The FAA's Center of Excellence for UAS Research

X ASSURE

Alliance for System Safety of UAS through Research Excellence

University
UNIVERSITY

A11L.UAS.95 ASS8: Illustrate the Need for UAS Cybersecurity
Oversight & Risk Management

Appendix B: Task 3 Scenario Summaries and Lessons Learned

January 2, 2025

Modeling UAS w/ Chase

Garrett Mills <glm@ku.edu>

The UAS

e Linux controller:
= UXAS - flight plan & decisions

= ArduPilot - directs flight hardware

» Stat - reports state to UxAS/Ground

e Flight hardware:

= Sensors - current state of UAS

= Hardware - physical flight controls

e Ground Station/Network

Model consists of:

e Architecture of UAS
e Rules for corruption

e Initial points of corruption

controls(network, uxas).
controls(uxas, ardu).
controls(ardu, hardware).

informs(sensors, ardu).
informs(stat, uxas).

cor(Cl1) & informs(C1, C2) => misinformed(C2).
cor(C1) & controls(C1, C2) => puppet(C2).

cor (network).

Ex.1: Simple Corruption

e ArduPilot is corrupt

e A component "mutates"” another when it can
entirely compromise it

e A component "informs" another when it
provides read-only information

— — [

Mutates Informs Corrupt

Ex.2: Control- & Data-Flow Separation

e Network is corrupt

¢ Introduced embedded controller

e "Control" lets a corrupt component direct the

actions of another without corrupting it
= Distinct from "mutates"”

— — — 1]

Mutates Informs Controls Corrupt Misbehaving

Ex.3: Misinformation & Misbehavior

Stat reporter is corrupt

Bad information travels along data flows

If component A is controlled by a misinformed
component B, then A will misbehave.

If A is both misinformed and misbehaving, then it
is fully compromised.

i = R

Mutates Informs Controls Corrupt Misbehaving Misinformed Misinformed,
Misbehaving

net

uxas

™

e

ker

4 Y

sens

ardu

Nl

ctl

/

stat

ES . o

Mutates

hw

Sanitizes

Ex.4: Sanitization

e Network is corrupt

e UxAS is protected by an authentication

check
= e.g. Ground station can send messages, but 3rd-
party actor cannot

— — L] []

Informs Controls Corrupt Misbehaving Misinformed

Misinformed,
Misbehaving

Ongoing Work

e Auto-generating models (corruption points, structures)
e Automated analysis (scoring heuristics)

e Analysis of UXAS in Coq

Analysis of UxAS in Coq

Inductive uxas_state := .
| UxasState e Documentation defines

(atom: nat) core task pipeline as
(messages: list uxas_message)

(arvs: arvs_state) collection of transition
(task: task_state)
(ras_agg: ras_aggregator_state)

systems

(ras_col: ras_collector_state)
(atbbs: atbbs_state) e Modelin Coq and

(pbs: pbs_state)]]
cchuaosean1tozaS|ngﬂe
system

w THE UNIVERSSITY (§

Institute for
Information Sciences

Adam Petz, Garrett Mills, Perry Alexander
11-17-22

A58 Monthly TIM: November, 2022
(UAS Static Analysis updates)

Outline

Overview of CHASE model finder
Overview of UxAS + architecture
Initial findings: Modeling UxAS architecture + attacks

W

Initial findings: Modeling UxAS message sequences

CHASE model finder (Overview)

* CI"ASE[l] [1] Ramsdell, J. D. Chase: A model finder
o Model finder for first-order logic with equality for finitary geometric logic.
o Open source: https://github.com/ramsdell/chase https://github.com/ramsdell/chase, 2020.
* Model specifications

* Written in Finitary Geometric Form

* AM&A&.LL&A,,=>C |G| ... |C,.

* Each A (Antecedent — Left of “=>"): Atomic Formula
* Each C; (Consequent — Right of “=>"): Conjunction of Atomic Formulas (B;; & B;, & ... & Bj ;)

e Custom Predicates

o P(cy, €y oony Cp)

o f(cy, ¢y, ..y Cm) = Co

o Example:
author(X) & paper(Y) & assigned(X, Y).
author(X) & paper(Y) => read_score(X, Y) | conflict(X, Y).
assigned(X, Y) & author(X) & paper(Y) =>read_score(X, Y).
assigned(X, Y) & conflict(X, Y) => false.

https://github.com/ramsdell/chase
https://github.com/ramsdell/chase

CHASE model finder (Example

[bound = 500, limit = 5000, input_order] Model 1

% Assume adversary avoids detection at our main measurement

% event. Others can be added. — - »_ _— .

UV) = msp(us, M, us, exts, X) [cor(us, exts) cor(us, bmon)
=> corrupt_at(us, exts, V).

% Assumptions about system dependencies.
depends(ks, C, ks, av) => false.

depends(us, C, us, bmon) => false.
sEpEREs(Es, © wsy @fic) = iElse: msp(us. bmon, us, exts, x10)

% Axioms defining "deep" components
% We don't want to see models with deep corruptions
l(V) = cor(ks, M) => false.

% Axiom defining which components cannot be recently corrupted
prec(V, V1) & 1(V1l) = cor(P,C) & ms_evt(V)
=> false.

rep(us. bmon)

m4_include(ex1lb.gli')m4_dnl

m4_include(ex1lb_dist.gli')m4_dnl
msp(ks. av, us, bmon, x00)

m4_include(thy.gli')m4_dnl

[2] C. Parran et. al, Trust Analysis of Copland Phrases
(Tutorial), copland-lang.org, 2022.

https://copland-lang.org/

CHASE model finder (Example

gy I
| Commands
UxAS i
I tl % platAM components only corrupted via a corrupt boot image
Measuremen 1(E) = cor(platAM, C) => phi(bootMem, img, E).
I 1 | Request
UserAM Ll %% img in bootMem cannot be corrupted
I I Evidence phi(bcotMem, img, E) => false.
I Linux VM I % user AM (uam) only corrupted via a corrupt kernel
——] e — = 1(E) = cor(userAM, uam) => phi(userAM, ker, E).
Request Evidence | Measurement
— e e .
| ——
I PlatformAM % In addition to ker, uxas depends also on uxas_ctxt
_— | e == = I ctxt(userAM, C, uxas) => C = ker | C = uxas_ctxt.
Query Image
= r=| == = % Ignore attacks that corrupt ker
I Boot_Mem I 1(E) = cor(userAM, ker) => false.

Figure 6.2. Hardened Ground

Station Architecture.

