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NOTICE 

This document is disseminated under the sponsorship of the U.S. Department of Transportation in 

the interest of information exchange. The U.S. Government assumes no liability for the contents 

or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or 

manufacturers’ names appear herein solely because they are considered essential to the objective 

of this report. The findings and conclusions in this report are those of the author(s) and do not 

necessarily represent the views of the funding agency. This document does not constitute FAA 

policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as 

to its use. 
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LEGAL DISCLAIMER 

The information provided herein may include content supplied by third parties. Although the data 

and information contained herein has been produced or processed from sources believed to be 

reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding 

the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, 

conclusions or recommendations provided herein. Distribution of the information contained herein 

does not constitute an endorsement or warranty of the data or information provided herein by the 

Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal 

Aviation Administration nor the U.S. Department of Transportation shall be held liable for any 

improper or incorrect use of the information contained herein and assumes no responsibility for 

anyone’s use of the information. The Federal Aviation Administration and U.S. Department of 

Transportation shall not be liable for any claim for any loss, harm, or other damages arising from 

access to or use of data or information, including without limitation any direct, indirect, incidental, 

exemplary, special or consequential damages, even if advised of the possibility of such damages. 

The Federal Aviation Administration shall not be liable to anyone for any decision made or action 

taken, or not taken, in reliance on the information contained herein. 
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EXECUTIVE SUMMARY 

The ever-growing presence of Unpiloted Aircraft Systems (UAS) in the national airspace increases 

the need to address cybersecurity issues in UAS infrastructure. Adversaries that gain control of or 

interfere with UAS in the airspace can damage that infrastructure in ways ranging from 

interference with missions to launching attacks. As of today, there is no commonly accepted 

framework for addressing UAS-specific cybersecurity issues. While general frameworks exist for 

cybersecurity broadly, the nature of airspace and UAS issues necessitate a specialized UAS 

approach. The objectives in this project establishing the need for a UAS cybersecurity framework 

and provide a prototype framework. The objective in this report is gathering information about the 

state-of-the-practice in UAS cybersecurity and establish the needs for a UAS specific framework. 

The approach is to begin with the Government Accounting Office (GAO)-19-105 report and 

National Institute of Standards and Technology (NIST) Framework for Improving Critical 

Infrastructure Cybersecurity frameworks to determine if they are sufficient. The researchers then 

overview types of malware potentially present in UAS to establish that the cyberphysical nature 

of UAS makes them vulnerable to new classes of malware. The conclusion has an overview of 

how the team will produce a UAS cybersecurity framework in the context of the findings. 

The GAO and NIST reports are not sufficient for use in the UAS domain. GAO-19-105 is not a 

framework, but a report on the application of frameworks across government agencies. It argues 

for improved oversight suggesting that current cybersecurity practices and policies lack proper 

enforcement. As such, the GAO report supports the conclusion that UAS need an enforceable 

framework while providing no direction on what that framework should be. The NIST Framework 

for Improving Critical Infrastructure Cybersecurity is a general framework for communicating, 

enforcing, and evaluating cybersecurity infrastructure. The NIST framework defines five activities 

– Identify, Protect, Detect, Respond, and Recover – that specify the stages of intervention. It 

continues by defining four readiness tiers useful in evaluating an organization’s readiness. Tiers 

range from partial, ad hoc approaches to adaptive approaches that respond and adapt to evolving 

cybersecurity situations. 

Following the literature review, experimentation, and discussion the researchers determined the 

NIST framework is necessary for UASs but is not sufficient. This report documents various 

malware classes that apply to UAS systems. From that effort it is clear that UAS systems are 

predominantly cyberphysical in nature. A significant interface exists between the UAS and the 

physical world it occupies. The presence of sensors and actuators at this interface presents a broad 

attack surface that is not present in general computing systems. Spoofing and compromising 

sensors to manipulate actuators and have physical impact represents a significant attack surface 

that must be addressed in UAS design. 

Building upon extensive documentation from the A38 UAS Cyber Security and Safety Literature 

Review, the researchers will identify attacks that are likely to impact airspace. Rather than focus 

on more traditional information-centered attacks, the work will focus on cyberphysical 

compromises with impacts on airspace safety and security.  
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1 INTRODUCTION & BACKGROUND 

There is no framework for addressing cybersecurity issues specific to fielding Uncrewed or 

Optionally Piloted Aircraft Systems (UAS). The objective of this survey is to review general 

systems and UAS specific cybersecurity-related frameworks. It starts with an overview of general 

frameworks including GAO-19-105 and the NIST Framework for Improving Critical 

Infrastructure Cybersecurity. It then explores issues in embedded systems generally and UAS 

specifically identifying why a targeted approach is required for UAS cybersecurity. Finally, the 

report builds from the ASSURE A38 UAS Cyber Security and Safety Literature Review, using 

their attack likelihood and severity classification to identify critical to airspace protection. 

2 GENERAL CYBERSECURITY FRAMEWORKS 

2.1 GAO-19-105 

The GAO-19-105 report provides insight into government implementation of recommended 

cybersecurity practices. The conclusion of the report is many government agencies neglect to 

implement and maintain NIST recommended cybersecurity defenses. Capabilities recommended 

for implementation by NIST include: (i) monitoring cloud services; (ii) using intrusion prevention 

systems; (iii) monitoring both external and internal network traffic; (iv) and implementing a system 

for managing security information and security events. GAO-19-105 reports that implementation 

is inconsistent at best with no action taking on NIST recommendations. Agencies interviewed 

reported they had failed to implement one or more of these capabilities. Summarizing conclusions: 

• Less than half of agencies using cloud-based infrastructure monitored inbound and 

outbound network traffic. 

• Less than half of agencies used host-based intrusion prevention capabilities although most 

used some kind of intrusion prevention system. 

• Less than half of agencies persistently monitored encrypted traffic, and several were not 

monitoring traffic at all. 

• Logging is performed inconsistently across agencies, with only five collecting all logs for 

matching with known vulnerabilities and threats. 

GAO-19-105 makes a collection of recommendations to the Department of Homeland Security 

and Office of Management and Budget. While largely administrative in nature, the 

recommendations provide a path for policy development and enforcement. 

While GAO-19-105 provides insight into the cybersecurity problem important for policymakers 

and leadership, it provides little insight into how government agencies might implement and 

maintain these services. However, it does reference the NIST cybersecurity framework developed 

around five functions: (i) identify; (ii) protect; (iii) detect; (iv) respond; and (v) recover. These 

functions and the associated framework will be discussed in the subsequent section. 

The research team’s conclusions about GAO-19-105 are that while it is a useful report on the state-

of-the-practice for government agencies with respect to NIST recommendations, it provides no 
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guidance for solving related problems beyond several high-level agency recommendations. Even 

then, the report provides no guidance specific to aircraft – crewed or uncrewed – or to general 

cyberphysical issues critical to their protection. It is the researchers’ recommendation that GAO-

19-105 be revisited and methodologies applied to aviation and cyberphysical systems before its 

conclusions will contribute to UAS security. 

2.2 NIST Framework for Improving Critical Infrastructure Cybersecurity 

The NIST Cybersecurity Framework v2.0 is a general-purpose framework for protecting systems 

from cyberattack. Like GAO-19-105, its target is general computing systems and not aerospace 

systems, but it provides useful guidance for addressing cybersecurity risks. 

The NIST Framework provides a common structure for discussing cybersecurity mitigation. At its 

heart are five Framework Core Functions that should be continuously performed to address 

cybersecurity risks. The five Core Functions are: 

- Identify – Develop a cross-cutting organizational approach to managing cybersecurity risk 

to systems, people, assets, data and capabilities. 

- Protect – Develop and implement safeguards that protect availability of critical services. 

- Detect – Develop and implement means for detecting the presence of a cybersecurity threat. 

- Respond – Develop and implement actionable responses to a detected cybersecurity issue. 

