacity of 6,000 Pounds or More; and Rules Governing Persons on Board

Such Aircraft can be found in [11] Certification and Operations: Airplanes Having a Seating Capacity of 20 or More Passengers or a Maximum Payload Capacity of 6,000 Pounds or More; and Rules Governing Persons on Board Such Aircraft, which can be found in [12].

3.1.8 14 CFR 129 Operations

No person may pilot an aircraft under part 14 CFR 129 that is registered in the US unless it is equipped with approved cockpit flight recorders [13]. From the storage medium, flight data recorders use a digital method of recording and storing data [13]. If the aircraft were operating under Part 121, 125, or 135, then the flight data recorder must record the parameters for those parts along with being installed by the compliance times standards [13].

3.1.9 14 CFR 135

Any aircraft certificated after September 30, 1969, must record time, altitude, airspeed, vertical acceleration, heading, time of each radio transmission either to or from air traffic control, pitch attitude, roll attitude, longitudinal acceleration, pitch trim position, control column or pitch control surface position, control wheel or lateral control surface position, rudder pedal or yaw control surface position, thrust of each engine, position of each thrust reverser, trailing edge flap or cockpit flap control position, and leading edge flap or cockpit flap control position [14].

Aircraft built after October 11, 1991, when a flight recorder is installed, it must operate throughout the whole flight from the second the airplane begins the takeoff roll or rotorcraft begins the lift-off though the aircrafts landing roll or rotorcraft has landed at its destination. For recording keeping purposed of the data collected from the flight recorder, operators shall keep data for at least 25 hours and for airplanes until the airplane has been operating for a minimum of 25 hours or for

rotorcraft there is a minimum of at least 10 hours, but no records need to be kept more than 60 days [14]. Only a total of 1 hour of the flight data or flight recorder system may be deleted for the purpose of testing and must be the oldest recorded data. If there is an accident or incident that involves the NTSB that resulted in termination of the flight, the flight data shall be removed from the aircraft for at least 60 days or longer if requested by the Board or Administrator [14].

Aircraft manufactured on or before August 18, 2000, each flight recorder must be installed in accordance with the requirements specifically outlined in this ruling [14]. The standards need to be established only on one aircraft of a group of aircraft if:

- I. The aircraft are of the same type.
- II. The flight recorder models, and their installation procedures are the same.
- III. There are no differences in type of designs.

For aircraft manufactured after August 18, 2000, each flight data recorder must be installed in accordance with the requirements specifically outlined in this ruling. The values recorded by the flight data recorder and the designated values must be correlated. To view the recorded values a correlation must contain a sufficient number of correlation points to engineer full operating range [14]. The same standards need to be established at previously stated up above.

When the flight data recorder is submerged under water must have an approved and certified device to assist in locating the flight data recorder.

All aircraft newly manufactured on or after April 7, 2010, must have a flight data recorder installed that meets the requirements of these requirements along with retaining the 25 hours of recorded information.

3.1.10 14 CFR 830

Operators of aircraft involved in an accident or incident are responsible for preserving any and all wreckage from the aircraft including record mediums, maintenance, and voice recorders pertaining to the aircraft and airmen. Before the Board or representative takes over custody of the accident wreckage, everything must remain undisturbed unless it's to remove people injured or trapped, to protect wreckage from further damage, or to protect the public. If wreckage is to be moved, photographs, notes, and sketches are to be made to document the scene to be accurately recreated.

3.1.11 49 USC 1114

Any information abstracted from the cockpit voice recorder, video recorder, transcript of oral communications by and between flight crew members and ground stations my not be disclosed publicly in the event of an accident or investigation [15].

In the event of a public hearing on the accident or incident, information relevant involving the transcript or any written depiction of visual information may become public. If a public hearing is not held at the time many of the other factual reports are placed in the public docket [15].

To maintain the confidentiality of recordings in an accident investigation, recordings cannot be disclosed publicly any part of voice or video recordings, transcripts of oral communications by drivers, employees, companies. Any part of a recording's transcript or written depiction of visual

information are permitted to become public if it is decided relevant to aid the accident public hearing or if placed into the public docket.

Use of the cockpit voice recorder, related to an accident investigation may be used when making safety recommendations [15].

3.1.12 49 USC 1154

Any part of a cockpit or surface vehicle recorder transcript may not be made available to the public that the NTSB has not already made available, when in a judicial hearing [13]. For a fair trial the cockpit or surface vehicle recorder may be reviewed and used [16]. If a part of a cockpit or surface vehicle recorder transcript is not made available to the public but the court allows for it in a judicial proceeding [16]. The court issues a protective order to limit the use of the recording, prohibit any person that does not need access, and place the recording under seal to prevent the use after the proceeding [16].

Use of the cockpit voice recorder, related to an accident investigation may be used when making safety recommendations [16].

3.1.13 49 USC 20137

A device that records speed, throttle position, brake application, brake operations, and any other function that the Secretary of Transportation considers mandatory to be of use in observing the operations safety is an "event recorder" [17].

The Secretary of Transportation shall issue regulations and issue orders that may enhance the safety by mandating event recorders [17]. Those recorders need to be installed not later than one year after the regulations are issued and published, unless if the Secretary of Transportation deems it impracticable to equip the aircraft in the one-year period and extension may be issued not later than 18 months after the originally regulations are published [17].

3.1.14 49 USC 44901

The Secretary of Transportation established a grant program to fund pilot projects to conduct research and development to expedite the recovery, development, and analysis of information from aircraft accidents to determine the cause of the accident by including removable flight deck, voice recorders, and remote location recording devices [18].

3.2 ICAO Annexes

The 18 Annexes of the ICAO describe various regulations and requirements for aircraft. The annexes especially relevant for the purpose of this project are 6, 10, 11 and 12, which are discussed in more detail in the following sections.

3.2.1 Annex 6

Within the documents standards for the operation of aircraft are defined. Due to the rapidly changing requirements for aircraft, this annex was updated on a regular basis and parts were added. There are a total of 3 parts, which complement each other. The first requirements for international commercial air transport were decided at an international conference in 1949. These regulations form the basis for Part 1. The 2nd part deals exclusively with international general aviation and the 3rd part exclusively with helicopters. Within the document, both FDRs and CVRs are discussed. In this context, particular attention is paid to the data that must be recorded. It is noticeable that commercial aviation is more strictly regulated than general aviation. Accordingly,

the requirements in Part 2 can be seen as a minimum standard. Part 2 defines a total of 82 parameters that are recorded during the flight. However, many of these parameters are not relevant for the operation of a UAV. This annex focuses directly on FDR and CVR, therefore it is the most relevant annex considering the project goals. The requirements that can be extracted from this annex provide a good basis, but they need adjustment to be applicable to UAVs.

3.2.2 Annex 10

Annex 10 focuses on aeronautical communications, navigation, and surveillance. Annex 10 is divided into 5 volumes and provides Standards and Recommended Practices (SARPs), Procedures for Air Navigation Services (PANS) and guidance material. These volumes are:

- Volume I Radio Navigation Aids
- Volume II Communications Procedures including those with PANS status
- Volume III Communication Systems
- Volume IV Surveillance Radar and Collision Avoidance Systems
- Volume V Aeronautical Radio Frequency Spectrum Utilization

Volume 1 defines needed Systems to provide radio navigation aids. It lists parameters for different systems. The information contains power requirements, frequency, modulation, signal characteristics and monitoring needed to ensure that the aircraft receives signals in every part of the world.

Volumes 2 and 3 cover voice and data communications in international civil aviation. This includes Ground-Ground and Air-Ground communication. Volume 2 focuses on general, administrative, and operational procedures while Volume 3 focuses on SARPs and guidance material for various air-ground and ground-ground voice and data communication systems.

Volume 4 contains SARPs and guidance material for Secondary Surveillance Radar and Airborne Collision Avoidance Systems.

Volume 5 covers SARPs and guidance material on the utilization of aeronautical frequencies.

3.2.3 Annex 11

Annex 11 is intended to ensure that states implement systematic and appropriate air traffic services (ATS) safety management programs. This is to ensure that aircraft do not collide. In addition, the annex establishes regulations to ensure orderly flow so that air traffic is safe and efficient. This section deals with the information required by an aircraft when flying in accordance with either Instrument Flight Rules (IFR) or Visual Flight Rules (VFR). The information includes significant meteorological information, changes in the serviceability of navigation aids and other information that are likely to affect safety. The bottom line of this annex is that good and ensured communication has high priority. Rules are defined accordingly. For UAVs, equally secure communication is required. Due to this high importance, it can be found in all regulations for flight data recorders that the communication must be recorded.

3.2.4 Annex 12

Annex 12 deals with search and rescue of aircraft. Corresponding standards and proposals are defined. Three distinct phases are defined:

I. Uncertainty Phase – The Radio contact has been lost and cannot be re-established. The Rescue Coordination Centre (RCC) is activated.

II. Alert Phase - The RCC contacts Search and Rescue units.

III. Distress Phase – Aircraft is in distress. The RCC take action to support the Aircraft and determine its location.

It is recommended that every RCC records the operational efficiency of the search and rescue organization.

3.3 Industry

3.3.1 American Society for Testing and Materials (ASTM)

ASTM International seeks to keep aircraft of all sizes safe by developing crucial standards worldwide. More specifically, ASTM has a committee that looks at significant aircraft systems standards and all types of general aviation aircraft.

3.3.1.1 ASTM F3228-17 Standard Specification for Flight Data and Voice Recording in Small Aircraft

This is the published international standard for the flight recording aspects of airworthiness for small aircraft. While this is applicable to manned, there are likely some congruencies with unmanned aircraft.

3.3.2 Radio Technical Commission for Aeronautics (RTCA)

RTCA, founded in 1935, aims to create and implement performance standards that change global aviation while ensuring the safety, security, overall health of the aviation industry.

3.3.2.1 Future Flight Data Collection Committee Final Report

RTCA is examining contemporary concepts for flight data collection [18]. Data sources come in many forms on an aircraft [18]. If a sensor remains connected and functional with uninterrupted power, it is possible to keep processing and recording [18].

FDRs can provide accident investigators with details of the flights, but more importantly can provide information about the safety issues and what corrective action needs to be taken for the future. The FDR often provides an unequivocal record as to what occurred on an accident flight, thus allowing investigators to focus on finding the precursors. FDRs accurate and useable data compared to secondary measures, such as radar data [18].

There are other types of FDRs, such as deployable recorders. Deployable FDRs are an alternative to fixed recorders. Fixed recorders are manufactured to withstand the severest crash scenarios and are installed in the airframe [18]. A deployable recorder is housed with an assembly called the Deployable Beacon Airfoil Unit (BAU [18]). The BAU contains the Flight Recorder Memory Unit and an Emergency Locator Transmitter [18].

3.3.3 ARINC Aeronautical Radio Inc.

3.4 EUROCAE MOPS

The EUROACE regulations ED-112A and ED-115 define Minimum Operational Performance Specifications (MOPS) for different airborne/flight recording systems. In the following sections, those requirements are summarized and evaluated.

3.4.1 ED-55/ED-112A Minimum Operational Performance Specification for Crash Protected Airborne

ED-112A is a comprehensive document and contains information on most aspects relevant to the project. It was published in September 2013 by EUROCAE and supersedes ED55 (May 1990). The document covers requirements for airplanes and helicopters.

The first part of the document deals with Cockpit Voice Recorder (CVR) systems. It defines the minimum specifications to be met for all aircraft required to carry a CVR. According to EUROCAE, the systems must be equipped with a variety of equipment, depending on the capabilities of the aircraft.

These include

I. Cockpit equipment including controls for test and bulk erase functions, a monitor, failure indication and area microphones with associated preamplifiers,

II. an alternate power source,

III. a means of converting a synchronization signal to a format which can be recorded,

IV. digital data busses and/or networks providing communication between elements of the system,

V. and for helicopters an interface device suitable for converting a signal representing the main rotor rotation speed into a recordable format [21, pp. 83-84].

Furthermore, the document specifies various classes of CVR. A total of 6 different classes are defined. All classes must fulfil the MOPS specified in the document but differ in how long data must be stored during flight operations. The requirement ranges from 30 minutes up to 25 hours [21, p. 84].

According to EUROCAE, every CVR must be able to simultaneously record data in reference to a timescale. The recorded data must include the inputs of each microphone, including voice communications and the aural environment of the cockpit. The recording of the voice communication must cover the interphone system and the public address system if installed. Furthermore, the navigation aids, warnings and alters that are introduced into a speaker or headset must be recorded. The CVR must also record the rotation speed of the main rotor in helicopters without a FDR. Furthermore, ED-112A defines flight test procedures to check the functionality of the CVR [21, p. 84].

The second part of the document defines the minimum specification to be met for all aircraft required to carry a FDR system. It defines the

I. typical operational objectives,

II. the general design specification,

- III. the minimum system performance under environmental and standard test conditions,
- IV. the tests and procedures to determine compliance with performance requirements,

V. and the equipment's performance requirements including ground tests and flight tests.

Additionally, guidance on maintenance practices, data compression techniques and electronic documentation standards are provided by the 4 previously mentioned Annexes [21, p. 127].

According to EUROCAE, the FDR system must be equipped with multiple items depending on the aircraft. This equipment is used to acquire and process analogue and digital sensor signals, store the recorded data, and when necessary, support dedicated sensors [21, p. 128].

