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the contents or use thereof. The U.S. Government does not endorse products or manufac-
turers. Trade or manufacturers’ names appear herein solely because they are considered
essential to the objective of this report. The findings and conclusions in this report are those
of the author(s) and do not necessarily represent the views of the funding agency. This
document does not constitute FAA policy. Consult the FAA sponsoring organization listed
on the Technical Documentation page as to its use.
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Legal Disclaimer

The information provided herein may include content supplied by third parties. Although
the data and information contained herein have been produced or processed from sources
believed to be reliable, the Federal Aviation Administration makes no warranty, expressed
or implied, regarding the accuracy, adequacy, completeness, legality, reliability or usefulness
of any information, conclusions or recommendations provided herein. Distribution of the
information contained herein does not constitute an endorsement or warranty of the data or
information provided herein by the Federal Aviation Administration or the U.S. Department
of Transportation. Neither the Federal Aviation Administration nor the U.S. Department
of Transportation shall be held liable for any improper or incorrect use of the information
contained herein and assumes no responsibility for anyone’s use of the information. The
Federal Aviation Administration and U.S. Department of Transportation shall not be liable
for any claim for any loss, harm, or other damages arising from access to or use of data or
information, including without limitation any direct, indirect, incidental, exemplary, special
or consequential damages, even if advised of the possibility of such damages. The Federal
Aviation Administration shall not be liable to anyone for any decision made or action taken,
or not taken, in reliance on the information contained herein.
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Executive Summary

Commercial and public safety Unmanned Aircraft Systems (UASs) are currently limited
by the 14 Code of Federal Regulations (CFR) Part 107.205 prohibition on operating multiple
aircraft by one person. The public as well as UAS commercial operations in applications, such
as package delivery, precision agriculture, crop and wildlife monitoring, emergency manage-
ment, and infrastructure inspections will benefit from modification to this prohibition. The
FAA-ASSURE study that this literature review supports will help to inform FAA regulations
and industry standards addressing single pilot and multi-UAS operations. This literature
review is designed to inform ASSURE researchers and FAA sponsors of the findings from
published studies and to identify research gaps.

The research team reviewed approximately 100 manuscripts. Previous works mostly fo-
cused on Human-in-the-loop (HITL) studies, with an emphasis on human factors limitations
for operating and monitoring multiple sUAS conducting surveillance, reconnaissance, target
detection/classification, and/or search missions. To evaluate the effect on the operator, these
studies used performance measures, including target detection rate and response times as
well as subjective measures including perceived workload, trust in autonomy, and situation
awareness. Some of the studies evaluated levels of autonomy needed for different tasks and
others explored the effects of static (remain at the same level) or adjustable autonomy based
on operator workload or performance.

Perhaps one of the biggest findings is how little research is available on the factors, effects,
and their interactions regarding the control of multiple UAS across different phases of flight
(takeoff, departure, enroute, mission, arrival, landing and ground operations). Some other
research gaps include the effects of different levels of education and training of crew roles
(including the operator in command); the minimum crew roles necessary for different types
of operations, and the implications of system autonomy; climate; airspace; type of aircraft
(fixed-wing, rotorcraft, hybrid); communication reliability; task/mission composition; the
physical multiple UAS system composition; and more.

The ASSURE research team will begin to improve understanding of these factors by
modeling loosely coupled tasks where multiple vehicles conduct independent tasks (e.g.,
drone package delivery). This effort will demonstrate and provide a better understanding of
the factors affecting a single operator’s safe control of multiple UAS as well as the interactions
and relationships between the key components. Additionally, researchers plan to conduct a
small HITL study (on-campus UAS delivery) to demonstrate, further understand, and/or
validate some of the modeling findings.

It is expected that this project will generate even more questions that will need to be
resolved before the FAA is able to institute substantial regulations and guidelines. However,
by the end of this project researchers and the FAA will have a much clearer understanding
of what further insight is needed to safely allow multiple UAS operations in the nation’s
airspace.
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1 Introduction

Commercial and public safety UAS are currently limited by the Part 107.205, which
prohibits operating multiple aircraft by one person. A modification to Part 107.205 will
benefit the public as well as UAS commercial operations in applications such as package
delivery, precision agriculture, crop and wildlife monitoring, emergency management, and
infrastructure inspections. The study that this literature review supports will help to inform
FAA regulations and industry standards addressing single pilot and multi-UAS operations.
This literature review is designed to (1) inform ASSURE researchers and FAA sponsors on
findings from published studies and (2) identify research gaps that are outside the scope of
this project but need further study in order to safely integrate multiple UAS operations into
the National Airspace System (NAS).

2 Literature Identification

The identification of the relevant literature related to the pilot proficiency requirements
for a single pilot conducting multiple unmanned aircraft systems (multi-UAS) operations
required identifying appropriate search terminology, as shown in Table 1. The search terms
focused on the type of vehicle (the UAS terms), on multiple vehicles (the group terms), and
on the human operator serving as the supervisor (the interaction terms).

Table 1: Literature review search terms by category.

UAS Group Interaction
Autonomous micro air vehicle Cooperative Human-autonomy teaming
Remotely piloted aircraft Coordinating Human-robot teaming
Remotely piloted vehicle Distributed Human-swarm interaction
Uninhabited air vehicle Multi Multiple robot control
Unmanned aerial system Multiple Multiple robot control
Unmanned aerial vehicle Swarm Multi-robot coalition
Unmanned aircraft Multi-robot teams

The manuscripts were required to meet explicit review criteria. The basic criteria required
manuscripts written in English that appeared in peer reviewed or high quality sources be-
tween 2010 and 2020. Manuscripts were excluded if they did not provide sufficient detail
(e.g., lacked a detailed experimental methodology) or contained errors (e.g., inconsistent
results). The manuscript evaluations were required to focus on operator performance; thus,
those the failed to do so for any reason, including not reporting experimental results related
to operator performance, were excluded. Manuscripts were also excluded if the mission or
task focus was not relevant, such as the operator not directly controlling or supervising UAS.

The most relevant literature sources focus on human factors and robotics sources. A
summary of the publication sources for the included manuscripts is provided in Table 2.

2
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Table 2: Manuscript sources

Publication Count
Cyber-Physical Systems 1
Ergonomics 2
Frontiers in Psychology 1
Human Factors 8
IEEE Transactions on Human-Machine Systems 1
IEEE/RSJ International Conference on Intelligent Robots and Systems 1
International Journal of Human-Computer Interaction 1
International Journal of Human-Computer Studies 1
Journal of Cognitive Engineering and Decision Making 6
Journal of Experimental Psychology, Applied 1
Proceedings of the Human Factors and Ergonomics Society Annual Meeting 30
Theoretical Issues in Ergonomics Science 2

3 Review Results

This section highlights the findings of the reviewed manuscripts. The findings are orga-
nized to help inform regulations and research gaps for multi-UAS control. The first subsec-
tion addresses the methodological approaches employed in the studies to help to identify the
fidelity of the work. The second subsection highlights the types of evaluation measures uti-
lized in the reviewed literature, including characterizing them as objective or subjective and
whether they can help to measure aviation safety, pilot capability, efficiency, and productiv-
ity. The third subsection addresses a set of results related to operator characteristics that
can help to define requirements for training and pilot certification, followed by a subsection
specifically focusing on training interventions for multi-UAS control. The fifth subsection
addresses missions and associated task characteristics that can inform research related pro-
cedures as well as scenario definition. The system and aircraft characteristics that can help
to characterize the generalizability of the work with respect to architecture and sUAS het-
erogeneity is reviewed. The term “multi” can range from two to many; thus, the seventh
subsection addresses aircraft group characteristics. As multi-UAS control may employ high
levels of autonomy on the aircraft as well as within the control station, the eighth subsection
focuses on autonomy and human-autonomy teaming, while the final subsection addresses
control station characteristics.

3.1 Methodological approaches

Considering different methodological approaches provides higher quality information and
yields results that are more generalizable to the project’s goals. For example, field tests in
mission relevant contexts provide more directly applicable results than experiments in which
the UAS’ behaviors are emulated, called Wizard of Oz experiments. The vast majority of
the included manuscripts were human-in-the-loop studies conducted using simulations that
incorporate partial sets of operator required tasks, as shown in Table 3.

3
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Table 3: Methodological approaches.

Type Count
HITL 50
Computational Model 2
Design 1
Interview 1
Operational concept document 1

3.2 Evaluation measures

Gathering information that can inform regulations with respect to the pilot proficiency
and training requirements, procedures, and control station requirements and guidelines for
multi-UAS control requires understanding relevant evaluation measures, also called depen-
dent measures. Such measures need to support the assessment of aviation safety, pilot
capability, efficiency, and productivity [1]. The reviewed evaluations encompass a range of
dependent measures related to human performance, where some were mission specific.

Many of the evaluations addressed accuracy [2–26] and related signal detection measures,
including detection or hit rate, correct rejection rate, false alarms, sensitivity, and response
bias [21, 26, 27]. Only three evaluations addressed safety: vehicle to vehicle damage and
vehicle to hazard damage [28], UAS loss [20], and time of safety violation condition [10]. As
operators may employ a speed-accuracy tradeoff, several evaluations considered efficiency
measures including response or task completion time [3–7,10–12,17–20,29–36].