- Recover – Develop and implement resilient systems that maintain and restore services 

under attack. 

These core functions are quite general and applicable to virtually any system from a server farm 

to a home automation Internet of Things (IoT) device. They define a path from preparation through 

detection and mitigation of a cyberattack. The key takeaway is the Core Functions define a 

vocabulary for discussion and a taxonomy for the various actions taken to ensure system 

availability. 

Next, the framework defines Implementation Tiers that document how an organization should 

view cybersecurity risks and management of those risks. Implementation Tiers are descriptive of 

an organization’s preparedness and awareness of cybersecurity risks. All tiers are described in 

terms of three concepts: 

- Risk Management Process 

- Integrated Risk Management Program 

- External Participation 

The Partial Tier (Tier 1) uses an ad hoc approach to risk management that is not formally defined 

and is typically reactive. There is limited awareness of cybersecurity risk and risk management is 

performed in non-systematic ways on a case-by-case basis. A Tier 1 organization typically does 

not understand its role in its parent organization or in relation to other peer organizations. Partial 

Tier organizations are best described as not having any systematic approach to cybersecurity in 

the small or in the large. 
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The Risk Informed Tier (Tier 2) uses organizationally approved practices that may not be 

implemented or implemented unevenly across the organization. The organization is aware of 

cybersecurity risks, but management is not performed at the organization level. A Tier 2 

organization may understand its role in a larger organization, but only partially. 

The Repeatable Tier (Tier 3) builds upon Tier 2 adding a repeatable criterion for cybersecurity 

practices. Policies and practices are formally defined and approved with regular updates by the 

organization. An organization-wide approach to cybersecurity risk management exists with 

methods in place to respond to changes in risks. Monitoring is consistent and accurate with the 

Tier 3 organization understanding its role as well as its dependencies, dependents, and operational 

assumptions. The key description is repeatable where all functions are defined and approved. 

The Adaptive Tier (Tier 4) is repeatable with additional capabilities for adaptation in response to 

new information and new adversary capabilities. There is an organizational approach to 

cybersecurity that uses risk-informed policies, processes, and procedures to address attacks. The 

key is a connection between risks introduced by cyberattacks and organizational objectives with 

objectives guiding responses to specific events. The Tier 4 organization understands its place in 

the larger organization with knowledge of dependents, dependencies, and working assumptions. 

Further the organization is in continuous contact, exchanging information to implement highly 

informed, adaptive processes. 

The NIST standard claims that Tiers are not capability measures. However, one clearly wants to 

move their organization from Tier 1 to higher tiers to demonstrate increasing maturity. Moving 

from ad hoc processes that are not repeatable or approved to an organization where cybersecurity 

risks are first-class in the organization, continuously approached, and continuously improved is 

desired. 

Finally, the NIST framework defines a Profile that describes an implementation of the framework 

in a specific system. Profiles are the objects that are assessed and compared in the various 

framework components. A Profile should support rigorous analysis and comparison as well as 

providing a portable framework implementation. 

The research team’s conclusions about the NIST Cybersecurity Framework are that it is a useful 

guide for organizing and deploying cybersecurity assets. It is widely accepted as a standard for 

securing systems generally and in that respect applies equally well to UAS. However, like the 

GAO-19-105 report, it does not specifically address cyberphysical issues that cannot be ignored 

in systems that interact with their environments. There is no question the NIST Framework can be 

applied to UAS, but it provides no out-of-the-box guidance for deploying systems. It is minimally 

required that the researchers develop framework profiles for UAS. More appropriately, the NIST 

Framework should be revised to address UAS specific issues. 

2.3 Industry Discussions 

To better understand the UAS cybersecurity environment we engaged several members of the KU 

Science of Security industry advisory board.  This interaction was informal, and we agreed to hold 
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the companies and identities of participants confidential to avoid legal and permission issues.  That 

said, our three participants represent two major aerospace equipment providers and one major 

telecommunications company.   Between them they provide telecommunications and flight 

systems for both government and commercial customers.  They have a combined 70 years 

experience developing systems ranging from commercial airliners to small aircraft to cutting edge 

UASs.  All have extensive experience in cybersecurity as practitioners and researchers. 

All participants agreed on the need for guiding principles and frameworks for UAS cybersecurity 

and that no such frameworks exist.  Our industry participants all encouraged active participation 

in existing standards efforts.  One individual who participates in severl international cybersecurity 

standards organizations discussed efforts to standardize autonomous flight control systems 

generally.  They recommended several documents central to their efforts: 

- RTCA DO-356A/EUROCAE ED-203A - Airworthiness Security Methods and 

Considerations. 

- RTCA DO-377A - UAS Command and Control Minimum Aviation System Performance 

Standards. 

- FAA Order 1370.121B - FAA Information Security and Privacy Program and Policy. 

Note that these were also identified by our FAA advisors.  Interestingly, the RCTA DO-356A 

document is at the heart of several existing certification processes.  A quick online survey reveals 

AdaCore, LDRA Assured, Mayhem Security as example companies actively involved with RCTA 

DO-356A compliance.  Certification is ongoing in aerospace systems, but without specific 

guidance for UASs. 

2.3.1 Legal, Technical, Policy 

Our industry advisors all agreed on the importance of an integrated approach to UAS 

cybersecurity.  Specifically, continuing the development of a technical framework for 

cybersecurity while working with standards bodies to develop policy and the legal community to 

develop enforcement mechanisms.  Issues with new technologies cannot be solved by technical 

solutions alone. 

The community must develop policies that describe best practices for integrating cybersecurity in 

workflows.  Much like traditional software engineering, these best practices should be taught and 

implemented around the technical development process.  We were encouraged to include policy 

issues as a part of our framework proposal for this effort which should occur naturally as we 

proceed. 

Developing a legal framework is not something our industry partners or we have expertise in.  We 

did discuss working with legal experts in the future, but no specific details.  One representative 

emphasized that policy and law are quite distinct things that must be developed separately. 

Technical solutions are where we excel as engineers, thus our framework will focus largely on 

technical issues.  However, one of our industry advisors emphasized that we should be developing 

policy and practices along with the framework or as a part of the framework. 
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2.3.2 Cyberphysical Systems 

One primary conclusion from our initial research is that cyberphysical issues often define UAS 

cybersecurity.  The interface between the UAS and the physical world through sensors and 

actuators is a critical part of the UAS adversary model.  All our advisers agreed with this 

assessment, but one emphasized that we cannot ignore information exfiltration. 

Our focus is on protecting the airspace implying protecting UAS control systems.  We bracket out 

information exfiltration in the traditional sense.  One of our advisors points out that security is a 

system-level problem, making it impossible to separate information exfiltration and attacks on 

UAS controls.  They use the example of a map database to illustrate their point.  A traditional 

cyberattack might attempt to steal map information from the UAS or spoof map data.  The impacts 

of such an attack are realized in the map database, but also have serious impact on control of the 

aircraft.  While the map database is not a cyberphysical issue, it has impact on the behavior of the 

UAS potentially impacting the airspace. When developing our framework, we must include 

address cybersecurity in the broadest sense while focusing on cyberphysical systems. 

2.3.3 Legacy Systems 

One of our advisors brought up the issue of legacy systems in flight control software and suggested 

that should be considered in our framework.  Rarely do we get to start from scratch, particularly 

in highly regulated and certified software like UAS systems specifically or aerospace system 

generally. 

We have not called out legacy systems in our investigation as a separate issue.  However, we have 

performed all our demonstrations on legacy software.  UxAS and Ardupilot being our most popular 

demonstration systems.  While we agreed that legacy systems are an important consideration, we 

are dealing with legacy systems as a natural part of our investigation.   Unless directed otherwise 

we will continue our current trajectory that does not call out legacy systems as a separate issue. 