ED-112A defines multiple classes of FDR based on number and type of parameters to be recorded. These requirements are minimum operational standards and therefore, the operational rules of each ICAO member state take precedence over EUROCAE MOPS. The classes relevant for the project are EUROCAE FDR Class A and Class B. Class A refers to FDRs for airplanes and Class B for helicopters. The requirements for a Class A recorder are according to EUROCAE equivalent to an ICAO Type Ia recorder while Class B recorder requirements are equivalent to the ICAO Type IVa recorder requirements [10, p. 129]. Regarding the general objective of a FDR, ED-112A refers to ICAO Annex 6, Parts I, II and III. ICAO defines seven different recorders. Out of these recorders only recorder ICAO Type IIA refers to airplanes under 5700 kg. Therefore, this recorder is especially relevant for further evaluation and assessment [21, p. 130]. The exact specifications of the data to be recorded are listed within Annex II-A for both aircraft and helicopters. For the respective parameter the

I. minimum recording range,

- II. maximum recording interval in seconds,
- III. recording accuracy,
- IV. and recording resolution is specified [21, pp. 148-171].

Some of the requirements defined in the document are clearly requirements for larger manned aircraft. In total, 82 parameters are defined for airplanes and 53 for helicopters. Some of these requirements are not necessary for UAVs. For example, the pressure inside the cabin [21, pp. 148-171]. In addition, UAVs have a larger number of possible designs and propulsion types. Accordingly, the requirements found in ED-112A must be fine-tuned and adjusted to be applicable to UAV's.

3.4.2 ED-155 Minimum Operational Performance Specification for Lightweight Flight Recording Systems

ED-115 defines standards for light weight aircraft. The document was published by EUROCAE in 2009. Like ED-112A, the document covers Cockpit Audio Recording Systems (CARS) in the first part and Aircraft Data Recording Systems (ADRS) in the second part. Since ED-112A is more oriented towards larger airplanes and helicopters, the document ED-155 is very well suited as a supplement to assess requirements for smaller UAVs.

Part I of the document discusses CARS including

- I. typical operational goals,
- II. a description of the CARS,
- III. general design specifications,
- IV. performance under standard and environmental test conditions,
- V. and test procedures (ground and flight tests) [20, p. I2].

The equipment requirements for the CARS defined in ED-155 are reduced in comparison to ED-112A. According to EUROCAE, the CARS only need the same cockpit equipment as defined in ED-112A, a means of converting the analogue audio signals to a digital format and audio equipment including signal summing amplifiers [20, p. I2]. The equipment should be installed in a way that the aural environment of the cockpit is recorded as well as the pilot's headset audio.

The second part of the document deals with ADRS. Here, similar to ED-112A, the typical operational requirements, the design, tests, and performance requirements are defined. The ADRS should have the necessary equipment to record all sensor data and synchronize it with the other airborne recording systems. Furthermore, the communication between the elements of the system should be provided by data busses or networks and the data should be stored on a robust medium [20, p. II2].

ED-155 presents the required parameters like ED-122A in a table. The light weight aircraft is differentiated into fixed wing, rotary wing, sail plane, lighter than air, piston engine and turbine engine. Accordingly, it is noted which parameter applies to which type of aircraft. Due to this division, the table is much more suitable for the project than the tables from ED-112A and can thus be transferred in a similar form to the requirements for UAVs [20, pp. II16 - II22].

3.5 Gaps Between Manned and Unmanned Recorders

It turns out that current regulations and guidelines are strongly related to larger aircraft, which means that not all the regulations required in the lists can and should be followed. In addition, the design of UAS is usually much more versatile. So, it makes sense as a first step to define various categories of UAS. These categories should include whether it is a fixed-wing or rotary wing aircraft, what weight class it belongs to, and to what degree it is capable of autonomous flight. Thus, general requirements and requirements specifically based on the category should be established.

However, some additional data must be recorded for unmanned aircraft. For example, in the previously analyzed texts, it is required to record which value is selected for the speed and which speed the aircraft has in reality. Since these values must be transmitted for unmanned aircraft, the value before and after the transmission, as well as the actual value should be stored here. For autonomous aircraft, the transparency of the algorithms must also be considered to ensure the recording of the necessary data.

4 ACCIDENTS AND INCIDENTS INVESTIGATION IN TECHNICAL STANDARD ORDERS (TSOS)

4.1 Technical Standard Orders

The FAA has published two Technical Standard Orders (TSOs) covering both FRDs and CVRs. The FAA defines a TSO as "...a minimum performance standard for specified materials, parts, and appliances used on civil aircraft. When authorized to manufacture a material, part, or appliances to a TSO standard, this is referred to as TSO authorization. Receiving a TSO authorization is both design and production approval [22]."

The TSO for FDRs is contained in TSO-C124b [23]. One of the major requirements of this TSO is that all FDRs manufactured on or after April 10, 2007 must meet the Minimum Performance Standards (MPSs) of EUROCAE publication ED-112 (discussed previously). In addition, RTCA requirements must be met for environmental conditions. The document also outlines requirements for both the software and hardware components of FDRs.

Similarly, the requirements for CVRs are outlined in TSO-C123c [24]. This TSO also requires the EUROCAE ED-112 standard for CVRs, as well as the RTCA environmental requirements (discussed above).

4.2 Advisory Circulars

The FAA publishes Advisory Circulars (ACs) which includes information designed "...to inform the aviation public in a systematic way of nonregulatory material. Unless incorporated into a regulation by reference, the contents of an advisory circular are not binding on the public. [25]. In essence, ACs help people who operate within the National Airspace System (NAS) of guidelines and recommendations for safe operation. While not regulatory in nature, ACs have become an essential resource and often represent de facto standards.

The AC for FDRs is AC 20-141B [26]. This AC goes into substantial details regarding the use, preferrable data standards, and instructions on how to derive or filter some forms of flight data. The newer FDRs can store a large number of parameters, but the parameters specifically mentioned in this AC are included in Table 3.

Lateral Acceleration
Pitch trim surface positions
Trailing Edge Flaps
Leading Edge Flaps/Slats
Thrust Reverser Position
Ground Spoiler Position
OAT/TAT
Autopilot Modes
Radio Altimeter
Localizer Deviation
Glideslope Deviation
Marker Beacon
Master Warning
Air/Ground Sensing
Angle of Attack
Hydraulic Pressure Low

Table 3. AC 20-141B Appendix 5 Parameters.

Yaw Control Surface Conditions	Ground Speed

The CVR AC is AC 20-186 [27]. Similar to the FDR AC, this AC, "...provides guidance for compliance with applicable regulations for the airworthiness and operational approval for required cockpit voice recorder (CVR) systems. Non-required installations may use this guidance when installing a CVR system as a voluntary safety enhancement. This AC is not mandatory and is not a regulation. This AC describes an acceptable means, but not the only means, to comply with Title 14 of the Code of Federal Regulations (14 CFR). However, if you use the means described in this AC, you must conform to it in totality for required installations. [27]."

5 TEST METHOD AND METRICS FOR DATA RECORDER SURVIVAILITY

5.1 Modelling/Non-destructive

There are several engineering methods used to test structure and system survivability. In general, they are dived into two broad categories, non-destructive and destructive. The non-destructive techniques usually involve engineering calculations or modelling and simulation while destructive techniques actually require structures be taken against their limits to the point of failure.

There are several manned survivability requirements that can modelled and applied to an FDR mounted on a UAS. This modelling can help determine whether an FDR would be recoverable in the event of an accident. Of the survivability requirements listed in both TSOs C123 and C124, the following items will likely be able to be modelled (instead of using destructive methods):

- Impact Shock 3,400G's for 6.5ms
- Static Crush 5,000 pounds for 5 minutes on each axis
- Penetration Resistance 500 lbs. dropped from 10feet with a ¹/₄-inch diameter contact point.
- Hydrostatic Pressure Pressure equivalent to a depth of 20,000 feet

5.2 Destructive

There are several survivability parameters that would likely have to be taken to destruction in order to determine survival suitability as outlined in the TSOs. These include:

- Fire (High Intensity) 1100°C flame covering 100% of recorder for 30 minutes. (60 minutes if ED56 test protocol is used)
- Fire (Low Intensity) 260°C Oven test for 10 hours
- Fluid Immersion Immersion in aircraft fluids (fuel, oil etc.) for 24 hours
- Water Immersion Immersion in sea water for 30 days

6 LITERATURE REVIEW CONCLUSION

It is clear that for the manned industry, FDRs and CVRs have had a long history. These devices have proven valuable for accident investigation, proactive and predictive safety programs, and

ultimately have led to a better overall safety environment. Throughout this history, the collected parameters and its associated storage have changed often, especially has technology has improved.

Although the use of FDRs and CVRs in the manned industry is well established, the same cannot be said for the unmanned industry. There are FDRs that fit the size, weight, and power requirements of many UAS platforms, there is still no standardization. UAS telemetry, often able to be collected through C2 transmissions, and stored locally on a GCS, also offers a potentially viable avenue for flight data recordings. In fact, the storing of data away from an aircraft increases the survivability aspect of the recordings.

What parameters should be collected for unmanned aircraft? A good starting point for this question is with already created parameter recordings on the manned side, as shown in Table 3. Of course, there are many parameters recorded on the manned side that would not necessarily be germane to unmanned aircraft (depending on the platform). And there would also be additional parameters specific to UAS which would not necessarily be important on the manned side.

Appendix A shows the type of data with formats and refresh rates typically found in manned aviation, in this case as stored in the National General Aviation Flight Information Database. Although this data is primarily a manned data solution, the formats listed in the appendix can give an idea of the types of information that contemporary manned FDRs generate.

The telemetry streams generated by small UASs and stored on the GCS also generate a vast amount of data. Appendix B depicts telemetry format found on three different types of small UAS platforms. Although this data can be radically disparate to the manned side, there are also many similarities, especially when looking at a basic FDR data recording useful for accident investigation.

The primary goal of this study is to identify the requirements for unmanned FDRs and CVRs. Based upon the foundation and underpinnings identified in this literature review, when combined with statistical modelling and other techniques, the requirements for an unmanned FDR and CVR will be identified and data-driven. Further, this project will leverage the vast amount of knowledge obtained from the manned side to determine the exact needs for recorders. Undoubtedly, accident investigators and safety professionals throughout the unmanned industry will be able to obtain the necessary tools needed to help ensure adequate safety margins.

7 **REFERENCES**

- [1] Dub, M., & Parizek, J. (2018). Evolution of Flight Data Recorders. Advances in Military *Technology*, 13(1).
- [2] Apostolidis, A., Pelt, M., & Stamoulis, K. P. (2020, January). Aviation Data Analytics in MRO Operations: Prospects and Pitfalls. In 2020 Annual Reliability and Maintainability Symposium (RAMS) (pp. 1-7). IEEE.
- [3] Walker, G. (2017). Redefining the incidents to learn from: Safety science insights acquired on the journey from black boxes to Flight Data Monitoring. *Safety science*, *99*, 14-22.
- [4] "(eCFR 14 CFR Part 23 -- Airworthiness Standards_ Normal Category Airplanes".
- [5] "(eCFR 14 CFR Part 25 -- Airworthiness Standards Transport Category Airplanes".
- [6] "(eCFR 14 CFR Part 27 -- Airworthiness Standards_ Normal Category Rotorcraft)".
- [7] "(eCFR __ 14 CFR Part 29 -- Airworthiness Standards_ Transport Category Rotorcraft)".
- [8] "(eCFR 14 CFR Part 91 -- General Operating and Flight Rules)".
- [9] "(eCFR 14 CFR Part 125 Subpart F -- Instrument and Equipment Requirements)".
- [10] "(eCFR :: Appendix E to Part 125, Title 14 -- Airplane Flight Recorder Specifications)".
- [11] "(eCFR :: Appendix D to Part 125, Title 14 -- Airplane Flight Recorder Specification)".
- [12] "(eCFR :: Appendix E to Part 125, Title 14 -- Airplane Flight Recorder Specifications)".
- [13] Office of the Federal Register, National Archives and Records Administration. (2011, December 31). 14 CFR 129 - OPERATIONS: FOREIGN AIR CARRIERS AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE. [Government]. Office of the Federal Register, National Archives and Records Administration. https://www.govinfo.gov/app/details/CFR-2012-title14-vol3/CFR-2012title14-vol3-part129
- [14] Office of the Federal Register, National Archives and Records Administration. (2010, December 31). 14 CFR 135 - OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT. [Government]. Office of the Federal Register, National Archives and Records Administration. https://www.govinfo.gov/app/details/CFR-2011-title14-vol3/CFR-2011title14-vol3-part135
- [15] House of Representatives, Congress. (2015, December 30). 49 U.S.C. 1114 Disclosure, availability, and use of information. [Government]. U.S. Government Publishing Office.

https://www.govinfo.gov/app/details/USCODE-2015-title49/USCODE-2015-title49-subtitleII-chap11-subchapII-sec1114.