The evaluations predominately incorporated subjective performance and usability mea-
sures. The most frequent measure was perceived workload measured via NASA-TLX [37]
(i.e., [2, 7, 8, 11, 13–16, 23, 25, 26, 28, 30, 32–36, 38–43]) and other common measurements
[4–6,9,29,44,45]. A few evaluations employed related workload measures, such as perceived
task difficulty [3, 4, 6, 17,29,39] and level of busyness [9, 44,46].

A set of measures related to trust in, and usage of the autonomy were used. Trust in
autonomy was measured in some studies [5, 6, 9, 12, 29, 33] using variants of Jian, Bisantz,
Drury’s [47] trust scale, while other studies [7, 11, 28, 30, 42] used other instruments. Ad-
ditional, subjective trust measures assessed compliance with the autonomy [24, 25, 28, 48],
reliance on the automation [12,14,15,24,48], competence, faith in the system and perceived
reliability [24,30], among others.

Situation awareness was the third most common measure, where common subjective
tools were used. The different situation awareness methods included SA Global Assessment
Technique (SAGAT) [49] (e.g., [30]), SA Rating Technique (SART) [50] (e.g., [11, 42, 45])
and other types of queries (e.g., [2, 7, 26, 43]). Some evaluations did not specify the exact
situation awareness assessment method (e.g., [4–6,29,44]).

Design and usability measures were employed to address algorithm parameters and dis-
play design. Calhoun and colleagues used adequacy of autonomy feedback [6, 29, 44] and
impact of autonomy on performance [5, 6, 29, 44]. Specific usability measures included per-
ceived overall usability [33, 36, 40, 51], ease of use [7, 23, 52], preference [17, 22, 27, 36], in-
teraction modality [8] and comfort [52]. Different types of self assessment measures were
considered, including perceived task performance/accuracy [3, 5, 6, 9, 17, 22, 29, 44, 46], sub-
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jective task certainty [22], perceived speed [17], self-confidence [9, 11, 22, 23, 46], perceived
understanding [22], and perceived responsibility for accurate performance [23].

While subjective measurement of relevant human factors issues can provide useful in-
sight into general task perceptions, the over-reliance on subjective assessments of human
factors poses a pressing challenge to effective evaluation of pilot needs in multi-UAS con-
trol. For example, while subjective workload measures like the NASA-TLX often correlate
with overall perceptions of a task, the fact that such assessment takes place post-hoc (i.e.,
after task completion) and is temporally decoupled from explicit task components, makes
it especially difficult to appreciate with any confidence what task components specifically
drive any changes in such measures. In other words, while it is possible to detect higher
degrees of workload, it is often very difficult to determine exactly what specific aspect of the
task or environment may be driving the increases, which is naturally important for workflow
optimization. This is perhaps endemic of a common disconnect observed in the literature;
studies often fail to simultaneously measure objective task performance (i.e., mission time,
errors) measures concurrently with subjective measurements, like trust in autonomy, situ-
ational awareness or even perceived competency/efficacy. The omission of more objective
performance criteria makes it difficult to appreciate how subjective perceptions conceptually
link to, and inform, actual task completion, which becomes especially problematic when con-
sidering normal individual differences in operator performance. Without the ability to anchor
subjective assessments to objective differences in performance, it becomes nearly impossible
to determine whether any differences in these subjective estimates are (1) a function of user
competency, or (2) driven by other more broad reactions to the task environment. Further,
given the very performance driven nature of multi-UAS domains (e.g., package delivery), it
seems necessary to capture objective aspects of task performance so that implementation of
regulatory guidance can be validated more consistently.

3.3 Operator characteristics

The requirements for training and pilot certification for multi-UAS operation are under-
studied. The types of individuals who will be ideal for multi-UAS operations in domains,
such as package delivery, may differ significantly from current UAS operators engaged in do-
mains, such as homeland security. Thus, developing multi-UAS systems’ regulations for pilot
proficiency and training requires considering a range of operator characteristics and associ-
ated measures. This section’s findings are related to these characteristics, where performance
may be enhanced or diminished due to individual differences.

3.3.1 Pilot experience demographics

Obtaining a remote pilot certification for a single UAS requires knowledge evaluated per
the requirements in 14 CFR Part 107.73 [53]. An open research question is whether remote
pilots of multi-UAS require the same level of piloting knowledge, less knowledge, or a different
set of knowledge. Two evaluations mentioned unmanned vehicle experience: one reported
participants with UAS experience [10]; another reported some robotics experience [22].

Generally, the multi-UAS HITLs particpants did not have 14 CFR Part 107.73 certifi-
cation, nor any piloting or other related aviation experience. Participants were frequently

5
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students [2,8,11,14–16,18–21,24,25,27,31,33–35,38,41,46,54–56], or were reported as either
having no pilot experience [44] or their experience was unspecified [7,9,12,36,48]. Additional
manuscripts reported participants with no robot control experience [13,26,32,43], computer
users [28], or having various backgrounds with no unmanned aircraft experience [30]. Even
when the participant pools were composed of military affiliated personnel, they reported no
piloting experience [5, 6, 17,23,45], with the exception of [3].

As the minimum automation requirement for the vehicles as well as the operator control
station are undefined, it continues to be unclear what piloting experience multi-UAS opera-
tors require. The proficiency requirements may be related to a large number of factors, thus,
it will be important to determine whether the current literature findings with the current
set of participants are relevant.

3.3.2 Gender differences

The FAA predicts that the growth in the commercial UAS sector will continue [57].
Females held only 6.8% (10,818) of the 160,302 remote pilot certificates in 2019, [58]. It
is unclear whether this trend will continue and whether any potential changes in gender
demographics will impact the sector.

Each study tends to include more male participants. Only 43 studies reported partici-
pants’ gender, of which only 2 were gender balanced and 28 included more male than female
participants. Relatively few studies analyzed the influence of gender with respect to multi-
UAS control. Video game experience and gender were investigated as predictors of stress
and performance [14] in an evaluation that explored the effect of workload and Level of
Autonomy (LOA) on participants’ performance using a simulated multi-UAS supervisory
control station. Gender differences were not evident when the analysis was controlled for
gaming experience.

An important consideration is whether the FAA and industry need to be actively working
to increase the number of females seeking remote pilot certificates. Further, analysis of such
systems by the research community to ensure more balanced participant pools that will
accurately reflect the anticipated workforce pools.

3.3.3 Video game experience

Video game experience is often presumed to positively influence the ability to successfully
complete tasks for multi-UAS and/or multi-vehicle control. Experienced gamers have been
found to have better visuospatial attention skills than pilots, but have similar aircraft control
skills [59]. Additional results, by Spence and Feng’s [60], indicate that playing action games
can impact sensory, perceptual, and attentional abilities, which are important for many
spatial cognition tasks and likely multi-UAS control as well.

Generally, individuals with video game experience exhibit better performance and situa-
tion awareness (SA) in multi-vehicle control experiments. The participants tend to provide
better subjective measures, such as perceiving lower workload and trusting the autonomy
more, particularly in higher taskload environments. For example, Chen and Barnes [7] in-
vestigated participants supervising a team of ground robots with autonomy of varying relia-
bility levels. Video gaming experience was associated with overall multitasking performance.

6
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When supported by an autonomous system, frequent video game players had significantly
better perceived SA than infrequent gamers. Also frequent video gamers’ subjective workload
assessments were significantly lower than those of infrequent gamers.

Performance benefits were identified based on video game experience for a three vehicle
convoy mission [26], where gamers had higher SA scores than non-gamers. Additionally,
non-gamers had a liberal response bias (i.e., more likely to respond that there was a target
during a target detection task). This difference in decision strategy, as a function of video
game experience warrants further investigation as non-gamers may be compensating for their
lack of spatial awareness or experience.

Surveillance will be a common multi-UAS task. Video gaming expertise was correlated
with performance for a surveillance task (weapon release) [14]. First-person shooter game
experience predicted post-task engagement. Participants with more action game and first-
person shooter game experience were more accurate, relied more on the autonomy, and
exhibited less task neglect. Those participants with video game experience also trusted the
autonomy more during higher task load conditions, and experienced lower stress and worry.

A multi-unmanned experimental vehicle planning task was used to examine the level of
information necessary to create an effective and transparent interface that supports human-
agent teaming [33]. The results showed that gamers did have faster response times, but this
was confounded with other demographics.

Video game experience appears to play an important role in operator performance and
while this is an important finding, a gap is identifying the unique aspects of gaming expe-
rience that may benefit future multi-UAS operators. Open questions include: do gamers
possess unique individual differences and what can future operators learn via training that
permits them to be as proficient as gamers?

3.3.4 Spatial ability

In aviation, spatial awareness impacts safety as human operators need to consider the
relative locations of objects in the environment [61]. Thus, high spatial awareness may be a
critical differentiator for the selection of multi-UAS system pilots.

Multi-vehicle control researchers found benefits for individuals with better spatial abil-
ity scores as measured using tests, such as the Cube Comparison Test [62] and the Spatial
Orientation Test [63]. Participants with higher spatial ability detected more targets when
using robots with varying autonomous navigation reliability levels. Participants with bet-
ter spatial ability also interacted more with the video feed interface than participants with
lower spatial ability [7], which may indicate more effective scanning performance or capacity
to consider additional visual information. While supervising a three-vehicle convoy, where
autonomy fully supported the vehicle spacing task and partially supported route planning,
participants with higher spatial ability maintained higher SA than those with low spatial
ability [26]. Autonomy was able to raise the performance of participants with lower spa-
tial ability. The autonomy assistance helped participants with low spatial ability improve
their SA. The lower spatial ability participants also increased their sensitivity in the target
detection task with the additional autonomous support.

