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1. SCOPE

1.1 RESEARCHTASKS

To aid A17 programresearch effortsthe National Institute for Aviation Research (NIARY}
Wichita State University (WSUerformechumerical analysito validatecomponents and the full
guadcoptesUAS modek. The details oNIAR's taskandcollaborationwith other universities are
described afllows:

Task B (WSU, UAH, OSU)Validate the ite Element Mdels (FEM) of individual SUAS
components and the ftdUAS for engine ingestion scenario through impact tests against titanium
blade

The Univesity of Alabama in Huntsville (UAHonduced cdlision testing ofindividual SUAS
components (camera, motprand batteryy and a full quadcoptersUAS againstfan blade
representativétaniumplates The impact tests were performiedthe range 0154.33360.11 m/s
(300-700 knotg on an angled titanium plate ¢dtain contact conditions similar lbose expected
during anengine ingestiomvent This study usedully charged batteries to provide insighto
potential fire hazards during ingesti@hio State University (OSWuggesteda mesh size for the
fan bladesbased on theomputational modelingxperimentsthey conducted and the advice
received from our industry partnerSubsequentlyNIAR performed numerical analysis to
evaluate and validate the different SUAS componamndsthe complete SUAS quadcopter model
against the test results provided by UAFb leverage all the previous work done, the sUAS
guadcopter model developed during the FAA ASSURE A3 Airborne Collision Stiidiesms
usedto evaluate and validatbese test resultsoad cell, kinematics video, strain gaged Digital
Image Correlation (DIC) data were used to quantifyctireelation between the numerical model
results andhe actual physical testBhe sUAS numecal model was updated as requiredbétter
match the UAH test resultBinally, full -scale simulationf the validated sUAS from this task and
the fan model devepedin Task A by OSU were also conducted to confthe proper integration
and behavior of the SUAS model when interactiiilp the moving fan blade.

1.2 RESEARCHQUESTIONS

The completion of Task B described in sectiofh answered the following research questions
with initial assumptions and linations. During the research processiditionalassumptions and
limitations were realized specifically regarding théest setup and test conditiorend were
acceptedo ensurehetimely completion of Task Brhesearediscussed irAnnexC to Task A17:
UAH High Speed Impacts of Full SUAS and Components with Angled Plates

Research Questions:

a. What modifications are eeled for theqguadcopter component (the motor, camera,
or battery) and full quadcopter models for higher speed slicing impacts into
titaniumblade®

b. What range of rotational velocities would be experienced by the fan modeled in this
project?

Annex B-1
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c. Whatvelocities should be used in the experiments to capture the relative velocities
in an ingestion event (considering the rotational velazfithe fan airspeedf the
airplane, and velocity dhe quadcopter)?

d. How can the full quadcopter be accelerateth® desired speednd should the
guadcopter components be tested at a higher speed?

Assumptions and Limitations

a. Materials Procurement and manufacturing of titanium wedges will depetice
initial fan design.
b. The fanmodel from Task A will be compled for integration with theJAS model.

1.3 OBJECTIVES

Thetwo main objectivesf Task B are the FE model validation of thdividualSUAS components
(motor, camera, andattery) as well asttevalidation of thefull quadcoptemodelfor theengine
ingeston impact conditionsdefinedin this research projecfhe FE models developed in the
previous A3 Airborne Collision Studies [1] were leveraged and updated for the current research
study to save time and effort

The successfUFE modelvalidation ofSUAS componentsnd full SUAS is by comparisorwith
the UAH experimental impact tests. All the test dates compared and corroborated with the
numerical analysis resultegardingkinematics, load cells, strain gag&dC, andblade damage
state fromstill images before and after the teStke kinematicsideos load cells and still images
werethe primary sourceof validation due to thiedata's ease of collection and reliabili@n the
other handgdue tothe nature of the slicing impadests, strain gages and D#atawere more
challenging to beollectedandonly validated wher@ossible Thus, considered secondary sosrce
for thevalidationefforts

Once thecompletesUAS quadcopteFE modelwas validated under current research ¢toxs,

NIAR sharedit with OSU for integrationwith the completeenginemodel OSU conducteda

sensitivity study of various ingestion scenariogiderstand bettehe interaction betweestUAS

and the fans during engine ingestibetails regarding this study adescussedh Annex A to Task
Al17: OSU Representative Fan Model and sUAS Ingestion Studies

Annex B2
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2. QUADCOPTERSUAS VALIDATION

Using thephysicsbased Building Block Approachhé work done inA3 Airborne Collision
Studied 1] validated the full quadcoptstJAS for theblunt impacs with speed up t428.61 m/s
(250 knot3. Leveraging A3 validation work, the current researpatedhequadcopteFE model
starting from the component level and finishing atftiescalelevel testdor impact conditions
more repesentative of those observed during engine ingestion scenarios.