- [16] House of Representatives, Congress. (2011, December 30). 49 U.S.C. 1154 Discovery and use of cockpit and surface vehicle recordings and transcripts. [Government]. U.S. Government Publishing Office. https://www.govinfo.gov/app/details/USCODE-2011title49/USCODE-2011-title49-subtitleII-chap11-subchapIV-sec1154
- [17] From Title 49-TRANSPORTATION SUBTITLE V-RAIL PROGRAMS PART A-SAFETY CHAPTER 201-GENERAL SUBCHAPTER II-PARTICULAR ASPECTS OF SAFETY. 49 USC 20137: Event Recorders. (2022, May 1). Retrieved from https://uscode.house.gov/view.xhtml?hl=false&edition=prelim&req=granuleid%3AUSCprelim-title49-section20137&num=0&saved=%7CZ3JhbnVsZWlkOlVTQy1wcm VsaW0tdGl0bGU0OS1zZWN0aW9uMjAxMzc%3D%7C%7C%7C0%7Cfalse%7Cprelim
- [18] House of Representatives, Congress. (2011, December 30). 49 U.S.C. 44901 Screening passengers and property. [Government]. U.S. Government Publishing Office. https://www.govinfo.gov/app/details/USCODE-2011-title49/USCODE-2011-title49subtitleVII-partA-subpartiii-chap449-subchapI-sec44901
- [19] RTCA, Inc. (2001). (rep.). 0Y4DKM6A (pp. 1–124). Washington, DC.
- [20] EUROCAE, MINIMUM OPERATIONAL PERFORMANCE SPECIFICATION FOR CRASH PROTECTED AIRBORNE RECORDER SYSTEMS, 2013.
- [21] EUROCAE, MINIMUM OPERATIONAL PERFORMANCE SPECIFICATION FOR LIGHTWEIGHT FLIGHT RECORDING SYSTEMS, 2009.
- [22] Federal Aviation Administration. (October 11, 2018). *Technical Standard Orders (TSO)*. https://www.faa.gov/aircraft/air_cert/design_approvals/tso/
- [23] Federal Aviation Administration. (April 10, 2007). Technical Standard Order: Flight Data Recorder Systems. https://rgl.faa.gov/Regulatory_and_Guidance_Library/rgTSO.nsf/0/e040550c3ab32300862572c200113 975/\$FILE/TSO-C124b.pdf
- [24] Federal Aviation Administration. (December 19, 2013). Technical Standard Order: Cockpit Voice Recorder Equipment. https://rgl.faa.gov/Regulatory_and_Guidance_Library/rgTSO.nsf/0/ c464478183dcbdc686257c450067e591/\$FILE/TSO-123c.pdf
- [25] Federal Aviation Administration. (June 15, 2000). *Advisory Circular: Advisory Circular Checklist*. https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_00.2-13.pdf
- [26] Federal Aviation Administration. (August 17, 2010). Advisory Circular: Airworthiness and Operational Approval of Digital Flight Data Recorder Systems. https://www.faa.gov/documentLibrary/ media/Advisory_Circular/AC_20-141B.pdf.

[27] Federal Aviation Administration. (July 22, 2016). Advisory Circular: Airworthiness and Operational Approval of Cockpit Voice Recorder Systems. https://www.faa.gov/documentLibrary/ media/Advisory_Circular/AC_20-186.pdf

8 APPENDICES

8.1 Appendix A

Technical Description of NGAFID Parameters

1	Field:	id	Type:	bigint(20)	Required			
	Units:	Integer	Range:	0-18,446,744,073,709,	551,615			
	Description:	Individual reco	Individual record id, will be auto-incremented					
	Example:	1						

2	Field:	flight	Type:	bigint(20)	Required		
	Units:	Integer	Range:	0-18,446,744,073,709	,551,615		
	Description:	Used for fligh	Used for flight identification.				
	Example:	52					

3	Field:	phase	Type:	tinyint(3)	Required			
	Units:	Integer	Range:	0-255				
	Description:	Phase of flight	Phase of flight, to be foreign keyed to a master phase of flight table.					
		Phase field wil	Phase field will be used in the development of exceedances and other					
		concept tools.	concept tools.					
	Example:	15						

4	Field:	time	Type:	Bigint(20)	Required		
	Units:	Milliseconds	Range:	0-18,446,744,073,	709,551,615		
	Description:	The millisecond that the field recorded occurred during flight (not					
		the time the data was entered in the database).					
	Example:	29888824					

5	Field:	pressure_altitude	Type:	float(7,2)	Not Required		
	Units:	Feet	Range:	-99,999.99 - 99,	999.99		
	Description:	Pressure altitude if	Pressure altitude if recorded (not derived).				
	Example:	12,432.11					

6	Field:	msl_altitude	Type:	float(7,2)	Not Required
	Units:	Feet	Range:	-99,999.99 - 99,999	9.99
	Description:	Altitude above m	ean sea le	vel.	
	Example:	12,432.11			

7	Field:	indicated_airspeed	Type:	float(6,2)	Not Required
	Units:	Knots	Range:	-9,999.99 - 9,999.99	
	Description:	Indicated airspeed.			
	Example:	124.21			

8	Field:	tas	Type:	float(6,2)	Not Required
	Units:	Knots	Range:	-9,999.99 - 9,999.99	
	Description:	True airspeed (not	t derived)		
	Example:	124.21			

9	Field:	mach	Type:	float(3,2)	Not Required
	Units:	Mach	Range:	-9.99 - 9.99	
	Description:	Mach number (not	t derived)		
	Example:	.86			

10	Field:	heading	Type:	float(5,2)	Not Required			
	Units:	Degrees	Range:	0-359.99				
	Description:	Compass heading,	Compass heading, as recorded.					
	Example:	227.41						

11	Field:	course	Type:	float(5,2)	Not Required			
	Units:	Degrees	Range:	0-359.99				
	Description:	Magnetic course (Magnetic course (not derived)					
	Example:	301.34						

12	Field:	pitch_attitude	Type:	float(7,4)	Not Required		
	Units:	Degrees	Range:	-180.0000 - 180.0000)		
	Description:	Pitch attitude, negative denotes down, positive denotes up.					
	Example:	6.8724					

13	Field:	Roll_attitude	Type:	float(7,4)	Not Required		
	Units:	Degrees	Range:	-180.0000 - 180.0000			
	Description:	Roll attitude, negative denotes left, positive denotes right.					
	Example:	6.8724					

14	Field:	radio_transmit	Type:	enum	Not Required			
	Units:	NA	Range:	"no", "yes"				
	Description:	Radio transmission	Radio transmission in progress.					
	Example:	no						

15	Field:	eng_1_rpm	Type:	float(7,2)	Not Required
	Units:	RPM	Range:	0 - 99999.99	
	Description:	Engine #1 RPM			
	Example:	2315.62			
16	Field:	eng_2_rpm	Туре:	float(7,2)	Not Required
_ •	Units:	RPM	Range:	0 - 99999.99	
	Description:	Engine #2 RPM			
	Example:	2315.62			
17	Field:	eng_3_rpm	Type:	float(7,2)	Not Required
	Units:	RPM	Range:	0 - 99999.99	
	Description:	Engine #3 RPM			
	Example:	2315.62			
18	Field:	eng_4_rpm	Type:	float(7,2)	Not Required
10	Units:	RPM	Range:	0 - 99999.99	not nequireu
	Description:	Engine #4 RPM	itunge.	0 /////////////////////////////////////	
	Example:	2315.62			
	F				
19	Field:	eng_1_mp	Type:	float(6,3)	Not Required
	Units:	Inches of HG	Range:	0 - 999.999	
	Description:	Engine #1 Manife	old Pressur	e	
	Example:	25.812			
20	Field:	eng_2_mp	Туре:	float(6,3)	Not Required
20	Units:	Inches of HG	Range:	0 - 999.999	not Required
	Description:	Engine #2 Manifo	0		
	Example:	25.812	na i iessai	0	
	•				
21	Field:	eng_3_mp	Type:	float(6,3)	Not Required
	Units:	Inches of HG	Range:	0 - 999.999	
	Description:	Engine #3 Manife	old Pressur	e	
	Example:	25.812			
22	Field:	eng_4_mp	Туре:	float(6,3)	Not Required
<i>44</i>	Units:	Inches of HG	Range:	0 - 999.999	not Keyuneu
	Description:	Engine #4 Manife	0		
	Example:	25.812	Ju Flessur	C	
	Example:	23.012			

23	Field:	prop_1_angle	Type:	float(6,4)	Not Required			
	Units:	Degrees	Range:	-99.9999 - 99.9999				
	Description:	Propeller blade an	Propeller blade angle, engine #1					
	Example:	54.1092						

24	Field:	prop_2_angle	Type:	float(6,4)	Not Required		
	Units:	Degrees	Range:	-99.9999 - 99.9999			
	Description:	Propeller blade an	Propeller blade angle, engine #2				
	Example:	54.1092					

25	Field:	prop_3_angle	Type:	float(6,4)	Not Required				
	Units:	Degrees	Range:	-99.9999 - 99.9999					
	Description:	Propeller blade an	Propeller blade angle, engine #3						
	Example:	54.1092							

26	Field:	prop_4_angle	Type:	float(6,4)	Not Required			
	Units:	Degrees	Range:	-99.9999 - 99.9999				
	Description:	Propeller blade an	Propeller blade angle, engine #4					
	Example:	54.1092	_					

27	Field:	autopilot	Type:	enum	Not Required			
	Units:	NA	Range:	"off", "on"				
	Description:	Status of autopilo	Status of autopilot (is the autopilot on or off?)					
	Example:	off						

28	Field:	pitch_control_input	Type:	float(7,3)	Not Required		
	Units:	Degrees	Range:	-9999.999 - 999	9.999		
	Description:	Pitch control input at the control yoke					
	Example:	-14.871					

29	Field:	lateral_control_input	Type:	float(7,3)	Not Required			
	Units:	Degrees	Range:	-9999.999 - 9999	.999			
	Description:	Aileron control input	Aileron control input at the control yoke					
	Example:	19.212						

30	Field:	rudder_control_input	Type:	float(7,3)	Not Required		
	Units:	Degrees	Range:	-9999.999 - 9999	.999		
	Description:	Rudder control input at the rudder pedals					
	Example:	-6.691					

31	Field:	pitch_control_surface_position	Type:	float(7,3)	Not
					Required
	Units:	Degrees	Range:	-9999.999 -	9999.999
	Description:	Position of pitch control surface (elevator of	stabilator)	
	Example:	-6.691			

32	Field:	lateral_control_surface_position	Type:	float(7,3)	Not
					Required
	Units:	Degrees	Range:	-9999.999	- 9999.999
	Description:	Position of aileron control surface	•		
	Example:	4.812			

33	Field:	yaw_control_surface_position	Type:	float(7,3)	Not
					Required
	Units:	Degrees	Range:	-9999.999	- 9999.999
	Description:	Position of rudder control surface			
	Example:	1.772			

34	Field:	vertical_acceleration	Type:	float(6,3)	Not
					Required
	Units:	g's	Range:	-999.999 -	999.999
	Description:	Amount of vertical g's recorded			
	Example:	1.282			

35	Field:	longitudinal_acceleration	Type:	float(6,3)	Not
					Required
	Units:	g's	Range:	-999.999 -	999.999
	Description:	Amount of longitudinal g's recorded			
	Example:	-0.113			

36	Field:	lateral_acceleration	Type:	float(6,3)	Not
					Required
	Units:	g's	Range:	-999.999 -	999.999
	Description:	Amount of lateral g's recorded			
	Example:	1.102			

37	Field:	pitch_trim_surface_position	Type:	float(6,3)	Not
					Required
	Units:	Degrees	Range:	-999.999 -	999.999
	Description:	Deflection of pitch trim surface			
	Example:	-2.881			

38	Field:	trailing_edge_flap_selection	Type:	Tinyint(4)	Not Required
I	Units:	Degrees	Range:	-128 - 127	
]	Description:	Flap selection from cockpit, trai			
]	Example:	15			

39	Field:	leading_edge_flap_selection	Type:	Tinyint(4)	Not			
					Required			
	Units:	Degrees	Range:	-128 - 127				
	Description:	Flap selection from cockpit, lea	Flap selection from cockpit, leading edge device					
	Example:	15						

40	Field:	thrust_reverse_position_1	Type:	float(6,3)	Not		
					Required		
	Units:	Degrees	Range:	-999.999 -	999.999		
	Description:	Amount of thrust reverse lever ap	Amount of thrust reverse lever application, engine #1				
	Example:	0.000					

41	Field:	thrust_reverse_position_2	Type:	float(6,3)	Not			
					Required			
	Units:	Degrees	Range:	-999.999 -	999.999			
	Description:	Amount of thrust reverse lever ap	Amount of thrust reverse lever application, engine #2					
	Example:	0.000						

42	Field:	thrust_reverse_position_3	Type:	float(6,3)	Not			
					Required			
	Units:	Degrees	Range:	-999.999 -	999.999			
	Description:	Amount of thrust reverse lever ap	Amount of thrust reverse lever application, engine #3					
	Example:	0.000						

43	Field:	thrust_reverse_position_4	Type:	float(6,3)	Not
					Required
	Units:	Degrees	Range:	-999.999 -	999.999
	Description:	Amount of thrust reverse lever ap	oplication,	engine #4	
	Example:	0.000			

44	Field:	ground_spoiler_speed_brake_	Type:	Tinyint(4)	Not
		position			Required
	Units:	Degrees	Range:	-128 - 127	
	Description:	Cockpit control position of spee	ed brake se	elector	
	Example:	5			

45	Field:	oat	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Outside Air Temp	Outside Air Temperature					
	Example:	-28.31						

46	Field:	afcs_mode	Type:	smallint(6)	Not Required
	Units:	NA	Range:	0 - 65,535	
	Description:	Autopilot mode.			
	Example:	3			

47	Field:	radio_altitude_actual	Type:	mediumint(9)	Not Required
	Units:	feet	Range:	0 - 16,777,215	1
	Description:	Radio (radar) altitude	of aircraft	as recorded.	
	Example:	1,672			

48	Field:	radio_altitude_derived	Type:	mediumint(9)	Not
					Required
	Units:	feet	Range:	0 - 16,777,215	
	Description:	Radio (radar) altitude of	f aircraft a	s calculated from m	sl altitude minus
		terrain altitude.			
	Example:	21,199			

49	Field:	localizer_deviation	Type:	float(5,3)	Not Required		
	Units:	Degrees	Range:	-99.999 - 99.999			
	Description:	Degrees off of local	Degrees off of localizer course, negative denotes left, positive right.				
	Example:	3.012					