Spatial ability is tied to better performance for tasks relevant to multi-UAS operations;
however, autonomous capabilities will raise the performance floor for those with lower spatial

7
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ability. Thus, two considerations are warranted: 1) selection of personnel based on spatial
ability and 2) the autonomy requirements necessary to support personnel with lower spatial
ability.

3.3.5 Working memory

Working memory capacity can predict performance in many complex tasks, which may
provide guidance when selecting operators for multi-UAS systems. It is well established
across domains that working memory capacity (WMC) reflects differences in the capacity to
control attention with both automatic and controlled processes [64]. The reviewed literature
indicates benefits of higher WMC for multi-vehicle control. de Visser, Shaw, Mohamed-
Ameen, and Parasuraman [31] studied working memory differences as impacted by the effects
of taskload and relevant message traffic for single-human/multi-UAS system performance.
WMC was measured using Operation Span (OSPAN) [65], which showed that eight vehicles
can be monitored relatively successfully, albeit less so in higher taskload conditions.

An investigation of participants engaged in a multi-unmanned experimental vehicle plan-
ning task examined the level of information necessary to create an effective and transparent
interface to support human-agent teaming [33]. Participants completed the OSPAN task [66]
to measure WMC, and those with higher WMC had the best performance with respect to
autonomy usage with the low transparency interface.

Panganiban and Matthews [41] conducted a study where the goal was to supervise three
or six UAss to search for as many targets as possible while avoiding hazardous regions.
The participants also updated a set of information held in working memory, such as a
letter (Letter Memory task) or a word (Keep Track task). Participants received neutral or
negative feedback regarding their performance. The ability for executive functioning, which
is a critical component of WMC, was measured using inhibition, switching, and updating
to predict UAS operator performance and subjective state under stress [41]. High letter
memory was associated with better performance as measured by the command ratio (total
number of target engagements divided by the number of target assignments) regardless of
taskload.

Better team working memory scores were associated with superior team performance
when taskload and the reliability of an autonomous decision aid’s message traffic was ma-
nipulated using a multi-UAS simulation for an air defense task [54]. Thus, a participant’s
working memory, even when considered in combination with another team member, can
enhance overall human-system performance for a supervisory control task.

Given the multi-tasking nature of multi-UAS control, further investigation is required
regarding the impact of working memory capacity on operator selection criteria for multi-
UAS systems. Control station information requirements and display design recommendations
need to consider how to reduce the need for superior working memory capacity.

3.3.6 Perceived attentional control and directed attention

Attentional control helps to avoid distraction and is, therefore, critical to supporting
multi-tasking. Few multi-UAS control studies address participants’ perceived attentional
control (PAC). The reviewed literature showed that participants with higher PAC measured

8
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using tests, such as the Attentional Control Survey [67], exhibited better overall multi-tasking
performance.

Participants using autonomy with low reliability, who also had low attentional control,
appeared to be unable to allocate as much attention to all parts of the tasking environ-
ment [7]. While performing an automated route editing task, participants with high PAC
outperformed those with lower PAC during the low reliability miss prone autonomy condi-
tion. This result may indicate differences in the ability to detect changes, a topic addressed
by Kidwell, Calhoun, Ruff and Parasuraman [44], Riggs and Sarter (2016) [27], and Riggs
and Sarter (2019) [21].

A study that incorporated differing levels of autonomy when managing a three-vehicle
convoy found that participants with lower attentional control experienced higher perceived
workload than those with higher attentional control [26]. The lower attentional control
participants also exhibited a liberal response bias in the target detection task, perhaps com-
pensating for being overloaded. This interaction of individual differences and individual
decision strategies/response bias warrants investigation.

The over-use of autonomy in supervisory control systems can induce boredom, thus,
Mkrtchyan, Macbeth, Solovey, Ryan, and Cummings [46] investigated cyclical attention
switching strategies in low task load scenarios. This study determined that boredom prone-
ness [68] was not a major factor affecting participants’ performance. However, an intervention
with alerts and task switching was developed. The interventions supported sustain directed
attention when an operator is controlling multiple UASs. However, while the alerts were
found to support distracted operators for a considerable amount of time, they may be un-
able to sustain directed attention in operators for prolonged periods. This result may impact
control station design and help to characterize the need for personalized alerting schemes.

There are well known issues associated with divided attention. Thus, the multi-UAS
control station requirements need to consider specification of information elements. Further,
the recommended design guidance needs to address attentional demand to ensure that it
does not overburden this cognitive system.

3.3.7 Vigilance

Vigilance (i.e., the need to focus attention over prolonged periods of time), and associated
vigilance decrements (i.e., any performance decline due to having to complete a task over
time) are important topics with regard to supervisory control tasks. Fatigue, one of the
causes of vigilance decrements, has been an issue in aviation for traditional manned pilots and
UAS crew members for decades [69–72]. High levels of fatigue can lead to task disengagement
in addition to vigilance decrements. The introduction of autonomy can impact fatigue,
as evidenced by Neubauer and colleagues’ findings with driving tasks [73]. The required
autonomy necessary for multi-UAS control will likely have direct implications on operator
fatigue and vigilance decrements.

Recent studies that aimed to examine sustained performance and fatigue in multi-UAS
tasks required participants to maintain performance for more than thirty minutes [24, 25].
The vigilance decrements were greater for a more difficult surveillance (vigilance) task, es-
pecially when the autonomy was less reliable. However, with low reliability, participants’
performance was stable for close to 45 minutes. Performance recovered near the end of
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the two-hour session, perhaps due to a motivational factor of anticipating the end of the
experimental session. The delayed onset of the vigilance decrement is promising for UAS
surveillance tasks and needs to replicated in a more ecologically valid environment.

Managing vigilance and fatigue levels represent important factors in the design of multi-
UAS control stations, and the scheduling of operators.

3.3.8 Stress

Prolonged performance of demanding vigilance tasks is hypothesized to tap attentional
resources leading to an increase in extreme stress, or distress [74]. Distress may lead oper-
ators to rely more on decision support tools and related autonomy. Thus, researchers have
investigated how stress can impact supervisory control of multiple UAS.

Participants engaged with a multi-task UAS simulation where two surveillance tasks
were of higher priority and supported by autonomy [15]. Higher task demands impaired
participants’ surveillance task accuracy, increased neglect, while elevating stress and per-
ceived workload. High demands increased task engagement in conscientious participants,
and yielded higher correlations between stress and lower task accuracy as well as between
task engagement and lower neglect. Distress correlated negatively with dependence on au-
tonomy, perhaps because integrating the autonomy’s recommendation created an additional
task demand [75]. Neuroticism was positively correlated with distress, where those with
higher neuroticism achieved higher accuracy for the more demanding surveillance task while
under high task demand.

Two evaluations investigated the relationship between dispositional worry, metacogni-
tion, resilience, and stress responses when operating multiple UASs for reconnaissance and
surveillance tasks [41] [16]. Traits associated with resilience predicted subjective and physi-
ological responses to negative feedback and cognitive demand stressors in a simulation with
two and six UASs. Worry traits, such as meta-worry, were generally associated with higher
levels of situational stress, whereas hardiness and grit appeared to be protective. The Anx-
ious Thoughts Inventory [76] measures were generally associated with higher state worry.

It is unclear how the impact of stress will change as the number of vehicles increases.
These studies incorporated a very small number of vehicles, especially relative to the number
of vehicles an operator is predicted to supervise in some domains, such as package delivery.
The implications of multi-UAS task characteristics on operator stress will be important
considerations for the development of effective UAS autonomy and control stations.

3.3.9 Resilience

There has been limited research with respect to psychological traits of perseverance for
multi-UAS applications. It is unclear whether the various challenges of UAS operation
and traits for resilience predict objective performance as well as subjective responses. A
simulator-based study found that assessment and prediction of resilience may be useful for
assessment in training programs and evaluation of fitness to cope with stress in the mission
context [16]. The results showed that hardiness and grit correlated negatively with the
Anxious Thoughts Inventory worry scales, which indicates that maladaptive metacognitive
style may impair development of a resilient personality.
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The literature lacks reliable and repeatable measures of resilience. The development of
such measures is needed in order to better characterize what impacts resilience and can
realistically be assessed, particularly in relation to the impacts on operator performance for
multi-UAS systems.

3.3.10 Culture

As the UAS industry grows, operator demographics will likely shift to include a broader
set of individuals from more diverse cultures. There have been few cross-cultural studies
in the multi-UAS control domain. Chien and colleagues [28] investigated the effects of
transparency, by culture, with respect to readiness to trust autonomy, and the degree of
transparency required to use an autonomous path planner. Using participants from different
cultures, the experiment varied transparency and the degree of autonomy, while assessing
the willingness to use systems with high degrees of autonomy. Participants from a face
culture (i.e., where one’s dignity and prestige is derived in terms of one’s social relationships
[77]) exhibited bias by accepting recommendations from the autonomy, whereas those from
dignity (i.e., one’s self-worth is derived internally) and honor (i.e., self-worth is dependent
on interactions with others and one’s perception of self) cultures were less likely to trust or
accept recommendations on this basis.