2.1 COMPONENTLEVEL

Similar to theA3 Airborne Collision Studiegl], three criticaSUAS components were Bjected

to impact tests for the current research component level validatiose Thenponentaere the
motor,thecamera, anthebattery. After discussing the wokiAS engine impact scenarios with
industry partnerand NIAR,OSU develogd the componerével test matrix shown ifable 1.
EachsUAS component had two different test configuration8Q% and 50% radial spampact
location of the titaniuntest article Each test configuratiomadthree repetitions tbelp quantify
variability between tests due to differences in projectile, target, and desired impact conditions for
each testUnfortunately the machining pross damagedne of the bladefer the50% span motor

tests which reducedhe total number of testeom 18to 17.

Tablel. Componenteveltestmatrix

Test o Span | Relative Impact Designed | Performed
Test Case Number Prejeil VTR (%) | Angle (°) | Location Speed Speed
M8OL7- It Blade 710.98kts 716kts
20-188 Motor OPT A2 80 25 LE (365.76 (368.34
001
Rev 2 m/s) m/s)
M8OL7- Ti Blade 710.98kts | 713kts
20-189 Motor OPT A2 80 25 LE (365.76 (366.8
002
Rev 2 m/s) m/s)
M8OL7- Ti Blade 710.98kts | 715kts
20-190 Motor OPT A2 80 25 LE (365.76 (367.83
003
Rev 2 m/s) m/s)
M50L5- Ti Blade 562.86kts | 569kts
20-183 Motor OPT B5 50 30 LE (289.56 (292.72
004
Rev 2 m/s) m/s)
M50L5- Ti Blade 562.86 kts| 569kts
20-184 Motor OPT B5 50 30 LE (289.56 (292.72
005
Rev 2 m/s) m/s)
BSOAS. Ti Blade 562.86 kts| 547kts
20-200 Battery OPT A2 80 25 5606 (289.56 (281.4
007
Rev 2 m/s) m/s)
BBOAS- Ti Blade 562.86 kts| 550kts
20-201 Battery OPT A2 80 25 5606 (289.56 (282.94
008
Rev 2 m/s) m/s)
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BSOAS. Ti Blade 562.86kts | 549kts
20-202 Battery OPT A2 80 25 5606 a| (289.56 (282.43
009
Rev 2 m/s) m/s)
B50L7- Ti Blade 710.98 kts| 533kts
010 20-210 Battery OPT B5 50 30 LE (365.76 (274.2
Rev 2 m/s) m/s)
B50L7- Ti Blade 710.98 kts| 539kts
20-211 Battery OPT B5 50 30 LE (365.76 (277.29
011
Rev 2 m/s) m/s)
B50L7- Ti Blade 710.98 kts| 532kts
20-214 Battery OPT B5 50 30 LE (365.76 (273.68
012
Rev 2 m/s) m/s)
C80L7- Ti Blade 710.98 kts| 722kts
20-191 Camera | OPT A2 80 25 LE (365.76 (371.43
013
Rev 2 m/s) m/s)
C80L7- Ti Blade 710.98 kts| 711 kts
20-192 Camera | OPT A2 80 25 LE (365.76 (36577
014
Rev 2 m/s) m/s)
C80L7 Ti Blade 710.98 kts| 719kts
20-196 Camera | OPT A2 80 25 LE (365.76 (369.89
015
Rev 2 m/s) m/s)
C50L5 Ti Blade 562.86 kts| 571kts
20-185 Camera | OPT B5 50 30 LE (289.56 (293.75
016
Rev 2 m/s) m/s)
C50L5 Ti Blade 562.86 kts| 569kts
20-186 Camera | OPT B5 50 30 LE (289.56 (292.72
017
Rev 2 m/s) m/s)
C50L5 Ti Blade 562.86 kts| 568 kts
20-187 Camera | OPT B5 50 30 LE (289.56 (292.72
018
Rev 2 m/s) m/s)