Corruption Repair
events events

‘ msp(platAM, el, query_img, bootMem, img) ‘

‘ msp(platAM, e3, kim, userAM, ker)

‘ msp(platAM, e3, uim, userAM, uam) ‘

cor(userAM, uam) cor(userAM, uxas_ctxt)

‘ msp(userAM, €9, uam, userAM, uxas_ctxt)

o

< rep(userAM, uam)

‘ msp(userAM, 9, uam, userAM, uxas)

[3] Petz, A., G. Jurgensen, and P. Alexander, Design and Formal Verification of a Copland-
based Attestation Protocol, ACM-IEEE International Conference on Formal Methods and
Models for System Design (MEMOCODE’21), Virtual, Nov 20-22, 2021.

UXAS (Overview)

* OpenUxAS,;
o “Software architecture ... to enable autonomous capabilities on-board unmanned
systems”
o Open source: https://github.com/afrl-rq/OpenUxAS
o Developed under AFRL’s ICE-T program

* Core software
o Implemented in C++

o LMCP (Lightweight Message Construction Protocol): Message structure +
serialization

o ZeroMQ: Data bus for publish/subscribe message passing between services

* Applications
o Collaboration algorithms (i.e. route planning) on-board UAVs
o Core functionality of Unmanned Ground Sensors (UGS)

https://github.com/afrl-rq/OpenUxAS

UXAS (Architecture)

/ UAS \

UAS Controller

-> UxAS AutoPilot
A
!
STAT
fGround Station L ‘\

UxAS UAS Hardware

\ ,
\ | s & L? O Q_.@

Actuator

References

* [1] Ramsdell, J. D., Chase: A model finder for finitary geometric logic.
https://github.com/ramsdell/chase, 2020.

* [2] Parran, C,, I. Kretz, Ramsdell, J., and P. Rowe, Trust Analysis of Copland Phrases (Tutorial),
copland-lang.org, 2022.

* [3] Petz, A., G. Jurgensen, and P. Alexander, Design and Formal Verification of a Copland-based
Attestation Protocol, ACM-IEEE International Conference on Formal Methods and Models for
System Design (MEMOCODE’21), Virtual, Nov 20-22, 2021.

* [4] UXAS Developers, UxXAS User’s Manual, https://github.com/afrl-
rg/OpenUxAS/tree/develop/doc/reference/UserManual, 2022.

https://github.com/ramsdell/chase
https://copland-lang.org/
https://github.com/afrl-rq/OpenUxAS/tree/develop/doc/reference/UserManual

Practical Software Defense for
GPS Spoofing on a Hobby UAV

Bailey Srimoungchanh J. Garrett Morris Drew Davidson
The University of Kansas The University of lowa The University of Kansas

This Research

GPS spoofing detection

No need for pre-trained models
Detects even subtle deviations
Low false positive rate

Fast time to detect attack

Sensor Spoofing

 Goal

— Implicitly control the behavior of a system
and cause it to behave irregularly
— Appreciable effect on the behavior of the

system

Radio > GPS Receiver

» Capabi

lities

* Knowledge of the system components and

software
Subvert predictive models

» Complete control and knowledge of GPS
receiver

Radio transmission
Malicious firmware

Control

Linear 2
—>1 Accelerometer — 1
Forces
X :
Magnetic 3 [-
. —> Magnetometer
Field
%4

Light =——>{ Optical Flow

Program

—p Actuation

Key Insight

» Observations by the GPS need to confirm with observations by
other sensors

Defense Implementation

Detect when 2 sensors are no
longer confirming within some aShaats

margin of error l_»f Af_l
Modified ArduPilot

Evaluated on Quadcopter GPS Gyroscope

Challenge 1. Orthogonal Sensors

Requirement 1: Requirement 2:
Measure different phenomena Have different physical attack surfaces

| | .
.\-
4 N
“
<

I T -
T T Lirﬁar Co:olis RaTdIO T

)) Coriolis
Light Light Acceleration Effect Effect

Challenge 2: Disentangle Sensors

* Gyroscope

— Measure angular rate Rado” ke e
AP_Compass
e Optical Flow GPS s
oae o
— Derive velocity
« Entanglement
— Optical Flow rotates into GPS frame I
— Uses rotation matrix from Compass > e

— Rotation matrix influenced by GPS

Defense Sensor Fusion

Defensive .

Challenge 3: Operating Limitations

* Yaw rate from GPS
— Too slow

« Altitude from rangefinder
— Too high

« Body rate from optical flow
— Too dark

Yaw Rate

-

GPS Gyroscope

ECEF
Velocity

A A

GPS

0

Body Frame
Velocity

e

Lidar OPucal
Flow

Magnetometer

FEvaluation Questions

. Does this technique have a low false positive rate?
. Does this technique detect attacks within our threat model?

. Does the technique address a credible attack undetected by
current approaches?

Benign Flights

100mx200m rectangle
Maintain altitude of 10m
Maintain speed of 10m/s
5 total flights

Goal

— Collect sensor data

Adversarial Flights

« F-Subtle (4)
— Same mission as Benign Flights

— Spoofed 2.5m at a rate of
0.1m/s? from real location

e L-Overt

— Spoofed 2m from real location in
a single timestep and held there

e L-Subtle

— Spoofed 2m at a rate of Tm/s?
from real location and held there

10

Optical Flow Pertformance

[
[\]

Benign Under Attack

[
=]

» Average TTD of 2.04s
« Average Displacement of 7.81Tm
 False Alarm in 1 flight

~_
]
E
h=2
-
=
-
=
Y
g
-
=1
S
A
o
=

S N A SN @

8:16 8:18 8:20 8:22 8:24 8:26 8:28 8:30
Time (min:sec)

11

False Alarm

Benign Under Attack

 Single timestep

* Instability due to noise or
environmental conditions

« Can be smoothed with filtering
at the cost of delaying

deteCtlon 6:23 6:27 6:31 6:35 6:39 6:43 6:47 6:51 6:55 6:59
Time (min:sec)

_~
<
g
=
)
=
D
£
W
w
o
on
]
2]
- -
=]

12

Gyroscope Performance

 No Loiter data
— Limitation of GPS

« Average TTD of 1.66s
 Average Displacement of 7.61m

Benign Under Attack

GPS ~Gyroscope

8:00 8:03 8:00 8:09
Time (min:sec)

13

Composable Detense

* Average TTD of 1.29s

. . . . J:'J‘me%:
 Average Displacement of _ b k|
3.64m '

~
)

~
£

N’
>

)

- -
3}
=]

<

>3

1:53 1:59 2:05 2:11 2:17 2:23 2:29 2:35 2:41 2:47 2:53
Time (min:sec)

—-Gyroscope
GPS

2:23 2:33 2:43 2:53
Time (min:sec)

14

Comparison to Existing Defenses

Are orthogonal sensors necessary in the context of other defenses?