As more autonomy is incorporated into unmanned aircraft and their associated ground
control stations, it is prudent to include participants from different cultures who may exhibit
a range of responses with respect to autonomous system behaviors. Also, few training
interventions exist that consider cross-cultural issues, which may be important for ensuring
good training outcomes.

3.4 Training

The literature includes few studies focused on training for multi-UAS control. The need
for additional research regarding redesigning training to accommodate new task requirements
in the presence of increased autonomy has been noted [10]. The authors investigated the
impact of including or removing control device training. The experimental design considered
combinations of the presence or absence of unreliable automated target recognition (ATR)
autonomy that assisted with imagery search tasks and skill-based training for using a track-
ball: a) Skill-based (trackball training) with ATR, b) Skill-based (trackball training) without
ATR, and c) ATR without skill-based training. Participants with no ATR autonomy panned
and zoomed more to find targets than those who used the ATR autonomy. Thus, the impact
of the device training may manifest as a critical factor for operator performance. The lack of
skill-based training with the control device did not affect the target search time. However,
what device training needs to be required for autonomous, or partially autonomous tasks is
an open question.

There is an increasing need for the FAA to standardize training requirements [78]; how-
ever, the only existing training knowledge requirements for single UAS control are specified
in 14 CFR Part 107.73 [53]. Studies that investigate the trade-offs between training, addi-
tional autonomous capabilities for the UAS and in the control station, as well as fundamental
control station design are warranted.
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3.5 Mission and associated task characteristics

Researchers have considered missions and associated UAS tasks [79–90]. However, as
described in the final ASSURE A10 project report for Tasks PC-1 through PC-3 [91], there
are no common operational procedures for UAS pilots operating single UAS larger than 55
pounds. This finding is also true for multi-UAS control of small UAS. Original equipment
manufacturers provide inconsistent operational procedures that are unique to their UAS.

A few common multi-UAS mission scenarios were identified: surveillance, reconnaissance,
target detection/classification, and search. Kancler and Malek [92] interviewed subject mat-
ter experts (SMEs) that focused on intelligence, surveillance and reconnaissance missions in
order to better understand current sUAS missions, capabilities, and expected payloads (e.g.,
sensor or weapon).

There is limited research focused on providing the operation with ground robot and UAS-
based perspectives when controlling multi-UAS. However, some researchers have investigated
soldiers controlling a suite of air and ground vehicles. Oron-Gilad and colleagues [39, 40]
found that participants benefited from the detailed information provided by the ground
vehicles. That is, the presence of the UAS imagery perspective alone was not as helpful for
the operator and when the terrain was more open, the operators gained more information
from adding the unmanned ground vehicle feed [39].

Future UAS tasks may require vehicles to transition from the NAS to indoor, non-NAS
environments. Search tasks [42], such as for law enforcement, will require such NAS to non-
NAS to NAS transitions. These transitions will impact the UAS’ control and potentially
communication link connectivity.

Most of the literature focused on missions composed of multiple tasks. For example,
surveillance oriented missions often required the operator, often supported by autonomy,
to allocate vehicle specific new imaging tasks, re-route vehicles in response to hazards or
new task demands, as well as conduct image analysis and target detection. Some tasks,
such as monitoring and responding to chat, were manual. The UAS completed some tasks
independently in many cases, but in other cases, the operator and UAS were required to
coordinate [93].

The research to date is helpful, but there is no comprehensive set of task analyses that
have been conducted in order to support and better understand the demands of multi-UAS
missions. The interplay of the number of aircraft, the range of tasks, and the type of
autonomy and decision support need to be addressed and considered in a holistic manner.

3.6 System architecture and aircraft characteristics

The FAA develops system architecture and aircraft related regulations to ensure public
safety and the safety and efficiency of the United State’s national airspace. For example,
the final remote identification of unmanned aircraft rule [94] recently modified the 14 CFR
§107 rule and the final rule for operation of sUAS over people [95] recently modified the
14 CFR Part 107 requirements by including provisions for operations at night. These final
rules mandated equipment, UAS design and production, and other requirements relevant
to system architecture and aircraft characteristics. Similarly, additional system and aircraft
related regulations may also be required for multi-UAS operations.
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Most of the reviewed HITLs used simulations that did not model realistic aircraft control
and dynamics, nor did they include algorithms and displays validated in field studies. The
one exception is provided by Clare, Cummings, and Repenning [9]. The on-board planning
system for unmanned vehicles Supporting Expeditionary Reconnaissance and Surveillance
[96] was the computer simulation. These decision support displays allowed participants to
operate small unmanned air and ground vehicles in real time [97].

The predominate simulation based evaluations do not provide high degrees of ecological
validity and the necessary generalizability needed for real world multi-UAS applications. The
aircraft, the control stations, the associated autonomous capabilities, and the environments
have been idealized.

3.7 Aircraft group characteristics

CFR 14 Part 107 does not restrict the types of sUAS an individual can fly. Multi-UAS
systems may be composed of homogeneous vehicles or may be heterogeneous. Heteroge-
neous multi-UAS systems may incorporate combinations of fixed winged and multi-rotor
UAS models, UAS with differing sensor and actuator payloads, as well as combinations
of propulsion types from different manufacturers. Heterogeneous systems, irrespective of
aircraft performance may add significant additional complexity to the operator’s tasks.

The simulated vehicle types in the reviewed HITLs included single UAS, homogeneous
groups of UASs, unmanned ground vehicle systems, computer agents, simulated spaceships
groups, as well as heterogeneous groups composed of three different vehicle types (one study
used a UAS, unmanned ground vehicle and manned ground vehicle, while another incorpo-
rated a humanoid robot, sUAS and an unmanned ground vehicle), and an unmanned ground
vehicle and UAS pair. The group sizes span from 2 to 20 vehicles. Some of the studies did
not address the unmanned systems control, but rather focused on their video feeds.

Seven manuscripts included explicit changes to the number of agents supervised, either
between trials or during a trial. Moacdieh, Devlin, Jundi, and Riggs [19] studied the effects of
workload transitions that were gradual and sudden. Participants simultaneously controlled
and managed three to five UASs, 13-16 UASs, or a number of UASs that transitioned between
the lower and higher group sizes. The response time during the target detection task was
shorter and detection accuracy was higher with the lower number (3-5) of UASs.

Operator performance for two adaptable autonomy configurations was evaluated by re-
quiring participants to control one, two, three or four ground robots in a search and ex-
ploration mission [55]. The control modes were teleoperation, shared-control (operator sets
a target point that the robot tries to reach it autonomously), and full autonomy (robot
navigates autonomously, trying to maximize the explored area). The participants tended
to use different control modes when supervising different numbers of robots. Participants
almost always used the teleoperation mode when working with one robot, but relied primar-
ily on shared control and sending parameters sequentially when working with three or four
unmanned ground vehicles. Better mission performance was achieved with three robots.

Chen and Barnes [7] manipulated the number of ground robots (four and eight robots)
in order to understand the effects of autonomy reliability (false alarm vs. miss prone) on
multitasking performance. Participants detected fewer targets, had poorer SA, and reported
higher perceived workload when completing the tasks with eight robots compared with four.
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During the miss prone condition, participants had lower detection rates, but better situation
awareness scores, than during the false-alarm prone condition. The latter result was due to
more frequent map scanning during the miss prone condition.

The effects of autonomy reliability and adaptive autonomy on human-system perfor-
mance for different taskload levels were examined [11]. Participants supervised heteroge-
neous groups: a) two experimental unmanned vehicles and one UAS or b) four experimental
unmanned vehicles and two UASs. Autonomy reliability varied from 30% (low) to 70%
(medium) to 100% (high) during the autonomous target recognition (ATR) task. A signifi-
cant interaction existed between reliability and taskload. During the medium reliability con-
dition, target detections increased as taskload increased, but detections decreased as taskload
increased when using the low reliability ATR. An important finding is that taskload, or span
of control, can be influenced due to other factors, not simply the number of UASs. These
other factors can include mission type, task difficulty task-to-robot ratio, and autonomy
reliability.

It was infeasible to make inferences about the number of vehicles for two evaluations in
the multi-vehicle domain, because other parameters changed with the number of vehicles.
Panganiban and Matthews [41] investigated whether measures (inhibition, switching, and
updating) of executive functioning predict UAS operator performance and subjective state
under stress in a simulated multi-UAS task environment. There were either a) 3 UASs, 8
hazards, randomly expiring initial targets (between 60-90 seconds), and new targets that
expired after 60 seconds or b) there were 6 UASs, 14 hazards, and short target expiration
times, 45-60 seconds for initial targets and 45 second for subsequent targets. Command Ratio
appeared sensitive to individual differences in executive functioning. An additional evalu-
ation investigated the relationship between dispositional worry, metacognition, resilience,
and stress responses when operating multiple UASs for reconnaissance and surveillance [16].
Using a similar design, there were either a) two UASs, 9 hazards, 14 targets, targets that
expired after 60 seconds, and hazards that expired after 5 seconds or b) there were 6 UASs,
14 hazards, 18 targets, targets (45 seconds expiration), and hazards (5 seconds expiration).
Higher taskload significantly increased distress, situational uncontrollability, and subjective
workload).