2.3.4 Limitations 

Of all our tasks, the industry study was most impacted by Covid.  We had a great start interacting 

with our board, but the shutdown ended most of our interactions.  Specifically, our Science of 

Security board stopped meeting regularly limiting our opportunities to interact with them.  The 

board is reforming; thus we hope to include them in a final review of our framework. 

3 UAS & EMBEDDED SYSTEMS ISSUES 

In this section, the researchers survey and categorize the security threats that UAS and cyber-

physical embedded systems face, leveraging among other efforts the literature survey from the 

ASSURE A38 project. Because of their interaction with the environment, UAS and cyber-physical 

systems can have unique cyber-security challenges compared to traditional IT environments.  

 

As discussed previously, the NIST Cybersecurity Framework v2 provides a process for managing 

organizational cybersecurity risks organized into the following core strategies or functions: 
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Govern, Identify, Protect, Detect, Respond, and Recover. Each core function is further broken-

down into categories and sub-categories that describe a desired outcome. Organizations or teams 

looking to leverage this framework need to decide how to achieve those desired outcomes which 

involves balancing potential cybersecurity risks faced with costs of mitigating those risks. 

 

 

Figure 1. Components of UAS (from A38). 

• UAS Hardware: The hardware components of a UAS include physical components of the 

UAS, such as body, propellers, sensors (e.g., Global Positioning System [GPS], Inertial 

Measurement Units, camera), actuators (e.g., motor). 

● UAS Software: Software components of UAS include firmware, operating system, 

application programs, and control algorithm implementations. 

● Ground Control Station (GCS): The system that controls or communicates with the UAS 

remotely from the ground. It may consist of hardware and software of the remote 

site/controller and the operator (e.g., human pilot). 

● Network/Communication Link: This includes communication networks and channels, 

and protocols used in UAS. This mainly refers to drone-to-GCS communication, but it also 
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includes drone-to-drone, drone/GCS-to-server communications, and communications with 

services such as GPS. Communications may take place over Wi-Fi, ad-hoc networks, 

cellular, or other networks depending on the application and environment context.  

● Server/Cloud: Server/Cloud refers to remotely located cloud servers or services that store 

information regarding UAS such as flight logs and registration information.  

3.1 UAS Hardware Attacks 

The two main categories of hardware attacks are jamming and spoofing, but they can be facilitated 

by attacks on supply chain or firmware. Jamming involves prevention of the communication of 

sensor data to the UAS controller. Spoofing is similar but achieves a higher level of control. It 

involves falsifying the sensor data or replaying valid signals that were previously captured. 

Knowing the characteristics and tolerances of the sensor components, or replacing them with less 

robust components, can enable a higher success rate of attacks (supply chain attack). Compromised 

firmware can also make it easier to alter the data from the sensor. Hardware components may 

include actuators, GPS receivers, inertial Micro-Electro-Mechanical Systems sensors (MEMS), 

various cameras, Wi-Fi receivers, light detection and ranging, or various general sensors like 

temperature. 

Table 1. UAS Hardware Attack Descriptions. 

Attack Method Description 

d Various methods of creating false GPS signals 

or replaying valid ones to deceive UAS 

location 

Spoofing - ADS-B Sending false messages or modifying 

legitimate messages 

Spoofing - Actuator Sending electromagnetic noise to manipulate 

the signal going between the controller and 

actuator 

Spoofing - Inertial MEMS Sensors Acoustic signals or other methods can target 

resonance frequencies and alter sensor 

readings 

Jamming - General High energy noisy signals, large number of 

signals, and destructive interference signals 

using the signal medium of the target 
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component can obscure the valid signals. 

Firmware Flashing Physically flashing the firmware to replace 

with malicious version 

Supply Chain Attack Modifying hardware components with faultier 

or less robust ones. Or knowing the component 

specifications to better target certain spoofing 

attacks (e.g. resonance frequency or noise) 

3.2 UAS Software Attacks 

This is a broad category that overlaps with others, but the focus is on operating systems, flight 

control algorithm implementation, and any application software run on the UAS. An attack can 

have multiple levels of outcomes depending on the situation, so focus isn’t on the outcomes but 

rather the possible avenues for attack. Attacks on operating systems and application software are 

similar to that in other domains, however UAS typically run real-time operating systems with 

stricter timing requirements which creates some differences. These attacks can involve typical 

attacks such as buffer overflows and malware injection to enable an attacker to gain privileges and 

execute commands and control the system. However, attacks on control algorithms can differ 

significantly. Control algorithms rely on decision making with regards to the environment and 

sensor data. They have a unique attack surface where there may be relatively few lines of code, 

which are easier to secure, but large amounts of potential states, which are difficult to test. The 

attacker may try to push the system into awkward states that are not well handled by the control 

algorithm and may give the attacker some level of control over the UAS. 

Table 2. UAS Software Attack Descriptions. 

Attack Method Description 

General Exploits Depending on the level of privilege, various 

traditional methods of bug exploits such as 

Return Oriented Programming (ROP) or buffer 

overflow can increase privilege, allow 

executing arbitrary commands or altering 

sensor data or wasting battery and processing 

power. 

Firmware or Malware Modification Software can be infected via physical ports 

(e.g. USB) or wireless channels. Related to 

supply chain attack. 
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Database Injection If the UAS contains an accessible database, 

attacks such as SQL injection can insert 

malicious data or commands. 

Algorithm attacks Introducing unexpected combinations of states 

or events that aren’t well captured by designed 

algorithms can disrupt or allow control over 

UAS. This can occur externally such as with 

interfering UAS or internally with injected 

messages or state alterations. 

Adversarial Artificial Intelligence (AI) Some UAS components may use AI such as 

computer vision for cameras. Adversarial 

attacks can trick AI into misclassification, for 

example in cameras the depth perception or 

obstacle detection. These attacks occur as a 

result of perception, but various methods such 

as supply chain can weaken the AI to make it 

more susceptible. 

Supply Chain Attack Inserting vulnerabilities into libraries or 

software development kits that UAS software 

may rely on. Gaining access to supplier 

computers and installing malware is also a 

possibility. Poisoning data used for modeling 

or training can weaken algorithms. 

 

3.3 Ground Control Station (GCS) Attacks 

GCS can have various forms – from a single human pilot with a remote device or smartphone, to 

a large ground facility with multiple operators that manage a fleet of drones. In some cases, the 

UAS may rely very little on the GCS. The researchers view the GCS as a standalone cyber-physical 

system, with its own hardware and software. GCS acts more like a traditional software system but 

may involve real time communication and human operators. Typical software, hardware, supply 

chain, and social engineering attacks may apply in order to compromise the system to enable the 

attacker to manipulate the drones and airspace it oversees. As with UAS software attacks, an attack 

can have multiple levels of outcomes depending on the situation and privilege level. 

Table 3. GCS Attack Descriptions. 
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Attack Method Description 

General Exploits Depending on the level of privilege, various 

traditional methods of bug exploits such as 

ROP or buffer overflow can increase 

privilege. For GCS this can enable attackers to 

launch attacks on UAS, control drones, or 

disrupt GCS software that has communication 

links to drones. 

Data Exfiltration Extracting information such as 

communication protocols, drone positions, 

drone specifications, and authentication can 

allow attackers to better target their attacks. 

Reverse Engineering of GCS Software Like data exfiltration but with a slightly 

different avenue, reverse engineering GCS 

software can find hardcoded authentication 

tokens or sensitive information 

Social Engineering Manipulation methods can get human 

operators to install malware, provide 

unauthorized access, or reveal sensitive 

information. 

Supply chain Like UAS software, software libraries or 

computers can be compromised to enable 

exploits. 

Firmware or Malware Modification Software can be infected via physical ports 

(e.g. USB) or wireless channels. Related to 

supply chain attack and social engineering. 