15

Are they sufficient?

ArduCopter Health Checks
F-Subtle 1

~Position Variance Benign Under Attack
Velocity Variance
o

1:24

System Identification
F-Subtle 3 and F-Subtle 4

Benign Under Attack

~Flight 3

1:26 1:28 1:30 1:32 1:34 1:36 1:38 1:40 1:42
Time (min:sec)

16

Future Work

» Develop a formal notion of good sensor candidates and build
tooling that can automatically identify entanglement

— Identification of sensor pairs and discovering entanglement was a manual
process

» Generalize our approach to more than just GPS spoofing detection

17

Conclusion

« We show how orthogonal sensors are effective and can overcome
the limitations of sensor fusion

* Implement a novel defense that detects GPS spoofing with either a
Gyroscope or an Optical Flow sensor

 Evaluate our defense with live flight tests
— 0.001% False Positives

— 1.29s Average Time-To-Detection

18

Thanks for listening!

Data and Implementation files can be found in the OSF Repository:
https://osf.io/qj97w/?view_only=721a3b784e004465a0f8bbd548da09c6

QR Code to the repository:

Acknowledgements
Jayhawk Model Masters for providing us a safe testing site
Flight Research Lab at The University of Kansas for data collection

Questions?

19

— Presentation on
Ardupilot SITL

Name: Sadia Afrin Ananna
Ph.D. Student in Electrical and Computer Engineering,
Drexel University

Supervised By: Dr. Steven Weber

— Whatis SITL?

- SITL(Software In The Loop) is a build of the autopilot code using C++ compiler.
- SITL simulator allows us to run plane, copter or rover without any hardware.

- ArduPilot is a portable autopilot that can run on a very wide variety of platforms. Our PC is
just another platform that Ardupilot can be built and run on.

- SITL takes the advantage of the fact and so it allows us to run ArduPilot on our PC directly
without any special hardware.

ArduPilot

- ArduPilot is an open source, unmanned vehicle AutoPilot Software Suite. It enables the
creation and use of trusted, autonomous, unmanned vehicle systems.

- Since ArduPilot is an open-source project, it is constantly evolving based on rapid feedback
from a large number of users.

- Being coupled with ground control software, unmanned vehicles running ArduPilot can have
advanced functionality

- ArduPilot has a wide range of vehicle simulators built in. Also, it can interface to several
external simulators.

ArduPilot(Contd.)

- Although ArduPilot does not manufacture any hardware, ArduPilot firmware works on a

I. Copter

ii. Plane

ii. Fixed-wing aircrafts
iv. Rover

v. Multi-rotor drones
vi. Submarines

vii. Antenna trackers

Fig.1: Different type of unmanned vehicles that ArduPilot
firmware can work on.

ArduPilot Hardware and Firmware

- Hardware: It is the peripheral sensors, controllers and output devices that acts as the vehicle’s eyes,

ears, brain and arms. It runs on a variety of hardware platforms such as Navio2, Pixhawk, Parrot Bebop
etc.

- Firmware: It is the code running on the controller. The firmware can be chosen to match the vehicle and
mission: Copter, Plane, Rover, Sub, or Antenna Tracker.

ArduRover w243 ArduPlane V276 ArduCopter ¥3.0.1 Quad

ArduCopter V3.0.1 ArduCopter V3.0.1 Tri ArduCopter V3.0.1 Y6 ArduCopter V3.0.1 Octa

Fig.2: Different type of autopilots.

Ground Control Station

- Software: It is the interface to the controller. Also called a Ground Control Station (GCS), the software

can run on PC’s or mobile devices.

- Ground Control Station runs on a ground-based computer, that communicates with the UAV
via wireless telemetry.

- It displays real-time data on the UAVs performance and position and can serve as a “virtual cockpit”,

showing many of the same instruments.

- A GCS can also be used to control a UAV in flight, uploading new mission commands and setting
parameters.

- It is often also used to monitor the live video streams from a UAV’s cameras.

Ground Control Station(Contd.)

- There are at least ten different ground control stations. On desktop, there is:

» Mission Planner,

* APM Planner 2,

* MAVProxy,

* QGroundControl and
* UgCS

- For Tablet/Smartphone there is :

» Tower (DroidPlanner 3),
« MAVPIlot,

« AndroPilot and
 SidePilot

- The decision to select a particular GCS often depends on your vehicle and preferred computing
platform.

Ground Control Station(Contd.)

- Mission Planner is a full-featured GCS supported by ArduPilot. It offers point-and-click interaction
with your hardware, custom scripting, and simulation.

FLIGHT DATA FLIGHT PLAN INITIAL SETUP CONFIG/TUNING SIMULATION TERMINAL HELP DONATE

Distance: 0.7989 km
Prev: 522.46m AZ- 67
Home: 46294 m

Status: loaded tiles

Load WP Fils
_Save WP File
‘Read WPs
Write WPs

Home Location
Lat 3504173272
long 117.8277683

I foschae At N Very Heh R e

l L=t | Long | At | Delete I Up | Down | Grad % | Dist [AZ
350407928 | 117.8277898 | 100 957 |1045 |1

0
WAYPOINT 0 -35.0406786 | 117.8260410 | 100 0.0 159.7

=
Bl AYPOINT [00 1412
WAYPOINT ~ [0 428 0.0 145
R WAYPOINT ~) | 00 1345 @

Fig.3: Mission Planner Ground Control Station.

Background of ArduPilot

In year 2007, Jordi Munoz and Chris Anderson wrote an Arduino program (which he called
“ArduCopter”) to stabilize an RC helicopter.

In 2009 Munoz and Anderson released Ardupilot 1.0 (flight controller software) along with a hardware
board it could run on.

The years 2011 and 2012 witnessed an explosive growth in the autopilot functionality and codebase
size, thanks in large part to new participation from Andrew Tridgell and Pat Hickey. Tridge's
contributions included automatic testing and simulation capabilities for Ardupilot, along with
PyMavlink and Mavproxy.

Between 2013 and 2014 ArduPilot evolved to run on a range of hardware platforms and operating
system.