The name of each test caseTiable 1 was proposed to provide a brief label that accurately
describes each combinationstfAS componentspan and relative angle of the blaldeation of
the impact, and the impact speed. Evergagt condition is coded using eight characters (AijBk
mnl):
1 A1 Distinguishes betweesUAS componers
1 Motor (M)
1 Battery (B)
1 Camera (C)
1 ij 1 Distinguishes between span and relative angle of Titanium blade:
1 80% and 25 deg (80)
1 50% and 30 deg (50)
1 B Distinguishes between impact location:
1 Leading Edge (L)
1 5inches aft of leading edge (A)
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1 kT Distinguishes between impact speed:
1 710.98 kts (7)
1 562.86 kts (5)

1 mnli Distinguishes betwedihenumber ofthetest:
1 001 (Test1)
1 002 (Test 2)
1 é
1 018 (Test 18)

Example of M80L7001:

1 Motor

1 80% and 25 deg
1 Leading edge

! 710.98 kts
 Testl

Table2 and Table 3 describe the details of the projectiles and targetspectively.The shown
dimensions and mass the projectilesre the standard values. Depending on the manufacturing
process and quality contrahe detail of an SUAS componentcould vary slighty from one
guadcopter to another

Table2. Componentevelprojectilesdetails

Projectile Dimensions fnm] Mass [g] Quantity Needed
Battery 123.19x 57.15x 35.05 362.87 6
Motor 32.51x 28.19x 28.19 51.03 5
Camera 36.58x41.91x 34.04 51.88 6

Table3. Componenteveltargetsdetails

Target Material Target size jnm] | Instrumentation | Quantity Needed
Description
Titanium Blade Opt Ti-6Al-4V 254x 457.2 Linear Strain Gauge 9
A-2 (for 80% radial (including76.2 mm and DIC
impact) extension for bolts
connection)
Titanium Blade Opt Ti-6Al-4V 254x 457.2 Linear Strain Gaugg 8
B-5 (for 50% radial (including76.2 mm and DIC
impact) extension for bolts
connection)
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or System Safety of UAS through Rest

Figure2.1 shows the titanium blades with 76.2 mm (3 inches) extension for the bolt conaection
Based on OSU initial mesh sensitivity studys(dssed in Annex A?), the mesh of the blades
originally was suggested to have six (6) element through thickness. In the effort to reduce
computational time and improve validation results, NIAR conducted an additional mesh sensitivity
studycomparing the blade damage and load cell correlations for the comporedriests. The
studyconcluded that a coarser blade with three (3) elements through thickness is more efficient
and provides similar or better results than the original six (6) element through thickness blades.
NIAR mesh study is documented in Appendix A. The subsequentiseftir the components and
full-scale level validation were done using the final three (3) element through thickness blades.

Figure2.1. Titaniumbladeopt A-2 (left) andtitaniumbladeopt B-5 (right)

2.1.1 Motor

2.1.1.1 M80L7 Test Configuration

For this test configuration, the motor impacts the leading edge of the titanium blade2@ptife
desired velocity of 365.26 m/s (710 knots). The impact location is at 80% radial span of the blade,
and the blade is angled 2% degrees relative to the impact direction. Three repetitidn80L7-

001, M80OL7#002, and MB0OL7037 were conducted. Out of these three repetitions, M8ILZ

was selected to corroborate with the simulatiéigure 2.2 shows the schematic setup tbke

M8OL7 test configuration
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101.6 mm
(4 inches)

/2571

V.ot = 710kts. (365.26 m/s)

MB8OL7 Test Configuration comprises of the
following tests:

+ M8O0L7-001

+ MB8O0L7-002 (Chosen as representative run)
- MB8O0L7-003

M8OL7 — Motor, 80% radial span/25 deg, LE, 710 Knots (365.26 m/s)

Figure2.2. M80L7 testconfigurationsetup

To match tle conditions ofthe M80L7-002 test, the FE simulation was set up vitik initial
projectile velocity 0f366.8 m/s 713 knot3. The motor'sorientation was adjusted #opitch of -
6.1 degreesaroll of O degrees, and yaw of 0 degrees. The impact location todtw'scente of
gravitywas106.68 mm 4.2 inchey measured from the top of the bladéhichdeviated from the
desired impact location .08 mm Q.2 inche¥}shown inFigure2.2.