 

3.4 Network/Communication Link Attacks 

Network links are wireless communication channels used in UAS which can include commands 

and data used for UAS navigation and control. Networks contain software components but here 

this focus is more directly on the communication aspect since the software aspects are covered by 

the UAS and GCS software categories (e.g. jamming, spoofing). In this sense, consider network 

attacks as dependent on which data is being transmitted and which protocol is being used. These 
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attacks can be viewed as protocol and network topology aware spoofing. Compromised networks 

can cause the UAS to receive false information such that the attacker can even control the drone. 

For example, the GCS could provide updated navigation information or even controls if being 

remotely operated. GPS signals aid the UAS in navigation. UAS swarms communicate to 

coordinate and avoid collision.  

 

Table 4. Network/Communication Attack Descriptions. 

Attack Method Description 

Wormhole, Relay Attack Two malicious nodes can tunnel messages to 

each other such that messages in the overall 

system do not take broadcasted or expected 

routes (i.e. changes the apparent topology of 

network) 

Sybil An adversary registers fake identities in an ad-

hoc network to affect voting outcomes in 

certain routing protocols such as Flying Ad 

Hoc Network 

Sinkhole Malicious node may advertise itself as the best 

route in the network and may modify, drop, or 

delay packets 

De-authentication Posing as a legitimate entity but sending 

messages to de-authenticate can cut the link to 

legitimate entities, for example between UAS 

and GCS 

Packet Sniffing / Eavesdropping Listening to network communication to gain 

information about message protocols and 

patterns can aid in launching network attacks. 

Password Breaking Brute forcing passwords or exploiting 

protocols that use broken, improperly 

implemented, or weak authentication methods. 

Person in the Middle Similar to Sinkhole attacks but often the 

victims believe they are directly 
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communicating to each other. 

Masquerading Malicious node attempting to appear as a valid 

node to gain information or launch additional 

attacks such as sinkhole, wormhole, etc. 

Replay Attack Captures messages and replays at a different 

time to launch spoofing or jamming attacks, 

particularly for when messages are encrypted. 

Fuzzing Fuzzing the protocol to cause software or 

control algorithm bugs to trigger or reveal 

information about the message format. 

General Jamming Similar to UAS hardware attacks but more 

protocol specific. Flooding host's network 

interface with protocol messages, includes 

ping floods, Transmission Control Protocol 

(TCP) handshake flooding, etc. to result in 

denial-of-service in network 

 

3.5 Server/Cloud Attacks 

The information stored in the remote server or cloud can be of interest to attackers. It may include 

data collected during flight such as flight logs, drone models, video footage, and private 

information about operators. All this information can aid in launching different types of attacks 

from the other categories. This category acts more like a traditional software system. Attacking 

servers connected to the internet is a classic subject of cyber-attacks and existing attacks and 

countermeasures will also apply to servers for UAS with few differences, if any. For this reason 

this report will not go into detail for attacks in this category. 

3.6 Conclusion 

From this survey of attacks on UAS and cyber-physical systems, one can see that the Server/Cloud 

and GCS components are similar to traditional software systems but the Network/Communication, 

UAS Hardware, and UAS Software have significantly more unique challenges.  

NIST v2 has the core functions of Govern, Identify, Protect, Detect, Respond, and Recover. To 

properly verify how well UAS is covered by this, the attacks need to be mapped to a viable and 

practical set of defenses. For example, Govern includes supply chain risk management, which if 

properly implemented will mitigate threats from supply chain attacks. Protect includes a broad 

variety of subcategories such as data security, awareness and training, and platform security which 
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might cover social engineering, exfiltration of sensitive data, and security against software attacks. 

Detect, Respond, and Recover may cover defenses such as runtime or anomaly detection of 

spoofing attacks so that a hardened safety mode can be engaged if needed. It is difficult to 

completely defend against all possible outcomes and attacks, so ideally there needs to be guidance 

on threat severity and threat intelligence, and an appropriate way to assess risk appetite and 

consequently identify the necessary defenses.  

4 MALWARE SURVEY – SUPPORTING DOCUMENT (DU) 

Over the past few decades, software has evolved from being an obscure tool used by few, 

to a ubiquitous tool used by virtually everyone. While software has had a net positive impact on 

society, a small subset of users uses it to impact society negatively. The software they write, called 

“malware,” is costly and difficult to detect and mitigate. The malware infects any host they manage 

to infect, including IoT devices. 

The Internet of Things can be described as a network consisting of “smart objects,” which are 

everyday items with Internet connectivity embedded into them to give them remote data 

sharing capabilities [1]. The number of active IoT devices has risen sharply during the past 

decade, and as a result, their security is very important. Many devices perform essential tasks 

that need to be running continuously and uninterrupted, such as security cameras, home locks, 

heart monitoring devices, and even Unmanned Aerial Vehicles (UAVs). Such devices are the 

potential targets of malware, as are the components that help power them: gateway devices 

and the cloud. 

There are several common IoT attack models, such as Denial-of-Service or Distributed 

Denial-of-Service (DoS/DDoS) attacks, jamming, and spoofing [26]. DoS or DDoS attacks 

refer to when attackers flood the target server (with which the IoT device communicates) with 

bogus requests, leaving the server unable to fulfill the requests of the IoT device. Jamming 

refers to when attackers send fake signals to interrupt ongoing communication between the 

device and the server(s) with whom the device is communicating. This results in a depletion 

of the device’s resources, such as power and/or bandwidth. Lastly, spoofing refers to when 

attackers impersonate a genuine IoT device to gain unauthorized access to an IoT system in 

hopes of launching another attack once inside, perhaps a DDoS attack. 

Detecting malware attacks can be difficult. For instance, an attacker could embed malware 

into trusted applications and/or could send malware over protocols that are traditionally 

allowed by firewalls and access lists [22]. Another problem is that attackers can try to 

obfuscate their malware or encrypt it, which presents further challenges for someone trying 

to figure out what is happening on their network [22]. Scale tends to exacerbate these 

problems. Because of this, an organization with more hosts on the network will generate more 

network traffic, thus making it even more difficult to manually or automatically scrutinize the 

large amounts of data [22]. 
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New methods for obfuscating malware have emerged, built on previous methods to make their 

detection more difficult. One of the first methods used to circumvent traditional anti-virus 

software was encrypted malware. Encrypted malware makes detection more difficult because 

they make the bit sequence of the malware binary different than all the bit sequences in the 

malware signature databases created by anti-virus companies. Another way that adversaries 

can make malware less detectable is by creating polymorphic malware, which alter the 

decryption code each time a copy of the malware is created. This succeeds in making the 

detection process more difficult, but not impossible, because once the code is decrypted, the 

malware can be analyzed in the computer’s local memory. Once adversaries found that 

polymorphic malware was not the best solution, a new idea emerged: metamorphic malware. 

Metamorphic malware modifies all their malware code, rather than only the decryption code, 

every time the code is copied during the malware propagation process. Metamorphic malware 

is less prevalent because they are harder to create but are more alarming due to their ability 

to bypass anti-virus software. 

4.1 The IoT Ecosystem 

The IoT ecosystem is divided into four main components: the app, the router or gateway 

device, the cloud, and the IoT device. Each of these components are important and need to 

be functioning correctly for the IoT device to work properly and as expected. Figure 2 is an 

illustration of these components, and each has a section in this document devoted to their 

roles in the ecosystem. 
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Figure 2. The IoT ecosystem consists of a mobile/web app, an IoT device, a gateway, and 

the cloud. 

4.1.1 App 

The app is the part of the IoT ecosystem with which a consumer interacts. Usually either 

through a web app or a mobile app, these apps are where users can configure their device, 

change the settings of the IoT device (such as the temperature on a Smart thermometer), and 

get the information the IoT device is there to collect (i.e., “what is the current temperature of 

my home?”). 