In late 2014, the DroneCode was formed and in Fall 2015 again, with a swarm of 50 planes running
ArduPilot simultaneously flown. Within this time period, ArduPilot's code base was
significantly refactored, and the code evolution continues.

Intended Scope

- The basic goal of the software is to provide control of the vehicle. It can be done either autonomously,
or via pilot input through radio control transmitter. It can also be done through ground control station.

- ArduPilot offers a wide range of features and capabilities including:

« Autonomous flights.
* Telemetry.

 Sensor integration

» GPS-base navigation
+ Customization.

ArduPilot use cases

Aerial photogrammetry

Aerial photography and filmmaking.
Remote sensing

Search and rescue

Robotic applications

Academic research

Package delivery

Integration with software packages

- Ground control stations(GCS): ArduPilot can
integrate with various GCS software, including
Mission Planner, MAVProxy, QGroundControl
etc.

- Simulation: ArduPilot can integrate with
simulation software such as ArduPilot-SITL.

Fig. 4: MAVProxy command prompt,console and map.

Cyber-security Threats and Counter

Measures

Security Objective

Threats

Mitigations

Confidentiality

Eavesdropping

Identity spoofing

Hijacking

Data link encryption

Integreity

Man-in-the-middle

Message modification

Replay attack

Hash Authentication MAC

Availability

Jamming

Routing attack

Flooding

Authentication

Future plan

- Mission Planner Simulation allows us to see the expected behavior for vehicles in missions, or with a
joystick attached, be able to fly/drive the vehicle simulation as if with RC.

- Mission Planner supports swarming or formation-flying with multiple drones or UAVs (Unmanned
Aerial \ehicles).

- This concept can be useful to design and implement tests to attack UAS (Unmanned Aerial Vehicle).

- Demonstration

G Select anna3831@DESKTOP-SA902U0: ~/ardupilot/ArduCopter

| VEHICLE: Using defaults from (../Tools/autotest/default_params/copter.parm)

| VEHICLE: Run ArduCopter

| VEHICLE: "/home/anna3831/ardupilot/Tools/autotest/run_in_terminal_window.sh" "ArduCop
ter" "/home/anna3831/ardupilot/build/sitl/bin/arducopter” "-S" "--model" "+" speedup"
"1" "--slave" "@" "--defaults" "../Tools/autotest/default_params/copter.parm” "-IO0"
SIM_VEHICLE: Run MavProxy
SIM_VEHICLE: "mavproxy.py" -out"” "127.0.0.1:14550" out” "127.0.0.1:14551" "--master"
tcp:127.0.09.1:5760" “--sitl® "127.6.8.1:5501" ° *--console"
RiTW: Starting ArduCopter : /home/anna3831/ardupilot/build/sitl/bin/arducopter -S --model|
+ --speedup 1 --slave © --defaults ../Tools/autotest/default_params/copter.parm (2}
xterm: cannot load font "16x20"
xterm: cannot load font "-misc-fixed-medium-r-normal--20-200-75-75-c-100-is010646-1"
Connect tcp:127.0.0.1:5760 source_system=255
Loaded module console
Loaded module map
Log Directory:
Telemetry log: mav.tlog
vaiting for heartbeat from tcp:127.0.0.1:576©

V> Detected vehicle 1:1 on link ©
STABILIZE> Received 1332 parameters (ftp)
Saved 1332 parameters to mav.parm

BILIZE ARM GPS: OK6 (10) Vce: - Radio: - INS MAG AS RNG AHRS EKF LOG

RC T
1: 100%/12.59V 0.0A Link 1 OK 100.0% (9553 pkts, O lost, 0.00s delay)
354/ 0 AltOm AGL Om/Om AirSpeed Om/s GPSSpeed Om/s ThrO RollO Pitch 0 Wind -180/0m/s
Distance Om Bearing O AltError Om(L) AspdError Om/s(H) FlightTime - ETR 0:00 Param 1332/1332 Mis

EKF3 IMU1 origin se

EKF3 IMUO origin se
Field Elevation Set: 584m|
EKF3 IMU1 is using GP:
¥ £KF3 IMUO is using GP.
ght battery 100 percent

Thanks

Logical Bugs in Drones and
Swarms (2)

A survey of recent papers
Presen ted by Akshith for A58
Oregon State University

Papers:

Part1 No code! Just behavior.

a. SwarmFlawFinder: Discovering and Exploiting Logic Flaws of Swarm Algorithms, Jung et. al,
IEEE Symposium on Security & Privacy May 2022

Part2 Yes code! Code analysis.

b. PGFuzz: Policy-Guided Fuzzing for Robotic Vehicles, Kim et. al.
The Network and Distributed Systems Security Symposium, Feb 2021

c. PGPatch: Policy-Guided Logic Bug Patching for Robotic Vehicles, Kim et. al.
|IEEE Symposium on Security & Privacy May 2022

https://www.computer.org/csdl/proceedings-article/sp/2022/131600b447/1FlQvj6isus
https://www.ndss-symposium.org/ndss-paper/pgfuzz-policy-guided-fuzzing-for-robotic-vehicles/
https://ieeexplore.ieee.org/document/9833567

Motivation

e 1.8% are memory corruption bugs

e 98.2% of bugs are logic bugs

o 97.3%logic bugs lead to physical damage

Threat Model

We know what the mission and algorithm is !

No sensor spoofing, No malware in the system!

Basically looking for design flaws in the algorithm / software implementation.
Not memory corruption bugs

Only logical bugs

PGFuzz: Policy-Guided
Fuzzing for Robotic Vehicles

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, and Dongyan Xu
Purdue University

2021 NDSS

Components of a Drone/Robotic Vehicle

Three types
of inputs

commands

>

=

b8 B/

(Environment
factors

&
7= (%9
Parameters

Ry T Sy
For control

algorithm

5 Physical
space
. 5
"\ Vehicle

- Current altitude: 20 m
- Target altitude: 10 m

]

v

tgng

S 3

Cyber space

Sensor data

Control
algorithm

(Commands)
to actuators

NvA.-J)

1

Decreasing motors’
speed to lower altitude

]

Fuzzing a Drone: Traditional Fuzzers

Fail-safe mode must be triggered when the engine temperature is higher than 100 C° (212 F°)

// Developers forget to convert F° to C° scale < — -l Can traditional fuzzers (AFL, libFuzzer) |
If (temperature >= 100) { ' discover such a design flaw? No |

Fail-Safe -> execute(); I - Mutation: Code coverage !
} /\ L' Bug oracle: Memory access violation :

Fai-safe is triggered | T~ TTTTTTTTTmTTmTTmTTTm
under 100 F° (37 C°).