A varying number of cyber assets were used to investigate human performance and cog-
nitive outcomes [45]. Participants controlled 4, 8, 12 or 16 computer agents using a set of
commands, to monitor the progress and state of varying missions, and communicate with
a mission commander to obtain permission to execute restricted commands. Participants
struggled with the task independent of the number of agents, including the lowest level, 4.
It is unclear if a performance increase with a smaller number of agents exists, given the
evaluation design.

These evaluations demonstrate that researchers tend to not systematically investigate
varying the number of UASs. Additionally, few evaluations systematically investigate the
effect of a mixed fleet of sUAS. The reviewed manuscripts make clear the importance of
studying group size in the context of other factors.
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3.8 Autonomy, human-autonomy teams, and human-autonomy
interaction

Researchers have studied crew and staffing requirements in unmanned operations, but
less so with respect to envisioned multi-UAS applications and related UAS autonomy [98].
It is noted that 14 CFR Part 107 mentions operator roles, such as the remote pilot and
“the person manipulating the flight controls of the small UAS,”, but these roles are not
inclusive of all the anticipated operator roles for multi-UAS control. Multi-UAS systems
that incorporate more than a very small number of UAS will necessarily incorporate greater
use of autonomous flight control and navigation and higher levels of autonomy. The remote
pilot will serve in a more supervisory role. As such, “the person manipulating the flight
controls of the small UAS” will either be a) the remote pilot, b) the autonomy, or c) both.
For example, sUAS flying in close proximity may employ cooperative methods to maintain
separation autonomously without human oversight.

While there is a significant body of research addressing different autonomous functions,
associated level of autonomy, and human-autonomy related measures (see for example [33,
47, 51, 75, 99–131]), there are currently few manuscripts that specifically address multi-UAS
control.

3.8.1 Human-robot team configuration

The overall organization and composition of the human-multi UAS team will be an
important consideration for pilot proficiency requirements [132]. The span of more traditional
human-robot interaction roles, from teleoperator to supervisor, will have to be considered
for multi-UAS system integration into the national airspace. Further, new roles are likely to
arise that will be domain specific or domain agnostic.

An important consideration for multi-UAS systems will be a question of whether the
assignment of UAS operators to operational tasks will be fixed, or whether such responsibil-
ities change based on scheduling or other contexts. A team-based approach to multi-UAS
control using a shared pool of operators, based on call centers, was investigated [13,32]. The
approach incorporated a queue to allocate vehicles to a shared pool of operators. The hy-
pothesis was that this approach better used operators and managed workload; however, this
strategy did not provide performance benefits over a dedicated assignment of operators. The
assigned-robot condition operators planned paths and controlled 12 robots each. The diffu-
sion of responsibility for the shared operator pool actually led to performance decrements.
For example, when robots were not clearly addressed by one operator, the another did not
automatically supervise it. It appears that multi-UAS systems that incorporate teams of
operators require more specifically constrained roles and responsibilities.

This work elucidates the need to investigate assignment strategies as well as the nec-
essary procedures and training when selecting UAS to operator assignment methodologies,
especially if the assignments vary with time or task demand. Unlike queueing models with in-
dependent tasks, this work shows that explicit mechanisms for assigning robots to operators
are needed.

While the human-robot interaction community has continued to develop metrics, some
specific to assessing human to robot ratios [132], there are no concrete algorithms or formu-

15



THIRD PARTY RESEARCH. PENDING FAA REVIEW.

lates that accurately predict that ratio by capturing the complexity of systems, the contin-
gencies that can arise across, and the levels of autonomy. However, the literature demon-
strates that given certain scenarios and control capabilities, operators were able to control
approximately 10 robots in a simulated first response environment [133]. The shared op-
erator pool condition, where operators were added without assigning robots, had fewer (8)
robots controlled, on average. This decrement was attributed to diffusion of responsibility,
a cost of human-to-human coordination. Viewed from a broader perspective, none of this
prior research supports claims as to a safe operator-to-UAS ratio, regardless of whether the
assignment of UAS to operators is fixed or flexible.

3.8.2 Autonomy

Supervisory control of multi-UAS systems requires autonomy. Many of the HITLs fo-
cused on the use of different forms and mixes of information analysis, decision alternative
generation, decision selection, and decision execution autonomy integrated into the control
station to support the operator’s tasks. There has been less emphasis on the aircraft’s
required autonomy.

Some of the HITLs focus on what level of autonomy is needed to support each task.
Research questions consider whether the level of autonomy (LOA) is static or flexible. If
the LOA is flexible, then the research questions consider whether the operator controls of
the autonomy change, or are adaptable (e.g., [51]), or whether the system changes the level
based on context, such as operator taskload or performance, which is referred to as adaptive
autonomy (e.g., [29]). In other words, adaptable autonomy allows the user to tailor the level
of autonomy, while adaptive autonomy uses parameters, such as the operator’s performance
or other context to change the autonomy level.

For adaptive autonomy, design considerations then come into play because the thresh-
old for adaptivity must be set accurately to determine how best to balance workload and
performance [6].

An operator’s ability to detect changes in the system state is critical. The act of delegating
LOAs may improve situation awareness, especially with regard to unexpected events. While
change blindness may be mitigated by interventions (e.g., [21]) focusing the operator directly
on system operations may better support performance.

Calhoun, Ruff, Behymer, and Frost present design considerations and an interface para-
digm for supporting human-autonomy teaming for air, ground, and surface UVs that support
UV management using an adaptable autonomy control scheme [134]. The Playbook® con-
cept supports human-autonomy communication and teaming by developing generalized plays
representing more complex actions, inclusive of execution instructions (e.g., asset allocation,
and routing) that an operator can issue as is (i.e., default parameters) or can customize to
the current situation [135–137]. The design processes included ecological interface design
constructs, and generation of UV and task-related pictorial symbology (e.g., [3] and [17]).

Predefined autonomous robot behaviors are often brittle [18], which is an important con-
sideration for the delegation-based control provided by the Playbook®. Plays are defined
based on expected deployment conditions using default parameters, since uncertain environ-
ments will present unanticipated conditions. The operator can adjust the plays’ parameters
to customize the play as needed [136]. Supporting the plays demands that some action and
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decision-making autonomy be delegated to intelligent subordinates. However, circumstances
will arise for which the plays are not applicable, such circumstances are “non-optimal play
environments” (NOPEs), the operator must abandon play usage and rely on more primitive
behavior commanding. The autonomy appeared to free cognitive resources during routine
events, which may have improved situation awareness to support non-routine circumstances.
The delegation-based control (play calling and adaptable autonomy) holds promise for multi-
UAS control, and may even provide benefits for cases when predefined plays do not exist.

Another set of research questions addressed LOA across synchronous and sequential tasks.
Specifically, the LOA for concurrent tasks and sequential tasks needs to be considered as
a joint design decision, as demonstrated via an investigation in which operators controlled
three UAS [5]. The performance on both the primary tasks and many secondary tasks was
better when the LOA was the same across the two sequential primary tasks, which implies
that the LOA needs to be similar across closely coupled tasks in order to reduce mode
awareness problems.

The literature review did not identify results that systematically automate the full range
of activities that the operator must attend to within multi-UAS systems. However, this
finding is understandable given the breadth of UAS systems, their capabilities, and the
complexity of multi-UAS systems with regard to size, task domains, and applications.

3.8.3 Reliable Autonomy and Trust in Autonomy

The reliability of autonomous systems has been a topic of general research for over a
decade. Many of the questions related to validation and verification of autonomous systems
are left unanswered and directly impact UAS systems. Perceived reliability of autonomy,
and the subsequent trust placed in these autonomous systems, seems particularly important
given the need for autonomy to manage the high task demands of managing multi-UAS
systems.

One concern is whether operators will even use less than perfect autonomy. A supervisory
route planning task was used to evaluate operator compliance and reliance [48]. The results
found relatively high compliance (above 60% and below 80%) and reliance rates (between
60% and 70%). Algorithms that generated paths similar to previous paths developed by the
participant resulted in the highest compliance and reliance rates, while the lowest rates were
recorded for paths that were very different from the participant generated paths. Hussein and
colleagues [12] examined whether autonomy reliability or transparency can influence human
reliance behavior (i.e., reliance rate and proper reliance) and mission performance. These
scenarios required supervising 20 UASs executing image retrieval and object identification
tasks. It was found that enhanced reliability of a supervisory control decision aid led to
enhanced overall accuracy, but also increased human complacency and overtrust. Similarly,
when using robots to detect information [8], lower system reliability resulted in operators
making more camera selections, indicating that an unreliable system led to more active
supervision of robot status and system performance. Naturally, this additional supervision
provided increased detection opportunities, but also had the unfortunate consequence of
increasing operator workload, which may also impact trust in autonomous systems.