50	Field:	glideslope_deviation	Type:	float(5,3)	Not		
					Required		
	Units:	Degrees	Range:	-99.999 - 99.999			
	Description:	Degrees off of glideslope, negative denotes low, positive high.					
	Example:	-1.912					

51	Field:	marker_beacon_passage	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Outer marker beacon beir	ng overflo	wn.	
	Example:	no			

52	Field:	master_warning	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Master warning indication	n displaye	d.	
	Example:	no			

53	Field:	weight_on_wheels	Type:	enum	Not
					Required
	Units:	NA	Range:	"ground", "air"	
	Description:	Weight on wheels sensed			
	Example:	air			

54	Field:	aoa	Type:	float(5,3)	Not Required
	Units:	Degrees	Range:	-99.999 - 99.999	
	Description:	Angle of attack.			
	Example:	7.183			

55	Field:	hydraulic_pressure_low	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Hydraulic pressure low in	ndication.		
	Example:	no			

56	Field:	groundspeed	Type:	float(7,3)	Not Required
	Units:	Knots	Range:	-9,999.999 - 9,999.999)
	Description:	True airspeed (not	t derived)		
	Example:	124.219			

57	Field:	terrain_warning	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	Requireu
	Description:	Terrain warning present.			
	Example:	no			

58	Field:	landing_gear_position	Type:	enum	Not
					Required
	Units:	NA	Range:	"up", "down", '	'transit"
	Description:	Position of landing gear.			
	Example:	up			

59	Field:	drift_angle	Type:	float(6,3)	Not Required
	Units:	Degrees	Range:	-999.999 -	999.999
	Description:	Drift angle.			
	Example:	17.227			

60	Field:	wind_speed	Type:	float(6,3) Not Required
	Units:	Knots	Range:	0.000 - 999.999
	Description:	Speed of wind		
	Example:	119.426		

61	Field:	wind_direction	Type:	float(6,3)	Not Required
	Units:	Degrees	Range:	-999.999 -	999.999
			Actual:	0.000-359.	999
	Description:	Magnetic direction of wir	nd		
	Example:	340.736			

62	Field:	latitude	Type:	float(8,6)	Not Required
	Units:	Degrees	Range:	-99.999999	9 - 99.999999
			Actual:	-90.00000	00 - 90.0000000
	Description:	Latitude of aircraft, negative denotes southern hemisphere, positive			
		denotes northern.			
	Example:	43.567143			

63	Field:	longitude	Type:	float(9,6)	Not Required
	Units:	Degrees	Range:	-999.9999	99 - 999.999999
			Actual:	-180.0000	000 - 180.0000000
	Description:	Longitude of aircraft, neg	ative deno	tes western l	nemisphere, positive
	_	denotes eastern.			
	Example:	-121.387255			

64	Field:	stall_warning	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Stall warning present.			
	Example:	no			

65	Field:	stick_shaker	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Stick shaker activated.			
	Example:	no			

66	Field:	stick_pusher	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Stick pusher activated.			
	Example:	no			

67	Field:	windshear	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Windshear warning active			
	Example:	no			

68	Field:	throttle_lever_position_1	Type:	float(6,3) Not Required		
	Units:	Degrees	Range:	-999.999 - 999.999		
	Description:	Position of throttle lever, e	Position of throttle lever, engine #1			
	Example:	58.712				

69	Field:	throttle_lever_position_2	Type:	float(6,3) Not Required			
	Units:	Degrees	Range:	-999.999 - 999.999			
	Description:	Position of throttle lever, e	Position of throttle lever, engine #2				
	Example:	58.712					

70	Field:	throttle_lever_position_3	Type:	float(6,3) Not Required		
	Units:	Degrees	Range:	-999.999 - 999.999		
	Description:	Position of throttle lever, engine #3				
	Example:	58.712				

71	Field:	throttle_lever_position_4	Type:	float(6,3)	Not Required
	Units:	Degrees	Range:	-999.999 -	999.999
	Description:	Position of throttle lever, engine #4			
	Example:	58.712			

72	Field:	traffic_alert	Type:	smallint(6)	Not Required
	Units:	NA	Range:	0 - 65,535	
	Description:	Traffic alert status	8.		
	Example:	3			

73	Field:	dme_1_distance	Type:	float(6,3)	Not Required		
	Units:	DME units	Range:	-999.999 -	999.999		
			Actual:	-199.999 -	199.999		
	Description:	Distance Measuring eq	Distance Measuring equipment (DME) #1 receiver distance.				
	Example:	72.192					

74	Field:	dme_2_distance	Type:	float(6,3)	Not Required	
	Units:	DME units	Range:	-999.999 -	999.999	
			Actual:	-199.999 -	199.999	
	Description:	Distance Measuring equipment (DME) #2 receiver distance.				
	Example:	72.192				

75	Field:	nav_1_freq	Type:	float(6,3)	Not Required
	Units:	MHz	Range:	-999.999 -	999.999
			Actual:	110.000 - 1	118.000
	Description:	Selected frequency Nav 1.			
	Example:	114.30			

76	Field:	nav_2_freq	Type:	float(6,3)	Not Required
	Units:	MHz	Range:	-999.999 -	999.999
			Actual:	110.000 - 1	118.000
	Description:	Selected frequency Nav 2.			
	Example:	112.725			

77	Field:	obs_1	Type:	float(5,2)	Not Required		
	Units:	Degrees	Range:	00.000-359.99			
	Description:	Course set into Or	Course set into Omni Bearing Selector (OBS) 1				
	Example:	125.00					

78	Field:	obs_2	Type:	float(5,2)	Not Required			
	Units:	Degrees	Range:	00.000-359.99				
	Description:	Course set into Or	Course set into Omni Bearing Selector (OBS) 2					
	Example:	125.00						

79	Field:	altimeter	Type:	float(4,2)	Not Required
	Units:	Inches of HG	Range:	00.00-99.99	
			Actual:	20.00-35.00	
	Description:	Altimeter setting			
	Example:	29.92			

80	Field:	selected_altitude	Type:	mediumint(9)	Not Required				
	Units:	feet	Range:	0 - 16,777,215					
	Description:	Selected altitude in altit	Selected altitude in altitude setting system (or alerter).						
	Example:	15000							

81	Field:	selected_speed	Type:	smallint(4)	Not
					Required
	Units:	knots	Range:	0 - 9999	
	Description:	Selected speed in AFCS	S.		
	Example:	150			

82	Field:	selected_mach	Type:	float(3,2)	Not Required			
	Units:	mach	Range:	-9.99 - 9.99				
	Description:	Selected Mach nu	Selected Mach number in autopilot system.					
	Example:	.86						

83	Field:	selected_vertical_speed	Type:	smallint(5)	Not
					Required
	Units:	Feet per minute	Range:	-99,999 - 99,999	
	Description:	Selected vertical speed in			
	Example:	-1500			

84	Field:	selected_heading	Type:	smallint(3)	Not
					Required
	Units:	Degrees	Range:	0-359	
	Description:	Selected heading in auto	pilot		
	Example:	047			

85	Field:	selected_flight_path*	Type:	tinyint(3)	Not		
					Required		
	Units:	NA	Range:	0 - 256			
	Description:	Selected flight path mo	Selected flight path mode in autopilot.				
	Example:	3					

86	Field:	selected_decision_height	Туре:	smallint(5)	Not Required
	Units: Description: Example:	feet Selected decision height in 200	0	-99,999 - 99,999	

87	Field:	efis_display_format*	Type:	tinyint(3)	Not Required	
	Units:	NA	Range:	0 - 256		
	Description:	Selected EFIS format/	Selected EFIS format/mode.			
	Example:	3				

88	Field:	mfd_display_format*	Type:	tinyint(3)	Not Required	
					Required	
	Units:	NA	Range:	0 - 256		
	Description:	Selected MFD format/	Selected MFD format/mode.			
	Example:	3				

89	Field:	thrust_command	Type:	varchar(8)	Not		
					Required		
	Units:	percent	Range:	Undefined			
	Description:	Description of comma	anded thrus	st for auto-thrott	le equipped aircraft,		
	_	will be aircraft specific.					
	Example:	92.6					

90	Field:	thrust_target	Type:	varchar(8)	Not			
					Required			
	Units:	percent	Range:	Undefined				
	Description:	Description of thrust ta	Description of thrust target set, will be aircraft specific.					
	Example:	92.6						

91	Field:	fuel_quantity_total	Type:	float(8,3) Not Requ	ired	
	Units:	Lbs.	Range:	0 - 99,999.999		
	Description:	Total fuel quantity as recorded (not dervived).				
	Example:	288.761				

92	Field:	fuel_quantity_left_main	Type:	float(8,3)	Not Required	
	Units:	Lbs.	Range:	0 - 99,999.	999	
	Description:	Fuel quantity left main tank as recorded.				
	Example:	145.412				

93	Field:	fuel_quantity_right_main	Type:	float(8,3)	Not Required		
	Units:	Lbs.	Range:	0 - 99,999.	999		
	Description:	Fuel quantity right main tank as recorded.					
	Example:	145.412					

94	Field:	fuel_quantity_aux_1	Type:	float(8,3)	Not Required	
	Units:	Lbs.	Range:	0 - 99,999.	999	
	Description:	Fuel quantity auxiliary tank # 1 as recorded.				
	Example:	91.765				

95	Field:	fuel_quantity_aux_2	Type:	float(8,3)	Not Required
	Units:	Lbs.	Range:	0 - 99,999.	999
	Description:	Fuel quantity auxiliary tank # 2 as recorded.			
	Example:	91.765			

96	Field:	fuel_quantity_aux_3	Type:	float(8,3) N	ot Required	
	Units:	Lbs.	Range:	0 - 99,999.99	9	
	Description:	Fuel quantity auxiliary tank # 3 as recorded.				
	Example:	91.765				

97	Field:	fuel_quantity_cg_trim_tank	Type:	float(8,3)	Not Required	
	Units:	Lbs.	Range:	0 - 99,999.	.999	
	Description:	Fuel quantity Center of Gravity (CG) trim tank as recorded.				
	Example:	91.765				

98	Field:	eng_1_fuel_flow	Type:	float(8,3)	Not Required
	Units:	Lbs. per hour	Range:	0 - 99,999.	999
	Description:	Fuel flow engine #1			
	Example:	128.311			

99	Field:	eng_2_fuel_flow	Type:	float(8,3) Not Required
	Units:	Lbs. per hour	Range:	0 - 99,999.999
	Description:	Fuel flow engine #2		
	Example:	128.311		

100	Field:	eng_3_fuel_flow	Type:	float(8,3) Not Required
	Units:	Lbs. per hour	Kange:	0 - 99,999.999
	Description:	Fuel flow engine #3		
	Example:	128.311		

101	Field:	eng_4_fuel_flow	Type:	float(8,3) Not Required
	Units:	Lbs. per hour	Range:	0 - 99,999.999
	Description:	Fuel flow engine #4		
	Example:	128.311		

 102
 Field:
 primary_nav_system_reference*
 Type:
 tinyint(3)
 Not Required

 Units:
 NA
 Range:
 0 - 256

 Description:
 Primary navigation used for system reference.
 3

103Field:icingType:enumNot
RequiredUnits:NARange:"no", "yes"Description:Ice detection system status."no", "yes"Example:no

104	Field:	eng_1_vibration_warning	Type:	enum	Not	
					Required	
	Units:	NA	Range:	"no", "yes"		
	Description:	Engine #1 vibration indicat	Engine #1 vibration indication.			
	Example:	no				

105	Field:	eng_2_vibration_warning	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Engine #2 vibration indicat			
	Example:	no			

106	Field:	eng_3_vibration_warning	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	-
	Description:	Engine #3 vibration indicat			
	Example:	no			

107	Field:	eng_4_vibration_warning	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Engine #4 vibration indicat			
	Example:	no			

108	Field:	eng_1_overtemp_warning	Type:	enum	Not			
					Required			
	Units:	NA	Range:	"no", "yes"				
	Description:	Engine #1 overtemp warnin	Engine #1 overtemp warning indication.					
	Example:	no						

109	Field:	eng_2_overtemp_warning	Type:	enum	Not			
					Required			
	Units:	NA	Range:	"no", "yes"				
	Description:	Engine #2 overtemp warnin	Engine #2 overtemp warning indication.					
	Example:	no						

110	Field:	eng_3_overtemp_warning	Type:	enum	Not		
					Required		
	Units:	NA	Range:	"no", "yes"			
	Description:	Engine #3 overtemp warning indication.					
	Example:	no					

111	Field:	eng_4_overtemp_warning	Type:	enum	Not	
					Required	
	Units:	NA	Range:	"no", "yes"		
	Description:	Engine #4 overtemp warning indication.				
	Example:	no				

112	Field:	eng_1_oil_press	Type:	float(5,2)	Not Required				
	Units:	psi	Range:	-999.99 - 999.99					
	Description:	Oil pressure engin	Oil pressure engine #1						
	Example:	87.22							

113	Field:	eng_2_oil_press	Type:	float(5,2)	Not Required
	Units:	psi	Range:	-999.99 - 999.99	
	Description:	Oil pressure engin			
	Example:	87.22			

114	Field:	eng_3_oil_press	Type:	float(5,2)	Not Required
	Units:	psi	Range:	-999.99 - 999.99	
	Description:	Oil pressure engin			
	Example:	87.22			

115	Field:	eng_4_oil_press	Type:	float(5,2)	Not Required
	Units:	psi	Range:	-999.99 - 999.99	
	Description:	Oil pressure engin			
	Example:	87.22			

116	Field:	eng_1_oil_press_low_warning	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Engine #1 low oil pressure warr			
	Example:	no			