PGFuzz ey @

Deng, 2021
Choi, 2020
Kim. 2022 Choi, 2020
o Xu, 2021 ‘
Xu, 2021 X!E 021 565
‘ Q”'"°."ez Bhois2018
Kim, 2020
Ozmen, 2021
0zmen, 2021
o
Fei, 2018
Kim, 2021

Image: Connected Papers

Software Fuzzing

- - ~
- ~
s N
4 RawaKlees72018 S \

: filo, 2017 N
Kim,;2019 / Zhao !11910 Lamieux, 2018
‘ SH 4,‘g|

I Aschermann\ 202 m*
\

\ Zhan‘gNzil imime' 20190
\ Guler 2019
N one @Gul

—

Fuzzing a Drone: Existing Drone Fuzzers

Can fuzzers specialized for RVs discover the design flaw? (RVFUZZER)

// Developers forget to convert F° to C° scale <{ —I What about fuzzers for RVs? No I

If (temperature >= 100) { I - Mutation & Bug oracle: unstable attitude !

Fail-Safe -> execute(); N o o s i i, e e]

} A

Fail-safe is triggered
under 100 F° (37 C°).

Fuzzing a Drone: PGFuzz

Existing methods DO NOT:

1. Knowthe RV’s correct behaviors
2. Consider entire input space

But PGFuzz... Reducing
Fuzzing

space

Defining correct
behaviors of RVs

Creating Mutating | Discover bugs
formulas inputs
Building
distance _
metrics - Ber.\awor-.aware bug oracle]
- Policy-guided mutation 10

PGFuzz: Defining policies in formulas

= I Extract policies
—3 Ldenoted by formulas

Documents

‘ A vehicle must not deploy a parachute when the vehicle is:
1) In FLIP or ACRO flight modes

2) Climbin
_ J
e

=¢ {(Parachute=on)} A {(Mode, = FLIP/ACRO) V (ALT, > ALTt_1)|}
| time T | |time T-1 |

11

PGFuzz: Finding inputs for mutation

(Reducing fuzzing space)

Huge fuzzing space

- 1,140 configuration parameters
- 58 user commands
- 168 environmental factors

Only mutating inputs relevant to the policy

12

PGFuzz: Finding inputs for mutation

(Reducing fuzzing space)

Policy consists of terms (physical states) - Decompose the formula into terms (states)

Mutate inputs related to the terms

Term |
=0 {{Parachute=on)} A {(Mode,)= FLIPIACRO) V (ALT, >®}

| Proposition |
Policy Related terms -~
Parachute (Parachute) (Flight mode Qltitude <.

<Policy-term map>

PGFuzz: Mapping parameters to each term

(Reducing fuzzing space)

Static analysis to identify which states are affected by each parameter.

configuration
parameter
- Altitude PR AP_GROUPINFO(“TEMP”, ... , ground_temp): «mpmm Starting point for a def-use
Roll ' 2 | _user_temp = ground_temp + 273.15f; chain of TEMP parameter
Pitch =
Yaw “, 1@] 315 [temp = _user_temp
I
! @ H = * * S d
<A st of states> R B Taltltude 153.8462f * temp * ... ource code

14

PGFuzz: Mapping other types of inputs to each term

(Reducing fuzzing space)

How to map environmental factors and user commands to each term from source code?

Use an RV simulator! 2) Log changed
states
1) Change motors’ Simulator \ - Heading
speed - Throttle
> '%\ 3) Change _ - AIFitude
< flight mode - Climb
\ iz <Changed states according

to motors’ speed>

Repeating 2) and 3) to identify changed
states under each flight mode

15

PGFuzz: Two types of distances to mutate inputs

(Building distance metrics)

Propositional distance: To efficiently mutate inputs. Quantifies how close a proposition to the policy
violation

Positive value:

Negative value:

If the proposition is true

If the proposition is false

If the term is numeric, we
use normalized difference.

~———

=Q {(Parachute=on)} A {(Mode, = FLIP/ACRO) V (ALT, > ALT,_,)}

P, =

1

1 If parachute = on

-1 If parachute = off

N

P,

1

1 If mode = FLIP/ACRO

-1 If mode # FLIP/ACRO

P, =

ALT,- ALT,,

ALT,

16

PGFuzz: Two types of distances to mutate inputs

(Building distance metrics)

Global distance: to detecting a policy violation

=) {(Parachute=on)} A {(Mode, = FLIP/ACRO) V (ALT, > ALT,_,)}

— Positive value if there is no policy violation

-1 X [Min{P,, Max(P,, P3)}] =

— Negative value if the RV violates the policy
17

PGFuzz: Example

(Building distance metrics)
{ 1 If parachute = on

P,=
-1 If parachute = off
{ 1 If mode = FLIP/ACRO
P, =
* L .1 Ifmode # FLIP/ACRO

3

ALT, - ALT, ,

ALT,

-1 X [Min{P,, Max(P,, P3)}]

Time Parachute FLIP/ACRO Altitude P, P, P Global Next input for
(T) (on/off) mode (T/F) (m) distance Time T+1
Motor speed =
1 off false 90 -1 -1 0 1 1,800")
Motor speed =
2 off false 100 -1 -1 0.1 1 1,800
off false 110 -1 -1 | 0.09 1 Parachute = on
4 on false 112 1 -1 | 0.02 -0.02 Policy violation!

Vehicle must not

18

Evaluation

RV control software

ArduPilot, PX4, and Paparazzi
56 extracted policies

Fuzzing 48 hours per each control software
Found 156 bugs

Violating 14 policies in the three-control software

19

PGPatch: Policy-Guided Logic
Bug Patching for Robotic
Vehicles

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, and Dongyan Xu
Purdue University

2022 |[EEE S&P

20

Previous work : PGFUZZ

[N

L T

e Discovered 156 logic bugs using linear temporal logic formula
e Correct behavior vs Incorrect behavior defined using LTL

// Get a time delay to trigger position fail-safe

param_get (param_find ("COM_POS_FS_DELAY"), &val);
// Force the valid range of the parameter

posctl_nav_loss_delay = math::constrain(val * sec_to_usec,

POSVEL_PROBATION_MIN, POSVEL_PROBATION_MAX) ;

Listing 2: GPS Fail-Safe Bug [41].

bool AP_Arming_Rover::pre_arm_checks () {
if (rover.g2.sailboat.sail_enabled()
&& !rover.g2.windvane.enabled()) {
printf("Sailing enabled with no WindVane");
return false;

Listing 3: Sailboat Pre-Arming Bug [1].