The most likely and possible attack vector for malware to manifest itself in apps is through 

permissions granted to an app by an operating system. For example, the Android mobile 

Operating System (OS) has malware due to malicious apps that exploit excessive permissions 

for certain apps that are available for download [13]. Each app running on the Android OS 

must declare the permissions it requires to run, which provide access to device functions such 

as “INTERNET” or “SMS RECEIVED” [13]. Attackers can create malicious apps that declare 

the permissions they need to run, and thus are granted unneeded access to data such as text 

messages received or internet activity. These apps could potentially be used to control IoT 

devices, such as an app that provides the live camera feed of an IP camera. 

However, in terms of the IoT ecosystem, this component is less likely than the others to be 

hacked or targeted for several reasons. The first reason is that the app is likely on a 

device that the consumer uses regularly, and thus monitors frequently. If something 

suspicious or malicious is happening on the app, the user is much more likely to spot it rather 

than something suspicious happening on a device that is likely not near them. The second 

reason is related to the first. Since the app is probably either on a user’s laptop or mobile 

device, it’s more likely to be patched and kept up to date. If the app is running on a phone 

or tablet, this is probably even more likely, as far fewer malwares can infect a cell phone 

in contrast with an IoT device running an outdated version of Linux. The user probably will 

have changed the default passwords and credentials on these devices as well, which is not 

commonly done on IoT devices. While the app is an important component in any IoT 

network, for these reasons, this survey focuses more on the other three components of the 

IoT ecosystem. 

4.1.2 Router/Gateway Device 

The router is an essential part of the IoT ecosystem, as it allows for the IoT device and the 

user to be connected. The information exchanged between the device and the user is at the 

mercy of the information the router allows to be exchanged. As a result, there is an increasing 

amount of malware targeting the router. One example is when infected routers are recruited 

to be part of DDoS attacks, like IoT devices being recruited for the same purpose [4]. 

A router-specific example is malware that forces the router to drop certain packets, making 

communication difficult or impossible. Often this is accomplished by requesting a packet 

resubmission when the packet has already been submitted successfully. This action can harm 
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the IoT device’s battery life and diminish the network’s throughput and increase its delay 

time [24]. One way to combat this issue is to secure the gateway device or Access Point 

(AP), which will then ensure that the communication flowing through it is unhampered. To 

accomplish this, for example, one may implement an Intrusion Detection System (IDS) 

on the access point, and let the IDS decide whether the access point is infected or not, as 

described in [24]. The IDS first keeps track of the number of packets flowing through the 

IoT device, which includes the packets sent as a result of a NACK (no-acknowledgement) 

packet sent from the gateway. The access point keeps track of the number of uplink packets 

successfully received from the gateway. In addition, each IoT device updates the AP 

regarding the number of packets sent through the non-main channel to the AP at a regular 

time interval. In prior work, a higher time interval T yields a more accurate classification of 

the anomaly with a higher probability [24]. This method proved useful for determining if 

there is an adversary corrupting communication between an IoT device and an access point 

by way of an infected gateway device.  

Securing the router connecting the IoT ecosystem is imperative, since without the router the 

ecosystem is useless due to none of the devices being able to communicate. 

4.1.3 The Cloud 

The cloud usually consists of storage on servers belonging to a third party, such as Amazon 

Web Services, where data is stored. For example, perhaps a user has a Raspberry Pi with a 

web camera attached acting as a security camera. The Raspberry Pi can transmit the feed to 

the user, but also to the cloud to save a record of the video data. Although the cloud has 

malware concerns of its own, usually these issues are monitored by their proprietors, such as 

Amazon, and are out of the scope of this document. The important aspect of the cloud 

that pertains to this research is the data retention policies employed by the cloud. In 

other words, users want to know (and have control over) what data is stored in the cloud, 

and for how long. The data retention policy will answer these questions and outline the data 

to keep or delete based on the amount of time it has been available in the cloud [12]. With 

this comes the problem of proof-of-deletion, which is basically the guarantee to the user that 

the cloud no longer has access to the data and that is has been permanently and irrecoverably 

deleted. 

4.1.3.1 Docker Hub 

A related issue is the security of reusable Docker Hub images. Docker containers have 

become popular alternatives to traditional virtual machines over the past few years to use 

applications shared over physical hosts [19]. Because of this, a registry called Docker Hub 

was created, which acts as a type of cloud application where users can upload and download 

Docker images. This registry shares both official and community images to users. Official 

images are public and certified by vendors, such as Oracle or Red Hat, while community 

images can be created by any user. The sharing of images between users presents a potential 

security breach in which a user could inject malware into an image that is then shared with 
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other Docker users without their knowledge of the pre-installed malware. In addition, new 

images (called child images) can be created from current images (called parent images), 

which means malware can be embedded in parent images and passed along to numerous 

child images. 

Another reason to be alarmed about possible vulnerabilities with Docker is that it, by 

default, runs with root privileges [25]. More than 350,000 images were analyzed in current 

research, and over 180 vulnerabilities were found on average in the images [19]. This 

research also exposed that the vulnerabilities found in the images often propagated from 

parent images to child images, similar to how malware are spread in other types of attacks 

[19].Docker provides a way to certify images by running their inspectDockerImage tool, 

which minimally checks user-created images for adherence to some basic best practices and 

rules. However, work by Wist et al. showed that over 80% of certified images contain at least 

one critical vulnerability [25]. While there is some mechanism for certifying Docker images, 

as shown, the current way is not comprehensive. Using machine learning anomaly detection 

could be a useful avenue of research to explore, as more needs to be done to guarantee the 

security of images downloaded from Docker Hub. 

4.1.4 Device 

The IoT device itself is a very important aspect of the ecosystem and is often the target of 

malware. These devices take many forms and can be anything from a wind meter to a 

refrigerator to a driving assistant in a car or a UAV. 

4.1.4.1 Raspberry Pi 

One device that is especially useful in IoT malware detection research is a Raspberry Pi. 

Raspberry Pi’s are small, single-board computers that run a Linux distribution, often the 

Debian-based Raspbian, as well as other Linux distributions such as Ubuntu. The Raspberry 

Pi is desirable as a testbed for IoT research primarily for its ease of use and its use of the 

Linux kernel, as well as its ability to act as many different IoT devices, limited only by the 

users’ configuration. For instance, a Raspberry Pi could be connected to a webcam and 

become an IP camera that is able to communicate with other hosts via ssh, or it could run 

downloadable Amazon Alexa software and become a customized AlexaPi [2]. Likewise, 

Raspberry Pi’s can also be used for photography, surveillance, and other tasks when 

connected to a UAV [17]. As such, many different IoT ecosystems can be created simply by 

changing the configuration of this one device. 

4.1.4.2 IP Camera 

A common type of IoT device that is the target of malware is an IP camera, which can be 

used for tasks such as security or surveillance. In these areas, their security is essential, as 

well as a guarantee of data integrity. If, for example, an IP camera in a bank is compromised 

by a looping attack, the camera could capture an actual video feed, and play back this old 

video recording when the bank is being robbed. Furthermore, any IoT device is susceptible 

to malware, and while some may be deemed more important than others, any device can be 
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recruited to take part in a DDoS attack, or other types of coordinated attack. 

4.1.4.3 Unpiloted Aerial Vehicle 

Another increasingly common IoT device is an UAV. Originally used in military operations, 

UAVs have become popular for commercial and personal tasks as well due to the decreasing 

costs to own and operate them as well as their recent technological improvements [10]. They 

are often used for tasks in agriculture, commercial delivery, media applications, border 

control, search and rescue, et cetera. [15] [16] [17]. Since UAVs have grown in popularity, 

the interest in attacking them has grown proportionally. The attacks are often focused on the 

GPS systems guiding the UAVs as well as the data and communications streams between 

the UAV and the user [7]. Attacks on the GPS systems can include spoofing and jamming 

attacks, while the possible threat vectors can include errors in configuring communication, 

sensor, and system settings [7] [16]. It has also been shown that some UAVs are susceptible 

to man-in-the-middle attacks because of weak Internet security and other vulnerabilities [15]. 