117	Field:	eng_2_oil_press_low_warning	Type:	enum	Not	
					Required	
	Units:	NA	Range:	"no", "yes"		
	Description:	Engine #2 low oil pressure warr	Engine #2 low oil pressure warning.			
	Example:	no				

118	Field:	eng_3_oil_press_low_warning	Type:	enum	Not Required
	Units:	NA	0	"no", "yes"	Requireu
	Description:	Engine #3 low oil pressure warr	ing.		
	Example:	no			

119	Field:	eng_4_oil_press_low_warning	Type:	enum	Not		
					Required		
	Units:	NA	Range:	"no", "yes"			
	Description:	Engine #4 low oil pressure warr	Engine #4 low oil pressure warning.				
	Example:	no					

120	Field:	eng_1_oil_temp	Type:	float(6,3) Not Required
	Units:	Degrees	Range:	-999.999 - 999.999
	Description:	Engine #1 oil temperature		
	Example:	107.218		

121	Field:	eng_2_oil_temp	Type:	float(6,3)	Not Required
	Units:	Degrees	Range:	-999.999 -	999.999
	Description:	Engine #2 oil temperature			
	Example:	107.218			

122	Field:	eng_3_oil_temp	Type:	float(6,3)	Not Required
	Units:	Degrees	Range:	-999.999 -	999.999
	Description:	Engine #3 oil temperature			
	Example:	107.218			

123	Field:	eng_4_oil_temp	Type:	float(6,3)	Not Required
	Units:	Degrees	Range:	-999.999 -	999.999
	Description:	Engine #4 oil temperature			
	Example:	107.218			

124	Field:	eng_1_overspeed_warning	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Engine #1 overspeed warning.			
	Example:	no			

125	Field:	eng_2_overspeed_warning	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Engine #2 overspeed warning.			
	Example:	no			

126	Field:	eng_3_overspeed_warning	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Engine #3 overspeed warning.			
	Example:	no			

127	Field:	eng_4_overspeed_warning	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	-
	Description:	Engine #4 overspeed warning.			
	Example:	no			

128	Field:	eng_1_cht_l	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #1 Cylind	Engine #1 Cylinder Head Temperature (CHT) for cylinder #1					
	Example:	204.11						

129	Field:	eng_1_cht_2	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #1 Cylind	Engine #1 Cylinder Head Temperature (CHT) for cylinder #2					
	Example:	204.11						

130	Field:	eng_1_cht_3	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #1 Cylind	Engine #1 Cylinder Head Temperature (CHT) for cylinder #3					
	Example:	204.11						

131	Field:	eng_1_cht_4	Type:	float(5,2)	Not Required		
	Units:	Degrees F	Range:	-999.99 - 999.99			
	Description:	Engine #1 Cylind	Engine #1 Cylinder Head Temperature (CHT) for cylinder #4				
	Example:	204.11					

132	Field:	eng_1_cht_5	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #1 Cylind	Engine #1 Cylinder Head Temperature (CHT) for cylinder #5					
	Example:	204.11						

133	Field:	eng_1_cht_6	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #1 Cylind	Engine #1 Cylinder Head Temperature (CHT) for cylinder #6					
	Example:	204.11						

134	Field:	eng_2_cht_1	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #2 Cylind	Engine #2 Cylinder Head Temperature (CHT) for cylinder #1					
	Example:	204.11						

135	Field:	eng_2_cht_2	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #2 Cylind	Engine #2 Cylinder Head Temperature (CHT) for cylinder #2					
	Example:	204.11						

136	Field:	eng_2_cht_3	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #2 Cylind	Engine #2 Cylinder Head Temperature (CHT) for cylinder #3					
	Example:	204.11						

137	Field:	eng_2_cht_4	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #2 Cylind	Engine #2 Cylinder Head Temperature (CHT) for cylinder #4					
	Example:	204.11						

138	Field:	eng_2_cht_5	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #2 Cylind	Engine #2 Cylinder Head Temperature (CHT) for cylinder #5					
	Example:	204.11						

139	Field:	eng_2_cht_6	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #2 Cylind	Engine #2 Cylinder Head Temperature (CHT) for cylinder #6					
	Example:	204.11						

140	Field:	eng_3_cht_1	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #3 Cylind	Engine #3 Cylinder Head Temperature (CHT) for cylinder #1					
	Example:	204.11						

141	Field:	eng_3_cht_2	Type:	float(5,2)	Not Required		
	Units:	Degrees F	Range:	-999.99 - 999.99			
	Description:	Engine #3 Cylinder Head Temperature (CHT) for cylinder #2					
	Example:	204.11					

142	Field:	eng_3_cht_3	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #3 Cylind	Engine #3 Cylinder Head Temperature (CHT) for cylinder #3					
	Example:	204.11						

143	Field:	eng_3_cht_4	Type:	float(5,2)	Not Required		
	Units:	Degrees F	Range:	-999.99 - 999.99			
	Description:	Engine #3 Cylinder Head Temperature (CHT) for cylinder #4					
	Example:	204.11					

144	Field:	eng_3_cht_5	Type:	float(5,2)	Not Required		
	Units:	Degrees F	Range:	-999.99 - 999.99			
	Description:	Engine #3 Cylinder Head Temperature (CHT) for cylinder #5					
	Example:	204.11					

145	Field:	eng_3_cht_6	Type:	float(5,2)	Not Required		
	Units:	Degrees F	Range:	-999.99 - 999.99			
	Description:	Engine #3 Cylinder Head Temperature (CHT) for cylinder #6					
	Example:	204.11					

146	Field:	eng_4_cht_1	Type:	float(5,2)	Not Required		
	Units:	Degrees F	Range:	-999.99 - 999.99			
	Description:	Engine #4 Cylinder Head Temperature (CHT) for cylinder #1					
	Example:	204.11					

147	Field:	eng_4_cht_2	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #4 Cylind	Engine #4 Cylinder Head Temperature (CHT) for cylinder #2					
	Example:	204.11						

148	Field:	eng_4_cht_3	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #4 Cylind	Engine #4 Cylinder Head Temperature (CHT) for cylinder #3					
	Example:	204.11						

149	Field:	eng_4_cht_4	Type:	float(5,2)	Not Required		
	Units:	Degrees F	Range:	-999.99 - 999.99			
	Description:	Engine #4 Cylinder Head Temperature (CHT) for cylinder #4					
	Example:	204.11					

150	Field:	eng_4_cht_5	Type:	float(5,2)	Not Required			
	Units:	Degrees F	Range:	-999.99 - 999.99				
	Description:	Engine #4 Cylind	Engine #4 Cylinder Head Temperature (CHT) for cylinder #5					
	Example:	204.11						

151	Field:	eng_4_cht_6	Type:	float(5,2)	Not Required		
	Units:	Degrees F	Range:	-999.99 - 999.99			
	Description:	Engine #4 Cylinder Head Temperature (CHT) for cylinder #6					
	Example:	204.11					

152	Field:	eng_1_egt_1	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #1 Exhau	Engine #1 Exhaust Gas Temperature (EGT) cylinder #1					
	Example:	200.31						

153	Field:	eng_1_egt_2	Type:	float(6,2)	Not Required		
	Units:	Degrees F	Range:	-9999.99 - 9999.99			
	Description:	Engine #1 Exhaust Gas Temperature (EGT) cylinder #2					
	Example:	200.31					

154	Field:	eng_1_egt_3	Type:	float(6,2)	Not Required
	Units:	Degrees F	Range:	-9999.99 - 9999.99	
	Description:	Engine #1 Exhau	st Gas Ter	nperature (EGT) cylin	der #3
	Example:	200.31			

155	Field:	eng_1_egt_4	Type:	float(6,2)	Not Required		
	Units:	Degrees F	Range:	-9999.99 - 9999.99			
	Description:	Engine #1 Exhau	Engine #1 Exhaust Gas Temperature (EGT) cylinder #4				
	Example:	200.31					

156	Field:	eng_1_egt_5	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #1 Exhau	Engine #1 Exhaust Gas Temperature (EGT) cylinder #5					
	Example:	200.31						

157	Field:	eng_1_egt_6	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #1 Exhau	Engine #1 Exhaust Gas Temperature (EGT) cylinder #6					
	Example:	200.31						

158	Field:	eng_2_egt_1	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #2 Exhau	Engine #2 Exhaust Gas Temperature (EGT) cylinder #1					
	Example:	200.31						

159	Field:	eng_2_egt_2	Type:	float(6,2)	Not Required		
	Units:	Degrees F	Range:	-9999.99 - 9999.99			
	Description:	Engine #2 Exhaust Gas Temperature (EGT) cylinder #2					
	Example:	200.31					

160	Field:	eng_2_egt_3	Type:	float(6,2)	Not Required		
	Units:	Degrees F	Range:	-9999.99 - 9999.99			
	Description:	Engine #2 Exhaust Gas Temperature (EGT) cylinder #3					
	Example:	200.31		-			

161	Field:	eng_2_egt_4	Type:	float(6,2)	Not Required		
	Units:	Degrees F	Range:	-9999.99 - 9999.99			
	Description:	Engine #2 Exhaust Gas Temperature (EGT) cylinder #4					
	Example:	200.31					

162	Field:	eng_2_egt_5	Type:	float(6,2)	Not Required
	Units:	Degrees F	Range:	-9999.99 - 9999.99	
	Description:	Engine #2 Exhau	st Gas Ter	nperature (EGT) cylin	der #5
	Example:	200.31			

163	Field:	eng_2_egt_6	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #2 Exhau	Engine #2 Exhaust Gas Temperature (EGT) cylinder #6					
	Example:	200.31						

164	Field:	eng_3_egt_1	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #3 Exhau	Engine #3 Exhaust Gas Temperature (EGT) cylinder #1					
	Example:	200.31						

165	Field:	eng_3_egt_2	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #3 Exhau	Engine #3 Exhaust Gas Temperature (EGT) cylinder #2					
	Example:	200.31						

166	Field:	eng_3_egt_3	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #3 Exhau	Engine #3 Exhaust Gas Temperature (EGT) cylinder #3					
	Example:	200.31						

167	Field:	eng_3_egt_4	Type:	float(6,2)	Not Required		
	Units:	Degrees F	Range:	-9999.99 - 9999.99			
	Description:	Engine #3 Exhaust Gas Temperature (EGT) cylinder #4					
	Example:	200.31					

168	Field:	eng_3_egt_5	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #3 Exhau	Engine #3 Exhaust Gas Temperature (EGT) cylinder #5					
	Example:	200.31		-				

169	Field:	eng_3_egt_6	Type:	float(6,2)	Not Required		
	Units:	Degrees F	Range:	-9999.99 - 9999.99			
	Description:	Engine #3 Exhaust Gas Temperature (EGT) cylinder #6					
	Example:	200.31					

170	Field:	eng_4_egt_1	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #4 Exhau	Engine #4 Exhaust Gas Temperature (EGT) cylinder #1					
	Example:	200.31						

171	Field:	eng_4_egt_2	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #4 Exhau	Engine #4 Exhaust Gas Temperature (EGT) cylinder #2					
	Example:	200.31						

172	Field:	eng_4_egt_3	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #4 Exhau	Engine #4 Exhaust Gas Temperature (EGT) cylinder #3					
	Example:	200.31						

173	Field:	eng_4_egt_4	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #4 Exhau	Engine #4 Exhaust Gas Temperature (EGT) cylinder #4					
	Example:	200.31						

174	Field:	eng_4_egt_5	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #4 Exhau	Engine #4 Exhaust Gas Temperature (EGT) cylinder #5					
	Example:	200.31						

175	Field:	eng_4_egt_6	Type:	float(6,2)	Not Required			
	Units:	Degrees F	Range:	-9999.99 - 9999.99				
	Description:	Engine #4 Exhau	Engine #4 Exhaust Gas Temperature (EGT) cylinder #6					
	Example:	200.31						

176	Field:	yaw_trim_surface_position	Type:	float(6,4)	Not
					Required
	Units:	Degrees	Range:	-99.9999 - 99.9999)
	Description:	Rudder trim surface position	n, negativ	e denotes left, posi	tive denotes
		right			
	Example:	-4.1092			

 177
 Field:
 roll_trim_surface_position
 Type:
 float(6,4)
 Not Required

 Units:
 Degrees
 Range:
 -99.99999 - 99.99999

 Description:
 Roll trim surface position, negative denotes left, positive denotes right

 Example:
 6.7884

178Field:brake_pressure_system_1Type:float(8,4)Not
RequiredUnits:psiRange:0 - 9999.9999Description:Brake pressure system #1--Example:74.2187--

179	Field:	brake_pressure_system_2	Type:	float(8,4)	Not Required
	Units: Description:	psi Brake pressure system #2	Range:	0 - 9999.9999	•
	Example:	74.2187			

180	Field:	brake_pressure_system_3	Type:	float(8,4)	Not Required
	Units:	psi	Range:	0 - 9999.9999	-
	Description:	Brake pressure system #3			
	Example:	74.2187			

181	Field:	brake_pedal_application_left	Type:	float(8,4)	Not Required
	Units:	Degrees	Range:	0 - 9999.9999	
	Description:	Left side brake pedal applicati	on.		
	Example:	22.1237			

182	Field:	brake_pedal_application_right	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	0 - 9999.9999	
	Description:	Right side brake pedal applicati	on.		
	Example:	22.1237			

183	Field:	sideslip_angle	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	-9999.9999 -	9999.9999
	Description:	Angle of sideslip as record	ded (not o	lerived), nega	tive denotes left,
		positive denotes right.			
	Example:	-2.1659			

184 Field: eng_1_bleed_valve_position Type: float(8,4)	Not
	Required
Units: Degrees Range: 0 - 9999.9999	
Description: Amount of opening in bleed valve, engine 1. 0 denotes fu	ally closed.
Example: 13.8772	

 185
 Field:
 eng_2_bleed_valve_position
 Type:
 float(8,4)
 Not Required

 Units:
 Degrees
 Range:
 0 - 9999.9999

 Description:
 Amount of opening in bleed valve, engine 2.
 0 denotes fully closed.