Indeed, it has been found that taskload can interact with the degree of autonomy to im-
pact trust. Prinet, Terhune, and Sarter [20] compared re-planning and target detection per-
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formance in multi-UAS control that incorporated video feeds from 9 UASs. The re-planning
task was evaluated at three LOAs (manual, intermediate, full) where the autonomy was
not perfectly reliable due to missing information, called partial observability. Re-planning
and target detection performance was evaluated in low and high taskload conditions. The
fully autonomous re-planning aid resulted in the fastest completion time and re-planning
score, although the intermediate LOA was equivalent in terms of target detection. However,
re-planning scores for the two autonomous conditions were highest when the taskload was
also high. During the high workload conditions, operators over-relied on the autonomy by
choosing the first, or only option, without careful review. As such, more than half the partic-
ipants trusted the manual mode most, and placed the intermediate mode third. The effects
of task sequencing on workload, with differing LOAs, has also been investigated [5]. An early
sequence of autonomous tasks may be favored by operators and free them to focus on subse-
quent tasks. However, unreliable autonomy can also increase the operator workload required
to monitor the autonomous behaviors, which can far outweigh any performance benefits.
This finding suggests that design aids for facilitating operator monitoring of autonomous
decisions are warranted.

Operator preferences for autonomy may also need to be considered when choosing a
LOA. For example, participants who play computer and video games frequently had a higher
propensity to overtrust autonomy [9], and a context-sensitive approach to choosing the LOA
may realize the benefits of autonomy while avoiding its potential costs. Trust was manipu-
lated in an evaluation during which participants guided an automated scheduler to create,
modify and approve schedules for a team of UAS using positive priming, negative priming,
or no comments about the automated scheduler [9]. Participants with computer and video
game experience tended to overtrust the automated scheduler and when exposed to a positive
priming intervention, they had fewer interactions to engage the autonomy. Priming gamers
to lower their initial trust to a more appropriate level, the system performance improved by
10%, as compared to that of gamers who were primed to have higher trust in the autonomy.
These results have implications for training as well as for personnel selection for supervi-
sory control of multi-UAS. Priming during training and operations may help to overcome
overtrust of autonomy.

The research suggests that placing operators in what are perceived to be either highly
demanding or highly reliable autonomous situations can led to overtrust in these autonomous
systems, which may negatively impact the ability of personnel to monitor and intervene in
task duties when necessary. Conversely, unreliable systems lead to lower levels of trust, but
often are accompanied with heightened levels of perceived workload to compensate for the
unreliable autonomy. Trust in autonomy, particularly over or under trust is very important in
multi-UAS deployments. Overtrust in various domains has shown that people are out-of-the-
loop and frequently unable to respond appropriately or quickly to incidents and off-nominal
conditions from which the vehicle or system is unable to autonomously recover. At the other
end of the spectrum is undertrust, which often results in operators micro-managing systems
in ways that can lead to incidents.
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3.9 Control station standards and guidelines

The final reports for Project A7 [138] and Project A10 [139], Tasks CS-1 through CS-5
indicate a need to develop recommendations for minimum UAS control station standards and
guidelines for single UAS systems. This need also exists for multi-UAS control; however,
it may be significantly more difficult to do so given broad differences in future multi-UAS
capabilities and applications.

3.9.1 Information elements

The multi-UAS operational concept assumes the UAS provided information will be pre-
sented at the control station. Thus, defining what information is to be available to the
remote pilot is critical.

3.9.1.1 Minimum information requirements

Different efforts are developing information requirements for UAS control. Projects
A7 [138] and A10 [139] as well as others [84] provided minimum information requirements for
UAS tasks when controlling a single larger UAS. UAS detect and avoid (DAA) operations
represent one of the more common autonomous behaviors. SC-228 adopted a quantitative
definition of “well clear” and developed alerting criteria for DAA encounters and UAS pilot
interaction with DAA systems [89]. Human subjects evaluations have focused on identifying
minimum DAA information requirements, maneuver guidance, and display design recom-
mendations for single UAS (e.g., [140–143]). However, there have been no comprehensive
studies addressing the minimum information requirements for controlling multi-UAS.

3.9.1.2 Transparency

Transparency is an important factor for controllability by humans of autonomous sys-
tems and can potentially mitigate some of the issues with less than perfect autonomy. The
Situation Awareness-based Agent Transparency model, see Figure 1, supports human aware-
ness in human-agent teams [144]. The situation-awareness-based agent transparency model,
originally designed for single robot systems, is useful for facilitating shared understanding
and calibration of trust in human-multiple robot teams.

Transparency plays a key role in mission performance, situation awareness, usability, trust
development, correct acceptance and rejection rates, response time, efficiency and reliance.
A summary of the effects of the systems reliability and transparency on the human are
provided in Table 4.

The task context specific mechanisms that support transparency benefits remain under
investigation. For example Mercado, Rupp, Chen, Barnes, Barber and Procci [33] investi-
gated a planning task in order to examine the level of information necessary to create an
effective and transparent interface to support a human teaming with multiple unmanned ex-
perimental vehicles. Incorporating reasoning and uncertainty information into heterogeneous
tactical decision making helped the participants to make better-calibrated decisions.

The impacts on the operator’s workload of varying the transparency of an agent’ reasoning
were examined [35]. This evaluation also investigated how differing measures of workload
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Figure 1: Situation awareness-based agent transparency model, adapted from [145]

compared in assessing and understanding cognitive workload. While this work addressed
convoy management, access to agent reasoning did not increase overall operator performance
and workload. However, a comparison of the individual factor ratings to the workload
measures found differences in participant behavior between transparency levels.

Transparency is a nascent topic, particularly in relation to multi-vehicle systems. Many
open questions remain, including how much transparency is necessary to support multi-UAS
deployments, what is the minimum necessary for safe operation, and can there be too much
transparency?

Table 4: Effects of reliability and transparency on human reliance behavior and overall
performance

Response variable Impact of reliability Impact of transparency
Reliance rate Increases [12] No effect [12]
Proper reliance Increases (correct rejection) Increases [12, 33,146]

[12]
Mission performance Increases [12] No effect [12]

Efficiency No effect [12] No effect [33,147]
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3.9.1.3 Camera video data

An operator working with multi-UAS can easily become overloaded with multiple sensor
inputs. A common sensor feed is visual information, but future systems are expected to
include traditional robotics sensors (e.g., LiDAR) and new sensors (e.g., package weight or
secure package stowage). Pilots of single UAS often view a provided video feed, however, it is
unclear how to scale this type of imagery for multi-UAS systems. A critical issue occurs when
the operator is using views from multiple UASs and needs to integrate the information to
generate a common understanding or operational picture. Control station design strategies
range from co-locating video feeds in different ways on the same workstation, to providing
display augmentation, to easing the transition from one video feed to another, to developing
integrated synthetic camera views.

Oron-Gilad and colleagues [40] investigated display support, but found that using a
single window that toggled through the imagery was too slow for the pace of task demands
in a dynamic operational context. Split views (two equal sized views) and combination
screens (one larger and one smaller) were rated as more optimal compared to single screen
displays. The combination layout provided an operational advantage over the split screen,
as it can potentially be expanded to include more than one “small window” in the layout.
However, the scalability of this approach will only be applicable to some multi-UAS system
domains that contain a small number of vehicles, or have the capacity to integrate very large
workstations.

Supporting an operator’s understand of how different camera images are spatially related
to one another was addressed in a display concept that transitioned between camera views
when multiple UASs were monitoring the same object/scene [4]. While this work focused
on higher altitude flight operations than what is in scope for A26, the simulation-based
experimental results demonstrate the benefits of such tools to support transition aids.

Often algorithms are developed to process sensory inputs, but the implications of the
algorithm’s outcomes on operator performance are often not understood. The algorithm
design of system augmentations intended to support operator performance were investigated
previously [38]. An automatic target recognition system with an additional cue (a box
was drawn in the region in which a possible target was detected) was expected to reduce
workload and improve overall performance. However, the results indicated that the system
impacted response bias. The underlying algorithm pulled images from an area, based on
target detection priority and coverage. which may have attributed to this outcome in which
operators monitored the same area.

Many have investigated algorithms that integrated multiple camera views, or even mul-
tiple images from the same camera into a cohesive display. Abedin and colleagues [2] devel-
oped an integrated synthetic view from multiple independent camera feeds. However, the
researchers did not address any latency with respect to creating the 3D model and there
was no consideration of the impact of potential latency in representing synthetic data to the
operator in near real-time. Depending on the latency duration, there are domains for which
the impact can be minimal, but in others, any latency will hinder the operator’s ability to
respond appropriately.

An important issue to be addressed for multi-UAS control relates to the role for video/image
feeds. There has been no comprehensive study to address when imagery is absolutely nec-
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essary. It is possible that vendors may wish to supply imagery for operators’ benefit, but
the notion of whether imagery must be available has yet to be proven. Understanding the
necessity of imagery is crucial, since the computational and communication loads associated
with imagery from mult-UAS systems will likely be very high.

3.9.2 Input devices

Most of the single UAS control devices support direct teleoperation, as well as graphical
user interfaces with keyboard and mouse inputs. For multi-UAS control, the majority of the
HITLs included graphical user interfaces with keyboard and mouse inputs that allowed the
operator to supervise all of the vehicles from the same set of windows. Some research has
addressed multi-modal interfaces, such as tactile interfaces [20,21].

Multi-robot teleoperation schemes based on traditional personal computer (e.g., keyboard
and mouse) and game console input hardware (e.g., video game controller) were compared
for a 3D spatial interaction interface [52]. While the keyboard scheme exhibited shorter
completion times and fewer errors, no significant differences were found for performance
measures by input device.