Lastly, like many IoT devices, UAVs can also fall victim to DoS attacks [16]. A UAV is 

simply a specialized IoT device, so many of the attacks lodged against a typical IoT device 

are similarly used against UAVs as well. Since UAVs often perform critical tasks, the 

security of these devices is extremely important. As their popularity and use continues to 

grow, so will their vulnerability. 

IoT devices can take on many forms, and attacks on these devices can likewise vary. 

Whether IoT devices are attacked using DDoS or physical attacks, these devices should be 

set up to withstand a variety of attacks from adversaries. The variety of known attacks will 

be explained more in subsequent sections of this document. 

4.2 Types of Attacks 

Attacks on IoT devices are diverse, but usually fall into two broad categories: physical and 

virtual. Examples of physical attacks include overheating, which involves placing a heat 

source in close proximity to the victim device in order to overheat it, as well as cutting off 

power to the IoT device. Virtual attacks are attacks emanating from another computing device 

and include attacks such as malware. Research by Shi et al. identified six different types 

of attacks on IoT devices [18], and the list of six is far from comprehensive: 

1. Viruses - any malware that spreads between hosts by replicating themselves. 

2. DoS attacks - attacker overloads component(s) of IoT device, such as the CPU or 

memory access, leaving it unable to process requests. Trojans - attacker places 

malicious code into a benign application to gain control of the IoT device in order to, 

for example, exfiltrate data. 

3. Intrusion - attacker tries to gain control of a shell on the victim via ssh. An 

example of this is a Remote Access Trojan. 
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4. Power cut - attacker removes the power source from IoT device. 

5. Overheating - attacker places a heat source near the victim, causing it to overheat and 

malfunction. 

The main idea presented in a paper by Shi et al. to detect this diverse group of attacks 

is to use energy consumption as a metric to determine whether or not a device is infected 

[18]. This is to overcome the problem of not being able to trust a (potentially) infected device 

after it has been compromised by an adversary. It also provides a way to detect both physical 

and virtual attacks. 

Perhaps the most common attack on IoT devices is a DoS/DDoS attack. In a DDoS attack, 

malware takes over a device and is recruited to be part of a botnet and connects to other 

malicious IoT devices [22]. A botnet can be described as a group of connected computers 

recruited to take part in a coordinated task [22]. Once infected, the IoT device may behave 

normally for a time, but will eventually be used for a malicious purpose: disabling a targeted 

website or service, for example. One essential part of a DDoS attack is IP spoofing, which is 

the act of forging the sender’s address in the IP header [8]. Specifically, spoofing is used in 

Volumetric and Reflector DDoS attacks. Volumetric attacks send a large volume of packets 

to a target. Reflector attacks involve spoofing the IP address of the victim in service requests 

sent to other servers [8]. The servers then respond to the victim device instead of the desired 

destination and flood the IoT device. After the victim is flooded with packet data, it may not 

be able to respond to legitimate requests due to insufficient bandwidth. 

4.3 Malware Data Acquisition 

One of the main ways to collect data for experimentation in IoT malware detection is to 

create a honeypot. This acts to lure would-be hackers in order to get their malware code and 

study it. Often this is accomplished by exploiting lax security on a device, such as using 

default passwords and ports left open unintentionally. Once the device is attacked, the 

owners of the honeypot are able to study and replicate the code, thus learning more about 

the malware targeting their devices. As a result, malware detection and mitigation software 

can be developed through reverse-engineering the captured malware sample. Since it is now 

known how the malware infects the device, all that needs to be done is preventing that method 

from working again. Unfortunately, the problem with this approach is that the creators of 

the malware will continue to find new ways to infect devices. However, there are instances 

where one of the families of IoT malware is found, such as Mirai, and thus gives us insight 

into other kinds of malware due to the similarities between different malware variants. 

A honeypot specifically designed for IoT-related malware is an IOT Honeypot (IoTPOT), 

launched in 2015, which emulates Telnet services of various IoT devices to attract new 

viruses that use Telnet [11]. According to their research, the most commonly attacked IoT 

devices are DVRs, IP cameras, and routers. The IoTPOT architecture has a few com- 

ponents, the most important of which is the Frontend Responder, which is responsible for 
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emulating different IoT devices by handling incoming TCP connection requests, banner 

instructions, authentication, and command interactions. It then sends these commands to the 

IoT Sandbox (IoTBOX) backend, which is a set of sandbox environments running different 

Linux configurations. IoTBOX determines the response to the command request, and 

forwards it back to the Frontend Responder, which then forwards it to the client. The Profiler, 

a second component, parses commands between the Frontend Responder and IoTBOX and 

saves them for later use to reduce the need to communicate with IoTBOX (also subjecting it 

to fewer malware). The third component is the Downloader, which examines the interactions 

for download triggers of remote files, such as malware binaries or files obtained from 

running wget, ftp, et cetera. The fourth component is the Manager, which handles 

configuration of IoTPOT, such as connecting IP addresses with device profiles. During 39 

days of data gathering, over 70,000 hosts visited the honeypot [11]. There were three typical 

stages of attacks: 

1. Intrusion - login attempts, in which adversaries try to log into the honeypot to gain 

access to the device. 

2. Infection - discover and change the environment to enable downloading malware. 

Usually, these activities are automated. 

3. Monetization - a command and control server is used to control the device and 

perform malicious activities, such as a DoS attack or bitcoin mining. The attacker is 

now able to use the newly recruited device for malicious activity. 

Many of the attacks observed when IoTPOT was running were coordinated, in that one 

compromised host would infiltrate the victim and find out its login credentials and CPU 

architecture, and then send that information to other hosts so they can attack the victim as 

well [11]. Most of the attacks observed were UDP floods and different types of TCP floods, 

which is a type of Denial-of-Service attack in which the attacker overwhelms the target’s 

ports with IP packets containing large datagrams. DNS and SSL attacks were also observed 

[11]. 

Another similar project, proposed in the CODASPY 2019 proceedings, increased the 

chances of their honeypot being attacked by creating multiple virtual private network tunnels 

forwarding to an IoT device [23]. The usage of a real IoT device lends credibility to the 

honeypot, and by leaving it completely exposed to hackers, increases the chances of it being 

attacked. The key to this type of honeypot is to restrict all outside information to the 

honeypots, such as surrounding Wi-Fi networks, and to set up a firewall to prevent the 

malware from propagating further on the network [23] [11]. 

In the last five years, a large amount of data has been collected from these various research 

projects, especially the IoTPOT project. Although it was conducted in 2015, that project 

continues to inspire others in the IoT security field and provides a guide for collecting data. 
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While this data can be used to build more robust malware detection systems, there are still 

areas in which this data is not comprehensive. For instance, collecting more data in securing 

the routers and gateway devices that connect the IoT devices, and not just in the securing of 

the IoT devices themselves, is a useful research avenue to explore. Most of the current data 

available focuses on securing the IoT devices themselves, without much thought given to 

securing the routers that connect them to the Internet. 

4.4 IoT Malware Detection Methods 

Malware detection can generally be approached in two ways: with and without the use of 

machine learning. Non-machine learning malware detection uses signature analysis. Static 

analysis often reviews the language and syntax structure while dynamic analysis uses tools 

such as honeypots to capture malware and study its behaviors [9]. Historically, most malware 

detection has been signature-based. This method works well on personal computers, but does 

not work as well on IoT devices, for a variety of reasons. Perhaps the most important reason 

is that IoT devices constantly contend with a scarcity of resources, as well as a lack of 

protection against metamorphic malware [3]. This includes memory as well as computing and 

electrical power. Because of these reasons, machine learning and deep learning methods have 

become useful due to their high detection rate and low resource consumption. Deep Learning 

uses a lot of resources to train the model but uses relatively few resources to detect malware 

after the model has been trained. Traditional machine learning techniques include Support 

Vector Machines, Logistic Regression, et cetera, while deep learning models are usually 

Artificial Neural Networks (ANNs) or their specializations such as deep ANNs, which 

include Convolutional Neural Networks. Recently, using Convolutional Neural Networks for 

anomaly detection has become more common. This process uses gray-scale images of binary 

files for malware classification. This topic is described in Section 5.2. 