N o U AW N =

[TR S

void Copter::failsafe_battery_event (void) ({
if (ap.land_complete)
// Stop motors
else if (g.failsafe_battery_enabled == FS_BATT_RTL
&& home_distance > wp_nav.get_wp_radius())
// Switch to RTL
else // Switch to LAND

Listing 4: Battery Fail-Safe Bug [13].

void FlightTaskAutoMapper::_preparelLandSetpoints() {
_constraints.tilt = _param_mpc_tiltmax_lnd.get();

bool FlightTaskManualAltitude::activate() {
_constraints.tilt = _param_mpc_man_tilt_max.get();

Listing 5: Tilt Angle Bug [77].

21

Linear Temporal Logic

Documentation | Prevent the sailboat from operating
without a wind vane sensor

When a sailboat is turned on without a wind vane,
Pre-arming must return an error.

Extract policies
denoted by formulas
\ v

Sailboat policy: [J {(armed = false)} A {(SAIL_ENABLE = True)
A (WNDVN_TYPE = False) - (pre_arm_checks = error)}
»

| Post-conditions |

] Pre-conditions l

22

Main Idea: Can we fix these automatically?

| Pre-conditions \

Sailboat policy: [J {(armed = false)} A {(SAIL_ENABLE = True)
A (WNDVN_TYPE = False) - (pre_arm_checks = error)}
/

| Post-conditions |(* 10 Ry software initially did not
implement this policy, causing
potential safety violations

bool AP_Arming_Rover::pre_arm_checks() {
if (rover.g2.sailboat.sail_enabled()
&& !rover.g2.windvane.enabled()) ({
printf ("Sailing enabled with no WindVane");

5 return false; \9) 503
Can we automatically fix these logical errors? ‘ l

& W

23

Huw“Jw

——
- ~~\
- ~

PG Patc h / ’ - Y“an‘zozo Kir:2;9\ N
O\ e

Program Repair

Ahmad, 2022

\ \
/‘ Dumﬁtw \
o/ !
L 8 ins2
M @{ XW7 ‘6" ez /
\ /

/

N\ Wen, 2017 ,
N ’ Cao, 2020
S o 9 P
~ -
~ -

Image: Connected Papers

Lee, 2018

Limitations of existing tools

1. Largely focus on fixing memory corruption bugs
2. Need acomplex set of test cases

3. Use constraint solver - Poor support for floating
point operations

5 PROGRAM-REPAIR .

‘ <+ Add tool

C/C++
ar
ar
ar

ar
ar
ar
ar
ar
ar
a8
-]
a
ar
ar
ar
a8
-]
a8
ar

ay
Eiffel

Java
ar
ar
ar
ar
ar
ar
ar

ar
ar

ORG Home Bibliography Tools Benchmarks Pages Statistics Workshop ‘.JMamngllsl P Repositony

AllRepair — mutation-based repair tool for C p equipped with assertions in the code

Angelix — automated program repair tool based on symbolic analysis

CPR— ing and di: fitting patches via { ion of the patch space and input
space

CoderAssist — system for feedback generation

DeepFix — tool for fixing common programming errors based on deep learning

ErrDoc — tool that is able to detect, categorize and fix error handling bugs for C programs
FAngelix — Faster Angelix that performs a guided search via MCMC sampling

FixMorph — automated patch backporting tool for syntactically similar programs, i.e. across different versions
GenProg — automated program repair tool based on genetic programming

Kali — generate-and-validate patch generation system that only deletes functionality
LeakFix — safe memory-leak fixing tool for C programs

MempFix — static analysis-based repair tool for memory deallocation errors for C programs
MintHint — program repair tool that generates repair hints to assist the programmer

NEM — automated repair of heap-manipulating programs using deductive synthesis
PatchWeave — automated patch transplantation for semantically equivalent programs
Prophet — automated program repair that learns from correct patches

RSRepair — GenProg modification that uses random search

SPR — automated program repair tool with condition synthesis

SearchRepair — automated program repair that uses semantic code search over large repositories of candidate
code bases to produce high-quality bug patches

SemFix — automated program repair tool based on symbolic analysis

AutoFix — automatic program repair of object-oriented with

ACS — automated program repair tool with accurate condition synthesis

ARJA — multi-objective genetic ing for repair of Java
AVATAR — fixing Java bugs by the fix patterns of static analysis violations (FindBugs violations)

Astor — automatic software repair framework for Java (incl. GenProg, Kali and mutation repair for Java)

CapGen — text: patch

ConFix — d patch ion with text-based change

GenPat — inferring program transformation from historical bug fixes via big code

Genesis — system that automatically infers sets of code transforms for automatic patch generation
HistoricalFix — automated program repair tool that leverages bug fix history

JAID — an APR technique that uses detailed state abstractions to guide both fault localization and fix generation

B — publication, §* — repository

25

Can we reuse the LTL formulas to fix them automatically?

| Pre-conditions \

Sailboat policy: [J {(armed = false)} A {(SAIL_ENABLE = True)
A (WNDVN_TYPE = False) 2> (pr/e_arm_checks = error)}

l | Post-conditions |(* 10 Ry software initially did not

implement this policy, causing
potential safety violations

~

bool AP_Arming_Rover::pre_arm_checks() {
if (rover.g2.sailboat.sail_enabled()
&& !rover.g2.windvane.enabled()) {
printf ("Sailing enabled with no WindVane");

return false; ‘9)“]

(Y R R)

PGPatch: Overview

[Map the formula’s) R
terms to variables in patch
o . the source code
- T
If the patch fails to fix
Parsing a formula the bug, we modify the
patch.
(3] [5) v

[Analyzing how to |
access the mapped
variables

Verify the patch on Patch
a simulator code

Run test cases
_ created by developers

1. Parse the Formula

Sailboat policy in PPL syntax: If armed is false and SAIL_ENABLE
is 1Tand WNDVN_TYPE is 0, then pre_arm_checks is error

1) Convert the]

formula to a tree
2) Classify terms Torm Type
into each type | [armed State (P)
SAIL_
error ‘ ENABLE State (C)
WNDVN_| state ()

TYPE

armed false SAIL 1 _

2. Map formula terms to variable in source code

Variable
name

("ENABLE", 1, Sailboat, enable, 0, AP_PARAM_FLAG_ENABLE)