 Example:
 13.8772

186	Field:	eng_3_bleed_valve_position	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	0 - 9999.9999	
	Description:	Amount of opening in bleed v	alve, engi	ne 3. 0 denotes f	ully closed.
	Example:	13.8772			

187	Field:	eng_4_bleed_valve_position	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	0 - 9999.9999	
	Description:	Amount of opening in bleed v	alve, engi	ne 4. 0 denotes fu	ally closed.
	Example:	13.8772			

188	Field:	deicing_system_selection*	Type:	tinyint(2)	Not Required
	Units:	NA	Range:	0 - 99	_
	Description:	Selection of onboard de-icing.			
	Example:	3			

189	Field:	computed_cg	Type:	float(9,4)	Not
					Required
	Units:	Inches aft of datum	Range:	-99,999.9999	- 99,999.9999
	Description:	Computed CG as recorded	(not derive	d).	
	Example:	64.9992			

190	Field:	ac_bus_1_status	Type:	enum	Not
					Required
	Units:	NA	Range:	"powere	ed", "not powered"
	Description:	AC Bus #1 status.			
	Example:	powered			

191	Field:	ac_bus_2_status	Туре:	enum Not
	110100		- 5 POU	Required
	Units:	NA	Range:	"powered", "not powered"
	Description:	AC Bus #2 status.		
	Example:	powered		
192	Field:	ac_bus_3_status	Type:	enum Not
				Required
	Units:	NA	Range:	"powered", "not powered"
	Description:	AC Bus #3 status.		
	Example:	powered		
193	Field:	ac_bus_4_status	Type:	enum Not
				Required
	Units:	NA	Range:	"powered", "not powered"
	Description:			
	Example:	powered		
194	Field:	dc_bus_1_status	Type:	enum Not
			_	Required
	Units:	NA	Range:	"powered", "not powered"
	Description:			
	Example:	powered		
195	Field:	dc_bus_2_status	Type:	enum Not
				Required
	Units:	NA	Range:	"powered", "not powered"
	Description:			
	Example:	powered		
196	Field:	dc_bus_3_status	Type:	enum Not
				Required
	Units:	NA	Range:	"powered", "not powered"
	Description:	DC Bus #3 status.		
	Example:	powered		
197	Field:	dc_bus_4_status	Type:	enum Not
				Required
	Units:	NA	Range:	"powered", "not powered"
	Description:	DC Bus #4 status.		
	Example:	powered		

198	Field:	system_1_volts	Type:	float(5,2)	Not Required		
	Units:	Volts	Range:	0 - 999.99			
	Description:	Electrical system	Electrical system #1 voltage.				
	Example:	27.21					

199	Field:	system_2_volts	Type:	float(5,2)	Not Required
	Units:	Volts	Range:	0 - 999.99	
	Description:	Electrical system	#2 voltage		
	Example:	27.21			

200	Field:	system_1_amps	Type:	float(5,2)	Not Required
	Units:	Amps	Range:	0 - 999.99	
	Description:	Electrical system	#1 ampera	ige.	
	Example:	27.21			

201	Field:	system_2_amps	Type:	float(5,2)	Not Required			
	Units:	Amps	Range:	0 - 999.99				
	Description:	Electrical system	Electrical system 2 amperage.					
	Example:	27.21						

202	Field:	apu_bleed_valve_position	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	0 - 9999.9999	
	Description:	Amount of opening in APU b	leed valve	. 0 denotes fully	closed.
	Example:	13.8772			

203	Field:	hydraulic_1_pressure	Type:	float(8,4)	Not Required
	Units:	psi	Range:	0 - 9999.9999	Kequireu
	Description:	Hydraulic pressure system #1.	0		
	Example:	82.1117			

204	Field:	hydraulic_2_pressure	Type:	float(8,4)	Not
					Required
	Units:	psi	Range:	0 - 9999.9999	
	Description:	Hydraulic pressure system #2.			
	Example:	82.1117			

205	Field:	hydraulic_3_pressure	Type:	float(8,4)	Not Required
	Units:	psi	0	0 - 9999.9999	Kequireu
	Description:	Hydraulic pressure system #3.			
	Example:	82.1117			

206	Field:	hydraulic_4_pressure	Type:	float(8,4)	Not
					Required
	Units:	psi	Range:	0 - 9999.9999	
	Description:	Hydraulic pressure system #4.			
	Example:	82.1117			

207	Field:	loss_cabin_pressure	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Loss of cabin pressure indication	n.		
	Example:	no			

208	Field:	fms_failure	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	
	Description:	FMS failure detected.			
	Example:	no			

209	Field:	hud_status	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	•
	Description:	Heads-up display (HUD) status.			
	Example:	no			

210	Field:	synthetic_vision_display_status	Type:	enum	Not
					Required
	Units:	NA	Range:	"no", "yes"	
	Description:	Synthetic Vision System (SVS) s	Synthetic Vision System (SVS) status.		
	Example:	no			

211	Field:	paravisual_display_status	Type:	enum	Not Required
	Units:	NA	Range:	"no", "yes"	-
	Description:	Paravisual display status.			
	Example:	no			

212	Field:	pitch_trim_control_selection	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	-9999.9999 -	- 9999.9999
	Description:	Pitch trim selection from flip positive denotes up trim.	ght deck,	negative den	otes down trim,
	Example:	-3.1117			

213	Field:	roll_trim_control_selection	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	-9999.9999 -	9999.9999
	Description:	Roll trim selection from flight	deck, neg	ative denotes l	eft trim, positive
	_	denotes right trim.	-		-
	Example:	-1.2761			

214	Field:	yaw_trim_control_selection	n Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	-9999.9999 - 9	9999.9999
	Description:	Yaw trim selection from	flight deck,	negative deno	otes left trim,
		positive denotes right trim.			
	Example:	6.1276			

215	Field:	trailing_edge_flap_position	Type:	float(8,4)	Not		
					Required		
	Units:	Degrees	Range:	-9999.9999 - 9999	9.9999		
	Description:	Trailing edge device actual co	Trailing edge device actual control surface position.				
	Example:	6.1276					

216	Field:	leading_edge_flap_position	Type:	float(8,4)	Not	
					Required	
	Units:	Degrees	Range:	-9999.9999 -	9999.9999	
	Description:	Leading edge device actual control surface position.				
	Example:	6.1276				

217	Field:	spoiler_position	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	0 - 9999.9999	
	Description:	Spoiler actual control surface	position.		
	Example:	15.0081			
218	Field:	spoiler_selection	Type:	float(8,4)	Not
					Required
	Units:	Degrees	Range:	-9999.9999 - 9999.	9999
Description: Spolier selection from flight deck.					
	Example:	14.9823			

8.2 Appendix B

Table 1

Prefix	Name	Description	Freq	Deri	UAS
			(HZ)	ve	Unique?
General	Tick#	Internal bus clock	Varies	No	
	relativeHeight	Meters. Altitude above Home Point	10	No	
	absoluteHeight	Meters. Populated if the Home Point Elevation has been set.	200	Yes	
	flightTime	Milliseconds. Can be used to sync with .txt log files. I.e., HealthyDrones, DJI Go App, Litchi	10	No	
	gpsHealth	[0 -5] 5 is a measure of the FC's confidence in the lat, long coords that are computed from the GPS and IMU data	200	No	
	vpsHeight	Meters. Height from VPS sensor. Blank if VPS height isn't valid.	200	No	
	flyCState	Duplicate of flyCState field in the .txt file. Manual, Atti, Atti_CL, Atti_Hover, Hover, GPS_Blake, GPS_Atti, GPS_CL, GPS_HomeLock, GPS_HotPoint, AssitedTakeoff, AutoTakeoff, AutoLanding,AttiLangding,NaviGo, GoHome, ClickGo, Joystick, Atti_Limited, GPS_Atti_Limited, NaviMissionFollow, NaviSubMode_Tracking, NaviSubMode_Tracking, NaviSubMode_Pointing, PANO, Farming, FPV, SPORT, NOVICE, FORCE_LANDING, TERRAIN_TRACKING, NAVI_ADV_GOHOME, NAVI_ADV_LANDING, TRIPOD_GPS, TRACK_HEADLOCK, ASST_TAKEOFF, GENTLE_GPS,OTHER	10	No	Yes

flycCommand	AUTO_FLY, AUTO_LANDING, HOMEPOINT_NOW, HOMEPOINT_HOT, HOMEPOINT_LOC, GOHOME, START_MOTOR, STOP_MOTOR, Calibration, DeformProtecClose, DeformProtecOpen, DropGohome, DropTakeOff, DropLanding, DynamicHomePointOpen, DynamicHomePointClose, FollowFunctionOpen, FollowFunctionOpen, FollowFunctionClose, IOCOpen, IOCClose, DropCalibration, PackMode, UnPackMode, EnterManaualMode, StopDeform), DownDeform, UpDeform, ForceLanding, ForceLanding2, OTHER			Yes
flightAction	NONE, WARNING_POWER_GOHOME, WARNING_POWER_LANDING, SMART_POWER_GOHOME, SMART_POWER_LANDING, LOW_VOLTAGE_LANDING, LOW_VOLTAGE_GOHOME, SERIOUS_LOW_VOLTAGE_LANDIN G, RC_ONEKEY_GOHOME, RC_ASSISTANT_TAKEOFF, RC_AUTO_TAKEOFF, RC_AUTO_TAKEOFF, RC_AUTO_GOHOME, APP_AUTO_GOHOME, APP_AUTO_TAKEOFF, OUTOF_CONTROL_GOHOME, API_AUTO_TAKEOFF, API_AUTO_GOHOME, AVOID_GROUND_LANDING, AIRPORT_AVOID_LANDING, TOO_CLOSE_GOHOME_LANDING, TOO_FAR_GOHOME_LANDING, TOO_FAR_GOHOME_LANDING, GOHOME_FINISH, VERT_LOW_LIMIT_LANDING, BATTERY_FORCE_LANDING, MC_PROTECT_GOHOME	10	No	Yes
nonGPSCause	Duplicate of nonGPS_Cause field in the .txt file. A value other than	10	No	

		ALREADY means a "compass error". Other possible values are FORBIN, GPSNUM_NONENOUGH), GPS_HDOP_LARGE, GPS_POSITION_NONMATCH, SPEED_ERROR_LARGE, YAW_ERROR_LARGE, COMPASS_ERROR_LARGE, UNKNOWN			
	connectedToRC	Connected, NotConnected	10	No	Yes
	gpsUsed	True/False. GPS is used by FC to compute horizontal velocity	10	No	
	visionUsed	True/False. Vision system is used by FC to compute horizontal velocity	10	No	
IMU_ATTI(IMU#)	Longitude	degrees. Computed by the FC from GPS, Accelerometer, and Gyro data.Blank until valid.	200	No	
	Latitude		200	No	
	numSats				
	barometer:Raw	Meters. Raw data from barometer.	200	No	
	barometer:Smooth	Meters. Smoothed barometer data	200	No	
	accel: <axis></axis>	Meters/second. Acceleration along the X, Y and Z axes	200	No	
	accel:Composite	Meters/second. sqrt (accelX**2 + accelY**2 + accelZ**2)	200	Yes	
	gyro: <axis></axis>	Degrees/second. Rotation about the X, Y and Z axes	200	No	
	gyro:Composite	sqrt(gyroX**2 + gyroY**2 + gyroZ**2)	200	Yes	
	mag: <axis></axis>		50	No	
	mag:Mod	sqrt(magX**2 + magY**2 +magZ**2)	50	Yes	
	Vel: <north, east,<br="">Down></north,>	Meters/second. Velocity North, East, Down	200	No	
	velComposite	Meters/sec. Velocity. Sqrt(velN*velN + velE*velE +velD*velD)	200	Yes	
	velH	Meters/sec. Horizontal velocity. Sqrt(velN*velN + velE*velE)	200	Yes	