4.4.1 Anomaly Detection using Machine Learning 

Recently, anomaly detection has become the preferred method for detecting malware on IoT 

devices due to its limited resource consumption and flexibility. It also has proven successful 

because of the limited and predictable behavior of IoT devices. IoT devices are usually set 

up to complete a few specific tasks, and because of this, they often communicate with a 

limited number of external servers, and their resultant network traffic behavior and execution 

behavior (via, for example, system calls) is predictable [5]. Anomaly detection also works 

well for zero-day malware attacks, since anomalies in kernel and network behavior can be 

detected almost instantaneously. The general anomaly detection pipeline consists of four 

main steps when collecting captured network traffic data: 

1. Traffic capture - record metadata such as the timestamp, protocol, source IP and port, 

destination IP and port, packet size, and contents. tcpdump is useful for recording 

this data and saving it in a pcap file. 
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2. Group packets by device and time - separated by source IP, then divided into non-

overlapping time windows. 

3. Feature extraction - determine the most useful metadata to explain the data, such as 

the destination IP. 

4. Binary classification - using ML methods such as ANNs, SVMs, KNN, random forests, 

decision trees, et cetera, to classify data points as benign or malicious. 
 

 

Figure 3. The Data Generation Process used for Anomaly Detection with Network Traffic 

data. 

This type of malware detection works well with the standard IoT ecosystem described above 

and has been used by multiple research projects. A common ecosystem consists of a 

Raspberry Pi acting as a router, an IP camera (also possibly implemented as a Raspberry Pi), 

and any other IoT devices connected to the router, such as a thermostat or a light. There is 

some feature engineering that can be done to the collected data, and the features fall into two 

categories: stateless features and stateful features. Stateless features include packet protocol, 

size, and inter-packet interval, while stateful features include IP destination address 

cardinality and novelty, and bandwidth [5]. It has been shown that stateless features 

outperform stateful features in this type of anomaly detection [5]. 

The features needed for anomaly detection could also be drawn from system data, consisting of 

a log of system calls made during the data capturing timeframe. On Linux-based IoT devices, 

the command ftrace can be used to record system call information and create the log file [1]. 

Capturing the system calls during a period of known benign activity, as well as during a time of 

known malware execution, could provide insight into any connections between malware 
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running inconspicuously and the system calls executed by the malware. The feature engineering 

process outlined above would be very similar in this case. In previous work by [1] and [2], 

a bag-of-n-grams approach was used, in which short sequences of system calls during a small 
period of time are considered. This approach often yields patterns between the system call n-

gram sequences that make malware detection easier. In addition, there has also been work 

done where a combination of both system calls, and network traffic data was captured and 

used together for feature engineering successfully [2]. In fact, it was shown that a malware 

detector based on combined system call and network traffic data detected malware better 

than the system call malware detector or network traffic malware detector did individually 

[2]. These methods can use Recurrent Neural Networks (RNNs) and LSTMs as well because 

they work on sequential data n-grams. 

4.4.2 Image Recognition for Malware Detection 

An alternative IoT malware detection method has emerged recently: using a Convolutional 

Neural Network (CNN) to classify binaries transformed into gray-scale images. Classifying 

code binaries in the form of images has proven to be successful, at least in a limited data 

scope. In work conducted by Su et al., malware samples collected from two malware 

families, Mirai and Linux.Gafgyt, were able to be classified correctly 94% of the time, with 

a 5% false positive rate [21]. This research used malware samples collected by the IoTPOT 

honeypot and were transformed from binaries to gray-scale images by reformatting them into 

an 8-bit string sequences [21]. A decimal encoding represents the value of a one-channel 

pixel, which is then formatted into a 64x64 image to be fed into a CNN. Their results 

indicated that malware images tend to be more dense than benign images [21]. 

In related work, application binaries are converted into gray-scale images, which are then 

transformed into sequences of patterns and fed into a RNN [20]. The steps to convert the 

binary are: 

1. Perform raster scanning to find patterns in the image. 

2. Use Cosine similarity to distinguish between patterns. The Cosine similarity 

measures the similarity between two non-zero vectors and is defined to be the Cosine 

of the angle between them. 

3. Convert the image into a sequence of patterns, and feed the result into a RNN. 

This approach yielded the same 94% accuracy rate, but a downside of this approach, as 

discussed by the authors, is the latency that is involved in the image-based malware detection 

[20]. 

Convolutional Neural Networks can be difficult, time-consuming, and resource consuming 

to train well enough to classify accurately. One solution to this problem is to upload the 

binaries to a cloud application with more resources that can perform the classification and 
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send the results back to the device. If CNN were running on a large cloud application, it could 

be trained faster and provide quicker classification results to the IoT device without putting 

further constraints on the IoT device’s resources. 

Using image recognition for IoT malware detection is one of the newest fields of research 

within IoT security, and there are still many problems to mitigate to make it a viable 

solution on actual IoT devices. Training a normal CNN on a small IoT device seems 

impractical for the foreseeable future due to IoT resource constraints. As a result, a better 

solution is needed, and provides another avenue of research in IoT malware detection. 

4.5 IoT Malware Mitigation Methods 

After detecting malware running on IoT devices, the next step is to mitigate the impact of 

the malware infection. The risk of malware propagation is especially high in IoT devices, 

because whenever one device on a network is compromised, it is much easier to continue 

and infect more devices connected to the network. 

One general mitigation idea is to confine the infected nodes and not let the malware spread. 

The biggest problem with this method, however, is that it often hampers the throughput 

of the network, thus degrading its performance [14]. This method also presupposes that the 

malware was detected correctly, which can be difficult considering that malware often try to 

hide themselves. If the malware successfully decoys themselves, then the confinement 

method will not be helpful. Similarly, if the detection algorithm produces a false positive, a 

node will be confined for no reason, which will also likely be detrimental to the network or 

could cause a denial-of-service. One way to help resolve this problem would be to set a 

threshold on the amount of throughput required for the network. Given this, the traffic 

flowing through the infected node can be regulated, and the overall throughput of the network 

can be tracked. If the traffic restriction results in a throughput that is lower than the required 

level, the restrictions can be eased until it returns to being above the required level of 

throughput again [14]. 

Another method for mitigating malware is a more centralized idea to mitigate the effects 

of malware on a larger scale, encompassing more than one network. This method connects 

to a cloud server that collects large amounts of data related to known IoT vulnerabilities. The 

idea is to connect an “appliance” directly to the IoT device that maintains vulnerability 

mitigation policies for known Common Vulnerabilities and Exposures (CVEs) of the specific 

device it protects [6] by connecting to the cloud server and receiving them. Specifically, the 

security appliance is responsible for three tasks: 

1. Communication - receives packets that are addressed to the vulnerable IoT device, 

processes, and forwards them to the device at the discretion of the vulnerability 

mitigation policy. 

2. Mitigation - called by the communication module. This module will have a list of 
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vulnerability mitigation policies to execute. 

3. Updater - responsible for receiving updates about newly discovered vulnerability 

mitigation policies for the IoT device. 

The other component of the framework is the cloud-based service. This is responsible for the 

collection and affiliation of CVEs to specific devices, and for the generation and 

representation of vulnerability mitigation policies [6]. This framework ensures that IoT 

devices are up to date with recent security updates or patches and prevents exploitation of 

CVEs. Adopting the framework removes the responsibility of keeping the device up to date 

from the user. It is also efficient in that the security appliance only protects the IoT device 

from known vulnerabilities that apply directly to the type of IoT device to which it is 

connected. 