Configuration
parameter name

Heuristics:

Class name

1. RV software port the configuration

parameters from XML files to source code _---==========--cco .- Sl o
-~ /
I 7
, . . . ! Term Type Term |' Mapped variables/functions
2. RV software’s strict coding conventions, [amed State (P) i
) . , . MTSAIL. h M -
eg: Each variable’s name denotes a physicak |gyagie ' State(©) ‘ SAIL_ENABLE {-Private enable in Sailboat class>
state -,v—vY":,%VN' State (C) WNDVN_TYPE Private _direction_type in AP_WindVane
‘ class
pre-arm-check pre_arm_checks function

29

3. Analyze how to access the mapped variables

then
and is
and is
pre_arm
WNDVN 0 zonede
is is TYPE =
| armed | | faise || saL_ | | 1|
ENABLE
i Term i How to access?
armed armed
SAIL_ENABLE rover.g2.sailboat.sail_enabled()
WNDVN_TYPE rover.g2.windvane_enabled()
pre-arm-check pre_arm_checks(true/false)

error

_checks
rover.g2. 0 |
windvane
_enabled
|am\ed| false || rover.g2. | 1 | 0
sailboat.
sail_ena
bled()
‘ Term ' How to access?
armed armed
SAIL_ENABLE rover.g2.sailboat.sail_enabled() =
WNDVN_TYPE rover.g2.windvane_enabled()
pre-arm-check pre_arm_checks(true/false)

30

4. Generate patch

<[It must return false]

For this specific patch type, the
patch needs to be placed within the
pre_arm_check function

bool|AP Arming_Rover::pre_arm_checks (. IT

31

5. Patch Verification

| ! Simulator
5 Outputs
. > » | F0000 B
| i
' /-]
<Patch code> ! / st
! \ 4 ! . CODE
Bug-triggering | | : — : ; :
inputs ; : TEal Test cases | | 5<Ver(|:f('|)<:’c(ia fatChi
------------------ v created by |
developers

[It spends around 40 minutes. j>

Supports 5 patch types

Disabling a statement

Checking valid ranges of configuration parameters
Updating a statement

Adding a condition check

Reusing an existing code snippet

ok owbdpe

33

Evaluation Selected bugs | Patchable bugs | Fixed bugs
ArduPilot (4) 70 38 32
e RV control software PX4 (PX) 70 77 24
o ArduPilot "
o PXa Paparazzi (PP) 70 29 21
o Paparazzi Total 210 94 77
e Dataset

o 94logic bugs from GitHub commit history

o 203 logic bugs from RV fuzzing works (PGFuzz and RVFuzzer)

e PGPatch succeeds in fixing 258 out of 297 bugs

o 86.9% success rate

34

User Study: Usage scenario

PGFuzz |

Al

Developer Iﬁ—

Bug
report

\
Bug-triggering
input

/ J

Z

.
/

'/ﬂ\

v

PPL —»

n N/ \
B . Bug-triggering
Logic ;
formula— bug-finder input
1 J
/ v m
Translator
PPL—| PGPatch |— Patch
-)

1. First usage scenario of PGPatch

-

PGPatch

— Patch

P

2. Second usage scenario of PGPatch

35

User Study: Evaluation

How efficient is PGPatch in patching logic bugs compared to manual patching ?

e Recruit
o 6RVdevelopers Bug origin . ru:;m - (ion]m:; lflst:;y
o 12experienced RV users Fixed bugs 130 | 24 7 1321241 21
o 1subject was an official ArduPilot developer ["performance damage | 0 0 0 o T o 0
e Ask participants to create Different from s | sk |k | 2.1 o "
o 5PGPatch formulas developers’ patches

[Total [181] 77 |
TABLE III: Summary of the qualitative evaluation.

o 5corresponding source-level patches

User Studv: Evaluation

of correct

answers

O=_NwWwprLO

3 &

==
‘;\!\““ 2 . 6
I A

«\‘:‘“4'6 40 31

2.~ 30
E 8

2 g2
q’ - —
5< 0

Editing Fixing bugs by Editing
source code using PGPatch
formulas

Fixing bugs by

source code using PGPatch

formulas

Is less error-prone compared to manually patching bugs

37

Logical Bugs in Drones and
Swarms (1)

A survey of recent papers
Presen ted by Akshith for A58
Oregon State University

Papers:

Part1 No code! Just behavior.

a. SwarmFlawFinder: Discovering and Exploiting Logic Flaws of Swarm Algorithms, Jung et. al,
IEEE Symposium on Security & Privacy May 2022

Part2 Yes code! Code analysis.

b. PGFuzz: Policy-Guided Fuzzing for Robotic Vehicles, Kim et. al.
The Network and Distributed Systems Security Symposium, Feb 2021

c. PGPatch: Policy-Guided Logic Bug Patching for Robotic Vehicles, Kim et. al.
|IEEE Symposium on Security & Privacy May 2022

https://www.computer.org/csdl/proceedings-article/sp/2022/131600b447/1FlQvj6isus
https://www.ndss-symposium.org/ndss-paper/pgfuzz-policy-guided-fuzzing-for-robotic-vehicles/
https://ieeexplore.ieee.org/document/9833567

Threat Model

We know what the mission and algorithm is !

No sensor spoofing, No malware in the system!

Basically looking for design flaws in the algorithm / software implementation.
Not memory corruption bugs

Only logical bugs

Why Focus on Logical Bugs?

e Survey of 1250 Software Bugs:
92.8% Logical Bugs
1.8% Memory Corruption Bugs

e 97% of logical bugs can lead to real physical harm.

SwarmFlawFinder: Discovering and
Exploiting Logic Flaws of Swarm
Algorithms

Chijung Jung® Ali Ahad*, Yuseok Jeon', and Yonghwi Kwon*
*University of Virginia, TUNIST

2022 |[EEE S&P

Drone Swarms

Complex system of drones that coordinate to complete a task.

e Search and Rescue
e Monitoring wildfires
e Agricultural Shepherding

Motivation

1. Test with adversarial scenarios.

2. Show critical logical flaws in swarm algorithm.

Systematize by building an effective and automated test system to find critical logic flaws in swarm
algorithms.

which is similar to ...

Fuzzing in Traditional Software Testing

How to efficiently find test inputs that cause a crash due to software flaw?