Different researchers have tried to develop better control station designs to support multi-
UAS operations. However, no research has addressed the question of what are the minimum
device input requirements. More complex the work station and the input devices will create
a greater barrier to entry and increase the need for subsequent training.

3.9.3 Display design

Researchers have been investigating display configurations to support UAS operations.
For example, several studies have addressed UAS pilot DAA alerting requirements and
display designs that incorporate conflict detection, resolution and execution tools (e.g.,
[140–142,148–152]).

The use of mission-coded map icons to assist operators when making decisions were
investigated for play-based interfaces and multiple UASs [3]. Presenting pictorial icons that
represented different base defense events directly on the map reduced the time required to
locate these mission relevant events. The map icons supported situation awareness, and may
support better decision making for multiple UAS control.

Many open questions exist for how best to display very large multiple-vehicle systems,
or swarms. Five swarm visualizations, some that displayed all individual vehicles and some
that abstracted away individual vehicles, were analyzed for two common multi-UAS tasks
(e.g., go to a goal location and detection and avoidance of obstacles [22]). The video-based
evaluation investigated how the visualizations impacted human ability to identify the swarm’s
current task, goto or avoid, when the visualizations either included or excluded the obstacles.
The three visualizations that incorporated individual agents resulted in the highest accurate
recognition of the swarm’s current task, while one of the abstract visualizations provided
similar, but lower detection accuracy. Future work needs to investigate the relationship
between tasks and the best visualizations, since results have shown that humans perceive
biological swarm movements as a complete entity, rather than the individuals.

Change blindness occurs when people fail to detect even large changes in a visual scene
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or on a display, when these changes coincide with another visual or transient event [153].
However, crossmodal change blindness occurs when the individual does not detect differences
across sensory modalities. The extent that, and when, crossmodal change blindness impact
operator performance were investigated [21]. Specifically, this evaluation investigated touch’s
susceptibility to change blindness, and how global visual changes, including luminosity, im-
pact visual change blindness, and if crossmodal change blindness occurs with the sensing
modalities by manipulating tasks demands along with cue modality and transient modality
type (i.e., cue-transient combination). The results demonstrated that change blindness is an
issue for these multimodal displays and needs to be considered for future multimodal dis-
plays. There is a potential for training to mitigate the effects of crossmodal change blindness,
but training was not incorporated into this evaluation.

While the research to date is useful, to ensure reliable and effective control displays,
manufacturers will need explicit requirements in order to bring their systems to market.
Manufacturers will need to know what these standards are as well as what standards are
applicable to a given context.
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4 Gaps

Many wish to focus on the single crew member in control of multiple UAS and the
associated operator-to-vehicle ratio; however, that ratio is highly dependent on a broad
set of factors, including the overall multi-UAS ecosystem (i.e., the physical infrastructure,
hardware and software systems, and personnel) and aspects that are “hidden from view”
when developing such systems for a given domain. This literature review has identified a
number of unaddressed gaps. The most noteworthy gaps are summarized.

1. Entity in control: Who or what is ultimately in control of the UASs, either individual
UAS or coordinating groups of UAS, in a multi-UAS system? Some multi-UAS systems
will require very high levels of autonomy, autonomy that needs to handle a breadth of
adverse events. As the complexity of the multi-UAS system increases, the human will
be “on-the-loop” rather than “in-the-loop”, as such the human will be ill-equipped to
handle an adverse event. However, depending on the domain, operational environment,
or adverse events, a human entity may be best equipped to be in control, or at least
maintain some authority over the system’s UAS components.

2. Crew Roles: What are the minimal crew role types necessary to support a multi-UAS
system and what is the required proficiency of each role? The crew roles specified by
14 CFR Part 107 are not necessarily relevant in the multi-UAS domain. The common
and well understood human-robot interaction domain roles, such as supervisor and
mechanic (e.g., [132, 154]), are applicable, but there will be new crew roles that have
not existed previously. For example, new domain uses (e.g., delivery drones) will
introduce new crew roles that currently do not exist (e.g., load operator).

3. Crew Composition What are the allocations to the crew roles, more specifically,
how many individual humans are required to staff each crew role? Some domains
will have multiple individuals in a particular crew role (e.g., flight supervisor), but it is
unclear how the ecosystem’s UAS will be allocated across the individuals in a particular
crew role. What are the minimal combination of crew roles and the staffing numbers
associated with those roles? What are the criteria on which the crew composition is
dependent (e.g., multi-UAS system composition, domain, task complexity)?

4. Climate Conditions: What are the implications of the effects of weather, or geo-
graphical or human built structure induced microclimates, on crew member responsi-
bilities? This question needs to be answered from the perspective of the multi-UAS
system capabilities and well as the role-based crew member responsibilities.

5. Flight Phases: Multi-UAS systems will have similar flight phases as single UAS op-
erations (i.e., pre-flight, launch, take-off, climb to cruise, cruise, descent, approach,
landing, recovery, post-flight). The crew role responsibilities and proficiency require-
ments for all flight phases, other than cruise, have not been investigated. Important
issues include whether or not UAS to crew role assignments are based on flight phase,
and if not, what are the implications on crew handling multiple UAS in different flight
phases simultaneously? What are the adverse event flight phases and the associated
implications on the crew roles?
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6. Altitude Maneuverability: UAS have different morphologies (e.g., omni-directional
multi-rotor or helicopters, fixed wing, or hybrid) that determine a particular vehicle’s
ability to hold a stationary position or navigate either laterally and vertically. As such,
some UAS can navigate the airspace differently than manned aircraft. While these
same capabilities are also available with single UAS systems, there are undetermined
implications for the UAS morphologies within multi-UAS systems and the crew roles
with regard to altitude and yaw control.

7. Area of Operational Control: Existing regulations related to the area of operation
(i.e., restricted airspace or no fly zones) and geofence capabilities for single UAS will
not necessarily translate to multi-UAS domains. The implications of the existing regu-
lations on multi-UAS human roles is not entirely clear. Generally, the regulations can
apply, but depending on domain, these operational criteria may be predefined “default
settings” that change infrequently (e.g., delivery drones) or may require partial or full
specification, such as a geofence, for other domains for which the area of operation
cannot be prespecified (e.g., disaster response).

8. Multi-UAS System Composition: Multi-UAS systems in certain domains will be
composed of 100% homogeneous (i.e., identical) UAS, where the system complexity
will arise from the number of UAS and the mission complexity. However, Multi-UAS
systems will also be composed of heterogeneous UAS, either in morphology, payload,
or even larger capacity, but all other system aspects being identical. How does system
composition impact the crew roles and team compositions? Do the minimal informa-
tion requirements apply across vehicle heterogeneity, in order to standardize the crew
stations? Are there UAS morphology or payload characteristics that the crew role and
station must accommodate, and if so, how? Do heterogeneous system compositions
require different crew role competencies and training?

9. Mission Task Composition: How do the crew station, crew proficiency and com-
petencies as well as the minimal requirements differ between multi-UAS systems per-
forming a set of standardizable tasks (e.g., drone delivery) versus highly dynamic,
uncertain or unpredictable missions (e.g., disaster response)? Similarly, what are the
implications of loosely coupled tasks (i.e., each UAS performs an independent task)
versus tightly coupled tasks (i.e., multiple UAS conducted a highly collaborative task),
as well as missions composed of tasks across the task coupling spectrum? How can
unexpected or emergency operations, and task compositions (e.g., unique, previously
unthought of disaster response task) be accommodated safely in situ by the crew?

10. Communication Link Loss: Communication link loss will be inevitable in some
multi-UAS domains with standardized communication systems. What are the minimal
requirements for a multi-UAS system to maintain a link to the crew? Does the Multi-
UAS system, and hence the control stations have to accommodate intermittent lost
link or allocate individual UAS to serve as ad hoc communication links? Do the UASs
have to return to the coordinate of a last known link location before proceeding? If the
UASs are capable of autonomously completing the task safely (i.e., a package delivery)
do they do so and what information must be communicated to the crew? Does the
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multi-UAS ecosystem require intelligent decision support to predict the likely actions
of the UAS during lost link? These are just a few of the relevant questions.

11. Airspace Transitions: While it is noted that the FAA is focused on operations in the
National Airspace (NAS), it is prudent to recognize that future multi-UAS domains
will require aircraft to transition between the NAS and non-NAS (e.g., tunnels and
building interiors). Domains, such as disaster response, will require UAS to enter non-
NAS spaces (e.g., search and rescue and structural inspections after a hurricane). The
key concern is handling the transitions between these airspaces, which often require
an UAS to transition between flight control methods in order to safely perform its
tasks. What are the responsibilities of the crew roles and the UAS platforms in these
scenarios? What are the minimal requirements to ensure safe transitions between such
airspaces and what specifically must the crew roles know from the UAS and be able
to control? It will be difficult for crew to control this transition, and in some cases, to
even approve this transition.

12. Function Allocation: How are the mission responsibilities allocated between the
crew roles, individual crew members within a role, the individual UASs and the multi-
UAS ecosystem? This allocation will depend on many factors (e.g., autonomy level,
mission task composition, crew role). The function allocation will ultimately define
responsibility for the various mission and system components that may encompass
legal responsibilities, a topic excluded from this literature review.