While this framework appears to be a useful solution in theory, there are some drawbacks to 

note. For instance, in work by Hadar et al., a Raspberry Pi 3 is used as the security 

appliance to communicate with the cloud server that connects to the IoT device [6]. If the 

IoT device itself is a Raspberry Pi, which is common, the cost of operating the device has at 

least doubled due to now needing two Raspberry Pi’s. There is also the cost to creating and 

maintaining the cloud service to stay up to date with CVEs and be able to communicate with 

the many types of security appliances. In summary, while the idea of having a cloud 

server and security appliance for each IoT device does seem to be efficient and increase the 

security of the IoT devices, it is likely not feasible because of the increased overhead that 

all consumers would need to contribute. 

4.6 Conclusion 

Research in securing IoT devices and the networks in which they reside is an important, and 

interesting, area of research. As the number of active IoT devices continues to grow, the 

importance of their security grows accordingly. This research is also at the intersection of 

two interesting and timely areas of research: machine learning and cybersecurity. 

The use of anomaly detection, either through traditional machine learning models or through 

RNNs for sequential data, appears to be a viable means for completing this task. Likewise, 

using both the network traffic data passing through the router, as well as the system calls 

being executed by the Linux kernel, appear to be the best combination of data for the model to 

make accurate classifications. 

 

5 OVERSIGHT CONCERNS (ORSU) 

In this section, the researchers assess the cyber threats facing UAS and their potential to disrupt 

National Airspace System (NAS) operations. Research began by constructing a comprehensive 

picture of the cyber threat landscape relevant to the NAS. Next, the team analyzed the cyber and 
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physical impacts of compromised UAS, both on the individual systems and their broader 

implications for NAS safety. Finally, the team investigated how cyber threats targeting UAS could 

translate into wider-ranging threats for the NAS. 

5.1 NAS Components / Attack Surface 

The intricate network of the NAS ensures safe and efficient air travel in US Airspace. To analyze 

potential threats, one must first understand the system's key components. A joint MITRE-Federal 

Aviation Administration report [25] identified vital elements, emphasizing their criticality to NAS 

operations: 

1. Air Traffic Control Towers: These facilities provide "safe, orderly and expeditious flow of 

traffic on and in the vicinity of an airport and also provide for the separation of Instrument 

Flight Rules (IFR) of aircraft in the terminal areas." 

2. Control Centers: Responsible for "providing air traffic service to aircraft operating on IFR 

flight plans within controlled airspace, and principally during the en route phase of flight". 

3. Airport Weather Stations: These stations furnish crucial weather information "such as wind, 

visibility, weather phenomena, etc." for specific airports. 

4. Ground/Satellite-Based Navigation: Comprising both ground-based Navigational Aids 

(NAVAIDs) like ILS and satellite-based systems like GPS, these tools assist pilots in 

navigating between points. 

5. Satellite Surveillance (ADS-B): Leveraging satellite signals, this technology facilitates 

surveillance of aircraft position. 

6. Landing Systems: Including ground-based NAVAIDs like ILS, these systems support safe 

aircraft landings. 

7. Terminal Radar: Utilizing radar technology to track and display aircraft positions, these 

facilities also offer safety alerts and traffic advisories. 

8. Flight Service Stations: These stations handle essential tasks like "providing pilot briefings, 

flight plan processing, enroute flight advisories, search and rescue services, and assistance to 

lost aircraft and aircraft in emergency situations." 

9. Airline Dispatchers: Playing a vital role in flight planning, they meticulously consider aircraft 

performance, loading, winds, weather, airspace restrictions, and airport conditions. 

5.2 Threats 

5.2.1 Threat Actors 

Beyond understanding the NAS, identifying potential attackers is crucial for assessing the threat 

landscape. The recently revised National Strategy for Aviation Security outlined a range of 

"originators of threats" to the NAS. These threats are: 

1. Terrorists 

2. Hostile Nation States 

3. Criminals 

4. Insider Threat 

5. Foreign Intelligence Activities and 



34 

 

 

 

 

6. Spread of Infectious Disease 

5.2.2 Threat Types 

Some common type of threats originating from UAVs include: 

1. Disruption of Aviation Activity: Technical malfunctions, operator errors or malicious 

activity leading to disruption of safe aviation operations. 

2. Weaponization: Mounting explosives, chemical or biological agents, acoustic or optical 

interference, and deliberately crashing the drone as an attack tactic. 

3. Hostile Surveillance: Gathering sensitive information and invasion of privacy due to drones 

capturing images or videos without consent. 

5.2.3 Threat Scenarios 

With NAS components, potential threat actors and threat types identified, one can now turn to 

categorizing attack scenarios involving UAS. A systematic approach to generating threats against 

the NAS can be achieved by considering combinations of threat actors, threat types, and NAS 

components. For example: 

Targeting of an airport's terminal radar systems by a criminal group, by weaponizing UAS to 

deliberately crash into the physical infrastructure associated with the radar systems. 

To ensure this document aligns with its scope, we need to further refine how UAS are used to 

attack NAS components. Only scenarios where attackers exploit vulnerabilities in the UAS itself 

through cyber means will be considered. This excludes physically weaponizing UAS. Analyzing 

the physical and cyber consequences of such cyber-attacks on NAS components is crucial for 

achieving this refinement. 

This section explores potential ways malicious actors could use cyber-attacks to exploit UAS and 

harm the NAS. 

5.2.3.1 Disruption of Aviation Activity: 

Scenario 1: Physical Disruption: 

• Adversary hijacks a UAS and directs it to a sensitive location: This could include airports, 

military bases, or other secured facilities. 

• The mere presence of the UAS can disrupt operations at these locations. 

 

Scenario 2: Cyber Disruption: 

• Adversary hijacks a UAS and equips it with malicious tools such as hardware WiFi jammer or 

advanced cyber exploitation toolkits. 

• This can interrupt critical communication and compromise hosts in the network being targeted. 

5.2.3.2 Weaponization: 

Scenario 1: Mid-air collision with manned aircraft: 
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• A malicious actor launches a UAV targeting a manned aircraft to interfere with safe flight 

operations. 

 

Scenario 2: Denial-of-service attacks: 

• Adversary launches cyberattacks to disable a legitimate drone's control system. This can result 

in losing control and crashing into people, locations, NAS infrastructure, and other critical 

infrastructure. 

5.2.3.3 Hostile Surveillance 

Scenario 1: Hijacked UAS for unauthorized surveillance: 

• A malicious actor intercepts a benign UAS mid-mission and redirects it to an unauthorized 

area for covert data collection. 

• The gathered information is transmitted to the attacker's device or uploaded to a remote server. 

 

Scenario 2: Exploiting authorized surveillance: 

• A UAS performing authorized surveillance in a secure location is compromised, allowing the 

attacker to access and capture the collected footage. 

• This footage is then relayed to the attacker's control device or uploaded to a remote server. 

5.3 Takeaway 

In summary, by mapping cyber threats to both UAS vulnerabilities and NAS, one can generate 

realistic scenarios showcasing the potential dangers of integrating UAS into the NAS landscape to 

help determine oversight requirements. 
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Table 5. Attack Threat Classification. 

 

6 CONCLUSION 

There is no UAS specific framework for identifying and mitigating cybersecurity concerns. 

Furthermore, while general purpose frameworks are necessary for UAS deployment they are not 

sufficient due to lack of focus on cyberphysical issues. While traditional computing systems may 

have sensors and actuators that interface with the physical world, they are dominant in UAS where 

they define a significant attack surface. 

The researchers will address the need for a UAS framework by focusing on cyberphysical issues 

common among UAS with a goal of protecting the airspace. Rather than reinvent a framework for 

traditional cybersecurity issues, the researchers will focus on cyberphysical issues that characterize 

UAS. Starting with the A38 literature study, the team will identify the most critical and likely 

attacks. The team will then develop a framework that addresses those attacks focusing on 

cyberphysical security issues. 
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