GPS-H	Meters/second. Difference between velocity computed from successive GPS coordinates and horizontal velocity computed from IMU sensors(Vel:Horizontal).	200	Yes
quat <w,x, y,="" z=""></w,x,>	Quaternion	200	No
roll	Degrees. Note, the yaw value will be corrected for geomagnetic declination after GPS data is valid. I.e. Yaw will be true and not magnetic.	200	Yes
pitch		200	Yes
yaw		200	Yes
yaw360	Degrees. Range 0 -360.	200	Yes
totalGyro: <axis></axis>	Degrees. Integration and summation of Gyro: <axis>. Can be used to compute Gyro:<axis> error. Also useful for checking roll, pitch, and yaw values coming from Flight Controller.</axis></axis>	200	Yes
magYaw	Yaw value computed from magnetometers and corrected with pitch and roll. Not the same as Yaw which comes from the Flight Controller.	200	Yes
Yaw-magYaw		200	Yes
distanceHP		200	Yes
distanceTravelled	Meters. Computed from successive latitude/longitude coordintes	1	Yes
directionOfTravel[mag]	Degrees. Range = [-180,180]. Computed from successive latitude/longitude coordinates. Not corrected with local geomagnetic declination. I.e. value can be compared against P3 yaw.	1	Yes
directionOfTravel[true]	Degrees. Range = [-180,180]. Computed from successive latitude/longitude coordinates. Corrected with local geomagnetic declination. I.e. value can not be compared against P3 yaw.	1	Yes
temperature	IMU temp. Steady state = 65 C	200	No
ag_ <axis></axis>		200	No

	gb_ <axis></axis>		200	No	
Battery	lowVoltage	lowVoltage warning; 1 = warning, 0 = normal	1	No	
	status	OK, NotReady, Commerror, VolVeryLow, VolNotSafe	1	No	
Battery(Batt#)	cellVolts <cell#></cell#>		1	No	
	current		1	No	
	totalVolts		1	Yes	
	Temp	Celcius	1	No	
	battery%				
	FullChargeCap	Battery Full Charge Capacity	1	No	Yes
	RemainingCap	Battery Remaining Capacity	1	No	Yes
	voltSpread	maximum cell voltage - minimum cell voltage	1	Yes	
	watts		1	Yes	
	minCurrent	Minimum Current since Battery On	1	Yes	Yes
	maxCurrent	Maximum Current since Battery On	1	Yes	Yes
	avgCurrent	Average Current since Battery On	1	Yes	Yes
	minVolts	Minimum totalVolts since Battery On	1	Yes	Yes
	maxVolts	Maximum totalVolts since Battery On	1	Yes	Yes
	avgVolts	Average totalVolts since Battery On	1	Yes	Yes
	minWatts	MinimumWatts since Battery On	1	Yes	Yes
	maxWatts	Maximum Watts since Battery On	1	Yes	Yes
	avgWatts	Average Watts since Battery On	1	Yes	Yes
BattInfo	Vol		50	No	
	Current		50	No	
	remainingTime		50	No	Yes
	CellVol		50	No	Yes
	LowVolThreshold		50	No	Yes
	BatVol		50	No	

	BatCurrent		50	No	
	FullChargeCap		50	No	
	Remaining%		50	No	
	BatTemp		50	No	
	BatDataCnt		50	No	
	OriginalCap		50	No	
	Ad_v		50	No	
	r_time		50	No	
	AvgCurrent		50	No	
	vol_t		50	No	
	Pack_ve		50	No	
	RemainingCap		50	No	
	Temp		50	No	
	right		50	No	
	l_cell		50	No	Yes
	dyna_cnt		50	No	
	FullCap		50	No	
	out_ctl		50	No	
	out_ctl_f		50	No	
SMART_BATT	goHome%	percentage at which a go home will be requested	1	No	Yes
	land%	percentage at which landing will be requested	1	No	Yes
	goHomeTime	time at which a go home will be requested	1	No	Yes
	landTime	time at which landing will be requested	1	No	Yes
	voltage%	current battery percentage			
	Status	OK, NotReady, Commerror, VolVeryLow, VolNotSafe	1	No	Yes
	GHStatus	None, GoHome, GoHomeAlready	1	No	Yes
Controller	gpsLevel	Same as General:gpsHealth. Useful when looking at a tablet .DAT	50	No	

	ctrl_level	Unknown, maybe a gpsHealth for the RC	50	No	
GPS(gps#)	Long	Degrees. May not be valid if DOP is large.	5	No	
	Lat	Degrees. May not be valid if DOP is large.	5	No	
	Date	Integer that contains date, e.g. 20171003 means 2017-10-03 GMT	5	No	
	Time	Integer that contains time, e.g. 100334 means 10:03:34 GMT	5	No	
	dateTime	DateTime in ISO-8601 format. Not available in CsvView	5	No	
	heightMSL	Meters, Height above mean sea level	5	No	
	hDOP	Horizontal dilution of precision. Units unknown.	5	No	
	pDOP	Position dilution of precision. Units unknown.	5	No	
	sAcc	Some kind of accuracy measure.			
	numGPS	Number of GPS satellites	5	No	
	numGLNAS	Number of GLONAS satellites	5	No	
	numSV	Total number of satellites	5	No	
	vel: <north, east,<br="">Down></north,>	Meters/second. Velocity North, East, Down	200	No	
НР	Longitude	Coordinates of Home Point. Obtained from eventLog. Altitude is set by A/C to be 20 meters higher than the barometric altitude.	N/A	No	Yes
	Latitude		N/A	No	Yes
	Altitude		N/A	No	Yes
	rthHeight	meters	N/A	No	Yes
IMUEX(imu#)	vo_v <axis></axis>		200		
	vo_p <axis></axis>		200		
	us_v		200		
	us_p		200		

	vo_flag_Navi		200	
	cnt		200	
	rtk_Longitude		200	
	rtk_Latitude		200	
	rtk_Alti		200	
	err	None, SPEED_LARGE_ERROR, GPS_YAW_ERROR, MAG_YAW_ERROR, GPS_CONSIST_ERROR, US_FAIL_ERROR	200	
Motor	Speed: <motor></motor>	Actual Motor Speed. RPM.	50	No
	EscTemp: <motor></motor>	ESC temperature, not motor temperature	50	No
	PPMrecv: <motor></motor>		50	No
	V_out: <motor></motor>		50	No
	Volts: <motor></motor>		50	No
	Current: <motor></motor>		50	No
	Status: <motor></motor>	0 = Normal, other values unknown	50	No
	PPMsend: <motor></motor>			
	thrustAngle	Degrees. Computed from motor speeds. Direction the A/C is being pushed by the motors. Relative to the A/C, not the inertial frame.	200	Yes
MotorCtrl	Status	0 = Normal, other values unknown	50	No
	PWM: <motor></motor>	Pulse Width Modulation. Can be used to determine commanded motor speed. Range 0 - 100%	50	No
MotorPwrCalcs	Volts:Avg: <motor></motor>		50	Yes
	Volts:Avg:All		50	Yes
	Current:Avg: <motor></motor>		50	Yes
	Current:Avg:All		50	Yes
	Watts:Avg: <motor></motor>		50	Yes
	Watts:Avg:All		50	Yes
	WattSecs: <motor></motor>		50	Yes

WattSecs:All		50	Yes
WattSecs/Dist: <motor ></motor 		50	Yes
WattSecs/Dist:All		50	Yes
WattSecs/TotalDist:< motor>		50	Yes
WattSecs/TotalDist:All		50	Yes
Watts/VelH: <motor></motor>		50	Yes
Watts/VelH:All		50	Yes
Watts/VeID: <motor></motor>		50	Yes
Watts/VelD:All		50	Yes
vel <axis></axis>		10	No
pos <axis></axis>		10	No
hoverPointUncertainty 1		10	No
hoverPointUncertainty 2		10	No
hoverPointUncertainty 3		10	No
hoverPointUncertainty 4		10	No
hoverPointUncertainty 5		10	No
hoverPointUncertainty 6		10	No
velocityUncertainty1		10	No
velocityUncertainty2		10	No
velocityUncertainty3		10	No
velocityUncertainty4		10	No
velocityUncertainty5		10	No
velocityUncertainty6		10	No
height		10	No
heightUncertainty		10	No
avoidObst		10	No
emergBrake	Off, On	50	No

OA

	radiusLimit		10	No
	airportLimit		10	No
	groundForceLanding		10	No
	horizNearBoundary		10	No
	vertLowLimit		10	No
	vertAirportLimit		10	No
	roofLimit		10	No
	hitGroundLimit		10	No
	frontDistance		10	No
RC	Aileron	Range [-10000, 10000] Neutral = 0. Stick left or down = -10000. Stick right or up = 10000.	50	No
	Elevator		50	No
	Rudder		50	No
	Throttle		50	No
	ModeSwitch	P, Sport	50	No
	sigStrength	Percentage based on the number of valid frames per unit time. I.e., not an RF measurement.	50	Yes
	failSafe	Hover, Landing, GoHome, Unknown	50	No
	dataLost	"", lost	50	No
	appLost	"", lost	50	No
	connected	Connected, Disconnected	50	No
InertialOnlyCalcs(i mu#)	Vel: <north, east,<br="">Down></north,>	Meters/sec^2. Velocity	200	Yes
	Pos: <north, east,<br="">Down></north,>	Meters. Position relative to HP.	200	Yes
	ag: <north, east,<br="">Down></north,>	Meters/sec^2. Acceleration relative to ground.	200	Yes
	aB: <north, east,<br="">Down></north,>	Meters/sec^2. Acceleration relative to AC.	200	Yes
	getVelN() - vgX	Difference between velocity computed by IMU and velocity computed here	200	Yes
	getVE() - vgY		200	Yes

	getVd() - vgZ		200	Yes
Mag(mag#)	<axis></axis>	Magnetometer values for each group of magnetometers. The AC uses just one group at a time with group 0 being the default.	50	No
	Mod		50	Yes
	magYaw		50	Yes
	Yaw-magYaw		50	Yes
	raw <axis></axis>	Raw magnetometer data. See the eventLog stream for the scale and bias values used to compute the above values.	50	No
	rawMod		50	Yes
AirComp	AirSpeedBody:X	These fields aren't fully understood.	5	No
	AirSpeedBody:Y		5	No
	Alti		5	No
	VelNorm		5	No
	VelTime:1		5	No
	VelTime:2		5	No
	VelLevel		5	No
	WindSpeed		5	No
	Wind:X		5	No
	Wind:Y		5	No
	MotorSpeed		5	No
	WindHeading	Computed from some of above values.	5	Yes
	WindMagnitude		5	Yes
	WindMagnitude:2		5	Yes
AirCraftCondition	int_fsm		50	No
	last_fsm		50	No
	UP_state		50	No
	safe_fltr		50	No
	launch_acc_dur		50	No

launch_free_fall_dur	50	No
launch_free_fall_delta	50	No
_v		
thrust	50	No
gyro	50	No
land_dur_press	50	No
land_dur_sonic	50	No
thrust_body	50	No
thrust_gnd	50	No
thrust_gnd_compen	50	No
safe_tilt_raw	50	No
sat_timer	50	No
fsmState	50	No
landState	50	No
UP_acc_t	50	No
UP_TF_t	50	No
craft_flight_mode	50	No
launch_acc_duration	50	No
launch_delta_v	50	No
launch_state	50	No
thrust_proj_gnd	50	No
thrust_proj_gnd_com pen	50	No
thrust_compensator	50	No
hover_thrust	50	No
dynamic_thrust	50	No
cos_safe_tilt	50	No
safe_tilt	50	No
nearGround	50	No
gyro_acc	50	No
land_dur	50	No

Table 2

Name	Description	Freq (HZ)	Derived	UAS Unique
tickNo	P3 internal bus clock	600	No	
offSetTime	See User Manual	200	Yes	
longitude	degrees. Converted from radians	200	No	
latitude	degrees. Converted from radians	200	No	
numSats	Number of Satellites	N/A	No	
gpsHealth	0 - 5. 5 is best condition.	N/A	No	
baroRaw	Meters. Raw data from barometer.	50	No	
baroAlt	Meters. Smoothed barometer data	200	No	
vpsHeight	Meters. Height from VPS sensor. Blank if VPS height isn't valid (generally > 3 meters above ground)	200	No	
accelX	Meters/second. Acceleration along the X, Y and Z axes	200	No	
accelY		200	No	
accelZ		200	No	
accel	Meters/second. sqrt (accelX**2 + accelY**2 + accelZ**2)	200	Yes	
gyroX	Degrees/second. Rotation about the X, Y			
	and Z axes	200	No	
gyroY		200	No	
gyroZ		200	No	
gyro	sqrt(gyroX**2 + gyroY**2 + gyroZ**2)	200	Yes	
errorX	Precise description unknown. Probably an error term representing the difference between the measured and predicted orientation	200	No	
errorY		200	No	
errorZ		200	No	
error	sqrt (errorX**2 + errorY**2 +errorZ**2)	200	Yes	
choi		200	103	

magX		50	No
magY		50	No
magZ		50	No
magMod	sqrt(magX**2 + magY**2 +magZ**2)	50	Yes
quatW	Quaternion. The orientation of the P3. QuatW is the scalar. (QuatX, QuatY, QuatZ) is the vector part. See https://en.wikipedia.org/wiki/Quaternion	200	No
quatX		200	No
quatY		200	No
quatZ		200	No
Roll	Degrees. Computed from the Quaternion above. Note, the yaw value appears to be corrected for geomagnetic declination; I.e. yaw is true and not magnetic.	200	Yes
Pitch		200	Yes
Yaw		200	Yes
Yaw360	Degrees. Range 0 -360.	200	Yes
totalGyroZ	Degrees. Integration and summation of gyroZ . Can be used to compute gyroZ drift.	200	Yes
magYaw	Yaw value computed from magnetometers and corrected with pitch and roll. Not the same as Yaw which comes from the Flight Controller.	200	Yes
thrustAngle	Degrees. Computed from motor speeds. Direction the A/C is being pushed by the motors. Relative to the A/C, not the inertial frame.	200	Yes
velN	Meters/second. Velocity North, East,		
	Down	200	No
velE		200	No
velD		200	No
vel	Meters/sec. Speed. Sqrt(velN*velN + velE*velE +velD*velD)	200	Yes
velH	Meters/sec. Horizontal speed. Sqrt(velN*velN + velE*velE)	200	Yes