Figure2.3 andFigure2.4 show the top and side view kinematics comparison between the test and
simulation from the start to the end of the impact. Three instances were conffageiist
instance at t=0s is the start of the simulabeforethe impactThe £cond instace at t=0.0035s

is during the impaciThe last instance at t=0007sis after theimpact.
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MB80L7-002 Simulation
Side View

(!
Time = 0.000700

Figure2.4. M80L7-002side view kinematicscomparison

After 0.7ms of the shown simulation, the blade continwéoiating due to the impact's residual
energy Thus an additionalspring backanalysis was performed on the blade to obigirinal
deformed shape #@s equilibrium stateFigure2.5 compareshe final blade damagsterthespring
back FE analysis and the physical test damage. FBeaesult forthe bladeéd &E showsa good
correlation with thdinal deformed shape difie physicalblade's_E.
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Springback Analysis Prediction

Physical Test — Blade Damage l

Figure2.5. Spring backanalysisprediction ofblade damage vsphysicaltestdamage

Due to the slicing nature of the test, partsWdAS debris obstructed the blade surfaces during the
impact, making it challenging to process the DIC data. Therefore, only partial blade surfaces were
selected where DIC ¢ collection was deemed possildfégure 2.6 shows the selective areas of

the blade for the DIC processing in this test M8@O2.

Blade Face: Down Range Blade Face: Up Range

Figure2.6. Test M80OL#002 selectiveareas of théladefor DIC processing

Figure 2.7 and Figure 2.8 show the X (blade chord directiosfraing Z (blade span direction)
strains and Y outof-plane displacement comparison between the DIC test data and simulation
during the impacat t=0.00025sAlthough tesUAS debris blockage compromised the quality of
the DIC data, the contoepomparison around the impact region shows a good correlation.
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M80L7-002 M80L7-002 M80L7-002
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Figure2.7. Test MBOL7002 DICcomparisoron downrangeface of thebladei Experimental
data (top) and simulation (bottom)

MB0L7-002 M80L7-002 M8O0L7-002

X Strain Z Strain Y Displacement
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Figure2.8. Test M80L7#002 DICcomparison orup rangeface of thebladei Experimental data
(top) and simulation (bottom)

In addition to DIC contour data, the time history, showingdseltandisplacement for twpoints
(B and G), was obtained and compared with the simulation for all theRegise2.9. Location
of points B and G forextraction of DICout of planedisplacementime historyand Figure 2.10.
Resultandisplacementime history comparison betweesimulation and M80L testshow thee

points' locations and the displacement comparison rediies simulation $placement results
correlate wellwith the M80L7 tests.
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226.82 mm (8.93in.)

216.15 mm (8.51in) _

________ .
10.16 mm
(0.40in.)

178.82 mm
(7.041n.)

abp3 Buipean

Figure2.9. Location ofpoints B and G forextraction of DICout of planedisplacementime

history
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Figure2.10. Resultantisplacementime history comparison betweesmulation and M80L7
tests
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Figure 2.11. Test M80L7configurationload cells data comparisonshows the loadells data
comparison btween the simulation and the three test repetitions. The data has no filter, and its
sampling rate was 1MHz for both the simulation and tests. The simulation sgaésvith the

test dataThestrain gagesdata conparisorwas not possible due to copted test data.

Figure2.11. Test M80L7configurationloadcells datacomparison

The results in this section show a good qualitative correlation between simulation and physical test
data in terms obladedamage, loads, and DIC. Thus, for this M80L7 configuration, the motor
component of theUAS is considered validated.

2.1.1.2 M50L5 Test Cafiguration

For this test configuratiothemotor impacts the leading edgetlétitanium blade Opt B atthe
desired velocity 0£289.56 m/£562.86 kts) The impact location is &% radial span of the blade,
and the blade is angled 20 degrees retase to theimpact direction. Wo repetitionsi M50L5-
004 and MBOL5-005 7 were conducted. Out of thesearepetitions M50L5-004 was selected to
corradoborate with the simulation.Figure 2.12 shows the schematic setup thie M50L5 test
configuration
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