13. Autonomy: Autonomy is a broad concept that can control an individual UAS, includ-
ing responding to off-nominal and adverse events, but will also be incorporated into
the broader multi-UAS ecosystem as intelligent processing and crew role specific deci-
sions support. Fundamentally, autonomy is an aspect of artificial intelligence, which
will be embedded into the ecosystem. The minimal UAS autonomy requirements and
their implications on the multi-UAS system are not understood. What off-nominal
and adverse events must be handled autonomously by the UAS to ensure safety and
when does the UAS need assistance from a crew member or for that a crew member
to assume control? Examples of the ecosystem autonomy include the ability to com-
bine raw sensory information from multiple UAS into a crew accessible and meaningful
operational picture, or the system planning the flight paths. While artificial intelli-
gence is broader than machine learning, the fact is that future successful multi-UAS
systems will adapt and learn from their experiences, which will also adapt and change
the UAS’ and ecosystem’s autonomous capabilities. As such, the required minimal
autonomy will have to consider a breadth of the provided gap factors and validation
methods are necessary to continuously ensure sustainment of those minimal autonomy
and safety requirements.

14. Crew Role: Operation Station: A breadth of crew role specific operation stations
will be necessary to support the entire multi-UAS ecosystem; however, these operation
stations will be difficult to regulate given vastly different domain and system specific
core capabilities. What are the minimal requirements are that operation stations must
incorporate and how do those requirements differ by crew role and various other system
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and domain characteristics? Some domains will require crew roles, such as a delivery
drone load operator, who may use a custom stationary or hand-held operation station,
which differs from the pilot not flying located in a comfortable control room using
an operation station with rich input and output peripherals. Similarly, a domain’s
operational conditions will influence the operation station. For example, a disaster
response flight supervisor may be located in an emergency response vehicle using a
laptop-based operation station with limited input and output peripherals.

(a) Operation Station: Inputs: The most reliable and accurate control and infor-
mation specification modalities for multi-UAS systems are not fully understood,
as they will vary based on crew role and domain. The multi-UAS ecosystem crew
roles will require different information inputs and potentially input modalities.
Broadly, what must be input and controlled is not well understood and will have
to be allocated across the various crew roles. Domain characteristics will further
influence what information is input by whom and when, but more importantly
will influence the input peripherals and modalities (e.g., keyboard, joystick, natu-
ral language). What are the necessary crew role specific inputs? How do different
input peripherals and modalities influence safety?

(b) Operation Station: Outputs: What is the minimal information required to
complete the crew role responsibilities, which are expected to differ dramatically
from single UAS deployments. How does the autonomy of the system’s vehicles
alter the information requirements? Do the information requirements change by
flight phase or adverse event? How is the breadth of multi-UAS sensor infor-
mation aggregated and integrated into a comprehensive, meaningful presentation
from which unbiased, accurate decisions can be quickly derived and appropriate,
necessary actions taken? If the UAS is the pilot in control, when must it no-
tify the human pilot not flying of its status and via what means? A operation
station with a video feed display for each vehicle will not be useful or usable in
many domains; however, maintaining access to the live video feeds may represent
a minimal information requirement. A human pilot not flying will be unable to
maintain awareness of each vehicles’ status via individual video relays. Further,
what is the set of standardized symbology (e.g., Mil-STD-2525D map symbology)
to be used to ensure a common operating picture across multi-UAS systems and
domains?

15. Crew: Trait Selection: The different crew roles needed to support the multi-UAS
ecosystem will require different fundamental human traits, and pre-screening for mini-
mal basic traits needs to be considered. One such trait will be minimal level of educa-
tion and demonstrated competency (e.g., high school diploma, trade skills). The traits
for some crew roles require further investigation, such as the necessary level of inherent
human performance capabilities (e.g., spatial awareness, reaction time, and ability to
respond to stressful situations calmly). The minimal trait requirements are aspects re-
quired to increase the likelihood of successfully training and attaining a minimal level
of competency relevant to the crew role in the multi-UAS ecosystem.

16. Crew: Diversity: Females are clearly under represented in the remote pilot certifica-
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tions, and while not reported in the literature, it is believed that other diverse groups
are under represented. However, developing the workforce for multi-UAS crew roles
will require engaging all segments of the population, and not only individuals who
possess certain backgrounds (e.g., gaming). As multi-UAS systems change businesses,
there will be a growth in UAS crew role jobs and a decrease in others (i.e., delivery
and ride share drivers). Developing and engaging interest, while keeping the barrier to
entry accessible will be critical for developing a workforce.

17. Crew: Training: The minimal crew role traits will influence the minimal training
requirements associated with each role. While the FAA ASSURE project A27 is de-
veloping a UAS pilot training framework for type certified UAS based on established
industry UAS pilot standards, the characteristics of multi-UAS systems may differ sig-
nificantly. As such, aspects of that framework may be leveraged for only a subset of
crew roles in the multi-UAS ecosystem. However, training and certification require-
ments across the crew roles must be commiserate with the minimum level requirements
related to the crew role’s traits and focus on supporting the crew role’s level of con-
trol, interaction and responsibilities with respect to the multi-UAS ecosystem (e.g., a
delivery drone load operator requires less minimal training, perhaps two hours, than
the pilot not flying, perhaps a few weeks). The recertification cycles and requirements
will also be dependent on the crew role responsibilities. Further, some crew roles may
require specialized training unrelated to UAS, such as regulatory compliance. Address-
ing personnel turnover will also be important, and potential career trajectories will be
needed in order to retain a highly trained workforce.

18. Crew: Competency Certification: Validating crew role competency will encompass
basic skills, and for some roles, fundamental human factors performance characteristics
(e.g., workload, spatial awareness). Easily accessible minimal crew role specific compe-
tency (re)certification assessments must provide an accurate and objective validation
of the skills and competencies. Skill degradation can occur for many reasons, including
biologically oriented degradation (e.g., reaction time or spatial awareness). Subjective
metrics dominate the literature evaluation analyses of human performance capacity;
however, these metrics are insufficient for purposes of certifying competency and profi-
ciency for multi-UAS crew roles. A minimal set of objective validation metrics capable
of mitigating individual differences are required that accurately assesses all aspects of
the minimal crew role specific competency requirements are met.
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5 Conclusion

This literature review provided an insightful examination of the results of past research
and identified large gaps in understanding. These gaps must be addressed before the FAA is
able to lift the restrictions laid out in Part 107.205 and develop regulations and guidelines re-
garding multi-UAS operations. Based on these findings, the ASSURE team will begin to fill
those gaps through modeling and case study validation. Within the review of previous work,
the team found that most research was conducted around HITL and the human factor limita-
tions for operating and monitoring multiple sUAS. These simulation-based evaluations used
some objective performance measurements, like target detection rates and response times,
and relied heavily on subjective measurements, like perceived workload, trust in automation,
and situational awareness.

The initial gap findings can be summarized into five main gaps:

• Phases of Flight – It is well known in the aviation industry that takeoff and landing
are the two most dangerous phases of flight. This literature review highlighted that
very little research has focused on these flight phases, and the research has focused
primarily on cruise flight. These critical phases, along with preflight, climb, decent,
approach, recovery, and post-flight will need to be addressed.

• Crew Rolls – When developing crew rolls, one must consider the UAS ecosystem as
a whole, potentially including an entire organization. Factors to consider include (1)
there may be one operator in charge (e.g., a traditional pilot in control), or an entire
crew organization, (2) how many humans are considered a part of a specific crew, and
(3) what new roles need to be defined or introduced.

• Training – More focus is needed to define required training. Since the systems are
becoming more automated, there is less need for months or weeks of training. Previ-
ous work looked at training considerations for Part 107 operators verses UAS degree
programs. The future of UAS autonomy forces the ASSURE team to look closer at
everyday citizens becoming operators and what that training needs to encompass.

• System Requirements – There is little research considering the type of system, which is
broken down into two distinct groups, a single UAS or a multiple UAS structure. Fac-
tors that must be further investigated within the context of both definitions include,
the maneuverability, weather, and system composition. The system composition can
be further decomposed into how the system responds to communication link loss, tran-
sitions through airspace, and overall mission location (e.g., restricted airspace, or no
fly zones).

• Autonomy – Although this gap falls under the system requirements gap, it drives the
level of impact for most of the other gaps. The levels of autonomy will determine how
many humans are needed, what training those humans will require, and what other
system composition requirements will be necessary for safe flight.

The researchers will use this literature review and high-level gap findings to inform a
deeper gap analysis. Based on the additional gap analysis, the research team will develop

29



THIRD PARTY RESEARCH. PENDING FAA REVIEW.

a model for a case study of drone package delivery. This loosely coupled tasks case study,
where multiple vehicles conduct independent tasks, will provide a better understanding of
what factors impact the human to UAS ratio for this particular domain. This model will
investigate more broadly the complex relationship between the human and the UASs’ level
of autonomy. The team will evaluate a single case HITL, focusing on validating one aspect
of the complex model.

The modeling and validation of the case study will illustrate how autonomy impacts the
human to UAS ratio for the factors associated with package delivery and begin to answer
the ultimate question; how many vehicles can one human control, and what performance
standards must be developed to properly determine a safe human to UAS ratios based on
level of autonomy of the aircraft.
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