velGPS-velH	Meters/second. Difference between velocity computed from successive GPS coordinates and velocity computed from IMU sensors(velH).	200	Yes	
homePointLongitude	Coordinates of Home Point. Obtained from eventLog. Altitude is set by A/C to be 20 meters higher than the barometric			Yes
	altitude.	N/A	No	
homePointLatitude		N/A	No	Yes
homePointAltitude		N/A	No	Yes
geoMagDeclination	degrees	N/A	Yes	Yes
geoMagInclination	degrees. Down is positive, up is negative	N/A	Yes	Yes
distanceHP	Meters. Distance from Home Point	200	No	Yes
distanceTraveled	Meters. Computed from successive latitude/longitude coordintes	1	Yes	Yes
relativeHeight	Meters. Altitude above Home Point	10	No	Yes
flightTime	Milliseconds. Can be used to synch with .txt log files. I.e., HealthyDrones, DJI Go App, Litchi	10	No	
directionOfTravel	Degrees. Range = [-180,180]. Computed from successive latitude/longitude coordinates. Corrected with local geomagnetic declination. I.e. value can be compared against P3 yaw.	1	Yes	
directionOfTravelTrue	Degrees. Range = [-180,180]. Computed from successive latitude/longitude coordinates. Not corrected with local geomagnetic declination. I.e. value can not be compared against P3 yaw.	1	Yes	
Control:Aileron	Range [-10000, 10000] Neutral = 0. Stick left or down = -10000. Stick right or up = 10000.	50	No	
Control:Elevator		50	No	
Control:Throttle		50	No	
Control:Rudder		50	No	
Control:ModeSwitch	2=P, 1=A, 0=F, 4 = remote control switched off	50	No	

flightMode	Derived from eventLog. Deprecated, use flyCState below. 1 = ATTI, 2 = GPS_ATTI. Removed in version 2.2.8 and later	N/A		Yes
flightMode.string				
flightRegime	Derived from eventLog. Deprecated, use flyCState below. 1 = engineStart, 2 = asstTakeOff, 3 = autoTakeOff, 4 = autoLanding. Removed in version 2.2.8 and later	N/A		Yes
flightRegime.string				
navMode	Derived from eventLog. Deprecated, use flyCState below. 1 = goHome, 2 = waypoint, 3 = folowMe, 4 = hotPoint. Removed in version 2.2.8 and later	N/A		Yes
navMode.string				
flyCState	Duplicate of flyCState field in the .txt file. Manual(0), Atti(1), Atti_CL(2), Atti_Hover(3), Hover(4), GPS_Blake(5), GPS_Atti(6), GPS_CL(7), GPS_HomeLock(8), GPS_HotPoint(9), AssitedTakeoff(10), AutoTakeoff(11), AutoLanding(12), AttiLangding(13), NaviGo(14), GoHome(15), ClickGo(16), Joystick(17), Atti_Limited(23), GPS_Atti_Limited(24), Follow_Me(25),OTHER(100);		10	Νο
flyCState:String				
nonGPSCause	Duplicate of nonGPS_Cause field in the .txt file. ALREADY(0), FORBIN(1), GPSNUM_NONENOUGH(2), GPS_HDOP_LARGE(3), GPS_POSITION_NONMATCH(4), SPEED_ERROR_LARGE(5), YAW_ERROR_LARGE(6), COMPASS_ERROR_LARGE(7), UNKNOWN(8);		10	No
nonGPSCause:String				

DW flyCState	Dashware helper. Maps values in flyCState to a different set of values. Manual(1), Atti(2), Atti_CL(3), Atti_Hover(4), Hover(5), GPS_Blake(6), GPS_Atti(7), GPS_CL(8), GPS_HomeLock(9), GPS_HotPoint(20), AssitedTakeoff(30), AutoTakeoff(40), AutoLanding(50), AttiLangding(60), NaviGo(70), GoHome(80), ClickGo(90), Joystick(200), Atti_Limited(300), GPS_Atti_Limited(400), Follow_Me(500),OTHER(600);	10	Yes
connectedToRC	0 = not connected, 1 = connected	10	No

Current	Amps		1	No
Volt1	Cell voltages. Volt5 and Volt6 will be blank unless the A/C is an Inspire.		1	No
Volt2			1	No
Volt3			1	No
Volt4			1	No
Volt5			1	No
Volt6			1	No
totalVolts			1	No
voltSpread	maximum cell voltage - minimum cell voltage		1	No
Watts	toltalVolts * Current		1	Yes
minCurrent	Minimum Current since Battery On		1	Yes
maxCurrent	Maximum Current since Battery On		1	Yes
avgCurrent	Average Current since Battery On		1	Yes
minVolts	Minimum totalVolts since Battery On		1	Yes
maxVolts	Maximum totalVoltssince Battery On		1	Yes
avgVolts	Average totalVolts since Battery On		1	Yes
minWatts	MinimumWatts since Battery On		1	Yes
maxWatts	Maximum Watts since Battery On		1	Yes
avgWatts	Average Watts since Battery On		1	Yes
batteryTemp	Celcius		1	No
ratedCapacity	maH	N/A		No

remainingCapacity	maH		1	No	
percentageCapacity			1	No	
percentageVolts			1	No	
batteryStatus	UserBatteryReqGoHome(1), UserBatteryReqLand(2), SmartBatteryReqGoHome(4), SmartBatteryReqLand(8), MainVoltageLowGoHOme(16), MainVoltageLowLand(32), BatteryCellError(64), BatteryCellError(64), BatteryCommunicateError(128), VoltageLowNeedLand(256), BatteryTempVoltageLow(512), BatteryTempVoltageLow(512), BatteryNotReady(1024), BatteryFirstChargeNotFull(2048), BatteryLimitOutputMax(4096), BatteryDangerous(8192), BatteryDangerousWarning(16384)		1	Νο	Yes
batteryGoHomeStatus	NON_GOHOME(0), GOHOME(1), GOHOME_ALREADY(2)		1	No	Yes
batteryGoHome	percentage at which a go home will be requested by the smart battery		1	No	Yes
usefulTime	seconds		1	No	Yes
batteryCycles		N/A		No	
batteryLife		N/A		No	
batteryBarCode	Bar Code visible on battery	N/A		No	
MotorCmnd:RFront	Commanded Motor Speed. Range 0 - 10000.		50	No	
MotorCmnd:LFront			50	No	
MotorCmnd:LBack			50	No	
MotorCmnd:Rback			50	No	
MotorSpeed:RFront	Actual Motor Speed. RPM. Blank for P3 Standard which doesn't report motor speed.		50	No	
MotorSpeed:LFront			50	No	
			50	No	
MotorSpeed:Rback			50	No	
MotorLoad:RFront	Motor Load. Blank for P3 Standard which doesn't report motor loads.		50	No	

MotorLoad:LFront	50	No
MotorLoad:LBack	50	No
MotorLoad:Rback	50	No

Gimbal:Roll	Degrees. Orientation of gimbal with respect to P3. I.e. not absolute		
	orientation	50	No
Gimbal:Pitch		50	No
Gimbal:Yaw		50	No
Gimbal:XRoll	Degrees. Related to Gimbal and A/C		
	orientation. Precise relationship unknown	50	No
Gimbal:XPitch		50	No
Gimbal:XYaw		50	No
tabletLongitude	Degrees. Non blank only during a Follow		
	Me mission using the DJO Go App	15	No
tabletLatitude		15	No

Table 3

Data Architecture of Telemetry Recording Files for Yuneec Platforms

Prefix	Name	Description	Format	Derive	UAS Unique
Teleme try	Date / Time	Date / time including milliseconds	JJJJMMTT hh:mm:ss:zzz; poor=>2s; reasonable=600ms-2s	No	
	fsk_rssi	Received Signal Strength Indication from copter's receiver	dBm, poor=>85, reasonable=70-85, good=55-70, very good<55	suppos ed	Yes
	voltage	Voltage off light accu	V	No	
	current	Current of flight accu, if sensor available (not for Q500 or Typhoon H)	dA	suppos ed for H920	
	altitude	Ascent relative to starting point	m	No	
	latitude	Latitude - GPS coordinates of copter	decimal degrees	No	

longitude	Longitude - GPS coordinates of copter	decimal degrees	No	
tas	True Air Speed, Speed of the aircraft, computed from GPS coordinates I guess. So it is groundspeed, not really TAS	m/s	No	
gps_used	GPS usage (true/false)	boolean	No	
fix_type	GPS Fix Type	?	?	
satelites_num	Number of detected satellites	number	No	
roll	Roll	*	suppos ed	
yaw	Gier	*	suppos ed	
pitch	Nick	*	suppos ed	
motor_status	Motor Status, bitwise. Motor numbers according to the picture in the GUI		suppos ed	
imu_status	IMU Status (intertial meassurement unit)	bits	suppos ed	
gps_status	GPS unit status	bits	suppos ed	
cgps_used	C-GPS (unknown meaning)	?		
press_compass _status	Sensor Status (Barometer/Magnetometer)	bits	suppos ed	
f_mode	Code for different flight modes	code	No	
gps_pos_used	GPS position used (true, false)	boolean	No	
vehicle_type	Copter Type	1=Yunnec H920 2=Yuneec Q500 3=Blade 350QX 4=Blade Chroma (380QZ) 5=Yuneec Typhoon H	No Yes	;

error_flags1

Error flags, sum bitwise

0=ERROR_FLAG_VOLTAGE_ No WARNING1 1=ERROR_FLAG_VOLTAGE_ WARNING2 2=ERROR_FLAG_MOTOR_F AILSAFE_MODE 3=ERROR_FLAG_COMPLET E_MOTOR_ESC_FAILURE 4=ERROR_FLAG_HIGH_TE MPERATURE_WARNING 5=ERROR_FLAG_COMPASS _CALIBRATION_WARNING 6=ERROR_FLAG_FLYAWAY _CHECKER_WARNING 7=ERROR_FLAG_AIRPORT_ WARNING

	gps_accH	Horicontal GPS accuracy. Seems to be HDOP	HDOP, poor=>2.5, reasonable=1.8-2.5, good=1-1.8, very good=<1	suppos ed
Remote GPS	Date / Time	Date / Time including miliseconds	JJJJMMTT hh:mm:ss:zzz	No
	lon	Longitude - GPS coordinates of ground station	decimal degrees	No
	lat	Latitude - GPS coordinates of ground station	decimal degrees	No
	alt	Height from GPS relative to sea level	m	suppos ed
	accuracy	Accuracy of GPS	?	
	speed	Speed, unknown source (maybe computed from GPS coordinates, unknown unit	?	
	angle	Angle of moving direction to north	*	suppos ed

Remote	Date / Time		Date / Time including miliseconds	JJJJMMTT hh:mm:ss:zzz	No	
	СНО		Channel 1: J1 throttle/ascent (thr)	0=Motor start/stop (B3) 2048=neutral	No	
	CH1		Channel 2: J4 roll (ail)	2048=neautral	No	
	CH2		Channel 3: J3 nick (ele)	2048=neautral	No	
	CH3		Channel 4: J2 yaw (rud)	2048=neautral	No	
	CH4		Channel 5: S4 Flight mode	3412=Smart 2048=Angle 683=RTH	No	
	CH5		Channel 6: A02 - RTH	2048=neutral 4095=RTH	No	Yes
	CH6		Channel 7: K2 Camera Tilt	683=horizontal (0 deg) 3413=vertical down (-90 deg)	No	Yes
	CH7		Channel 8: K1 Camera pan		No	Yes
	CH8		Channel 9: S1 Gimbal Tilt Mode	A=2184, V=3412	No	
	СН9		Channel 10: S2 Gimbal Pan Mode	F=683, Center=1502, G=3412	suppos ed	
	CH10		Channel 11: S5 Landegestell	0.0=up 1.0=down	No	
	CH11		Channel 12: A08			
	CH12		Channel 13: A09			
	CH13		Channel 14: A10			
	CH14		Channel 15: A11			
	CH15		Channel 16: A12			
	CH16		Channel 17: A13			
	CH17		Channel 18: A14			
	CH18		Channel 19: A15			
	CH19		Channel 20: A16			
	CH20		Channel 21: A17			
	CH21		Channel 22: A18			
	CH22		Channel 23: A19			
	CH23		Channel 24: A20			
f_mode		0	FMODE_BLUE_SOLID	Stability mode (Blue Solid)		
		1	FMODE_BLUE_FLASHING	Blue flashing		

2	FMODE_BLUE_WOULD_BE_SO LID_NO_GPS	Blue, no GPS
3	FMODE_PURPLE_SOLID	Angle mode (Purple solid)
4	FMODE_PURPLE_FLASHING	Purple flashing
5	FMODE_PURPLE_WOULD_BE_S OLID_NO_GPS	Angle mode (Purple solid) - no GPS
6	FMODE_SMART	Smart mode
7	FMODE_SMART_BUT_NO_GPS	Smart mode - no GPS
8	FMODE_MOTORS_STARTING	Motor starting
9	FMODE_TEMP_CALIB	Temperature calibration
10	FMODE_PRESS_CALIB	Pressure calibration
11	FMODE_ACCELBIAS_CALI	Accelerator calibration
12	FMODE_EMERGENCY_KILLED	Emergency/killed
13	FMODE_GO_HOME	RTH coming
14	FMODE_LANDING	RTH landing
15	FMODE_BINDING	Binding
16	FMODE_READY_TO_START	Initializing, Ready to start
17	FMODE_WAITING_FOR_RC	Waiting for RC
18	FMODE_MAG_CALIB	Magnetometer calibration
19	FMODE_UNKNOWN	Unknown mode
20	FMODE_RATE	Agility mode (Rate)
21	FMODE_FOLLOW	Smart mode - follow me
22	FMODE_FOLLOW_NO_GPS	Smart mode - follow me - no GPS
23	FMODE_CAMERA_TRACKING	Smart mode - camera Yes tracking
24	FMODE_CAMERA_TRACKING_ NO_GPS	Camera tracking - no GPS Yes
26	FMODE_TASK_CCC	Task Curve Cable Cam
27	FMODE_TASK_JOUR	Task Journey
28	FMODE_TASK_POI	Task Point of Interest
29	FMODE_TASK_ORBIT	Task Orbit
32		Indoor Positioning System