Random (Fuzz) Testing Traditional Software ®

e random data as test inputs to a program
o efficient strategies exist

e monitor for crashes, or potential memory leaks

coverage is a good proxy for how good a test input is)

But.. Random (Fuzz) Testing a Swarm Systems

coverage is NOT a good proxy for how good a test input is

Robotic system in general are designed to have:

e |ess-diverse control flow
e more-diverse data variance

Makes traditional software coverage-based methods

e ineffective in determining a test cases effectiveness
e ineffective in guiding the test generation

10

Contributions

1. Based ontheidea of Counterfactual Execution
2. Proposes an abstraction of Swarm’s Behavior (DCC - Degree of Causal Contribution)

3. Fuzzbased on DCC as feedback.

11

Counterfactual
Execution

)) p.

) Obstacle ») ¢

[Cmo] [e
Follower 1 ® Obstacle

time = 1 sec time = 2 sec

Original execution

¥ Delta(A))
[c%) Q2 a
RS - X
Follower 1
time = 1 sec time = 2 sec

Counterfactual execution
(without the obstacle)

Greybox Fuzzing
using DCC as feedback

~

“1i=ial 7 Abstraction of Swarm’s Behavior Step 3
Mhior -

Time = 265
T=r.fl=bl.fR2=brf3=0r
o
x
Attack drone causing a victim drone (F3) to

Top-view of the simplified mission . : ;
crash into the wall (physical experiment).

PIV290P8200P004P90PLPIPPEPPLPECILVVPPPPPPOPAS

Degree of Causal Contribution (DCC) for Follower 1 Corresponding event in simulation.

12

42 Logic Flaws

Name Adaptive Swarm SocraticSwarm Sciadro Pietro’s
SLOC 3,091 9,920 3,851 752
Objective Multi-agent navigation Coordinated search Distributed target search Coordinated search and rescue
Umgue # of 20 3 6 3
logic flaws
sDetached drone Detached drone

Example of
logic flaws

Swarm

Drone is detached
from a swarm

Swarm

Drone is detached
from a swarm

Drone crashes into
external objects

Victim drones try to detour without
considering the surrounding

13

SwarmFlawFinder

Swarm Algorithms that were tested

from 44 Academic Papers from 29 GitHub Repositories
73 Academic

€@ Papers and Public *-« 27
GitHub Repos = o =1 —— ;
Without 46 Algo. with Source Code i
Source Code y
@ 46 Swarm Algorithms o ----eeeeee . 20 “
- : o = i
Not executable | 26 Executable Algo. !
(NE) v ¥

9 26 Executable Algorithms ®------------=mmmmmmmmmmmmmmmmmmoo oo . 22 g

Lacking swarm Selected

behaviors

Algorithm Selection Process

15

Swarm Algorithms

(a) Adaptive Swarm (Navigation)

(b) SocraticSwarm (Coordinated search) (c) Sciadro (Distributed search)

collision avoidance logic is present in all 4

(d) Pietro’s (Search and rescue)

16

Threat Model ... again

We know what the mission and algorithm is !
No sensor spoofing, No malware in the system!

Basically looking for design flaws in the algorithm / software implementation.

17

Overview - Testing Loop

Feedback-driven fuzzing

Output

O

‘s i r. ASITE '
€5 ol [T e REIORO: s ran
= B ao| success x|x|l [x|x)] % (No errors found)
Swarm algorithm _x. Zﬂ_j R x X x
. 3 " Lol Lol 5
3yt XX O OsxO6 X
X &,‘\ao—po—o x Fixx| F] *** —— X xA\'Jo
x " x| 1 1% “ v »
K : ’ ¢ : est evaluation > S
Swarm mission Test creation and execution Execution perturbation) { X
using Dcc values o
| Attack drone
— - configurations, causing
© Mission failure mission failures

18

We Know/Given

e Swarm Mission

e Swarm Algorithm

o T mm Emm o == —

\
1 Feedback-driven fuzzing Output
&b : ? I ey €]
T’H @ Missi ;(;)‘ ol O @;mi = *9—> Timeout
D B ~ x| x| | T I X N found
Swarm algorithm | |\ _l_i__, SUCCESS 1171 M1 1% (No errors found)
’ w 0 _@ | | _@ | | . ap ;
W + 1 il 2] Ca) o Vielx : X ¢
x XN 0 x Dl s == — x "
%)—\a T’._’ I s rﬂl f HK -) Jxx A\;,o
Swarm mission | Test creation and execution Execution perturbation TFSI S L (X
using Dcc values
1 Attack drone
1 L — - configurations, causing
J © Mission failure mission failures
______ -

We know what the mission and algorithmis !
No sensor spoofing, No malware in the system!

Basically looking for design flaws in the algorithm / software implementation.

19

We know what the mission and algorithmis !

No sensor spoofing, No malware in the system !

Basically looking for design flaws in the algorithm / software impleme

How do we provide a test input?

F,

oy
el - " (’

(a) Attack drone and obstacle approach the victim swarm (b) Attack drone influences a victim drone (c) Leader drone crashed into the obstacle

Use an attack drone.
20

Test Case

e attack pose:{xy,z}

©Ps

D

Swarm algorithm |

o X ') 1
xjx%‘\ao-'—»—’ I

Swarm mission |

e attack strategy : {chasing}

Flight
direction

=X

(Cmo)
Victim drone Attack
drone
Pushing Back

Flight
direction

O

Ca) ?)
Attack victim drone
drone

Chasing

I‘ Output
1 ' I T o|
I—”’_’ - Misgi '@‘%‘T f % @4347_ [+ *9—> Timeout
_@ . £ succl'ess t l" : e : r}[%]: (No errors found)
Plx - 9 [06HO6H : x
r Y % .)
X 1 AR . | B
Test creation and executiof Execution perturbation WG ®x

using Dcc values
Attack drone

J © Mission failure

o ——
~

QP
Attack Attack
V] drone
' drone
Victim drone
Dividing

configurations, causing
mission failures

W
(CmV]
(cS)]
o
Victim drones

Herding

21

A Y
l/ L
1 Feedback-driven fuzzing I Output
¢ +] ' e
@I.:,‘. —— @ Mission '@,p‘_x f?; .!_x @mli | [+ *9—> Timeout
cD = x x %
Swarm algosithm [\ ,'_'&E specess f]ll X X f’[]x (No errors found)
Mt .’(;\(ix o '@J‘; Qg : x .
Exec and Eval % ¥ \oo—e—s[T 1 [¥) 1 [rifirig - X B
] . X 0 omen x
Swarm mission Test creation and execqun Execution perturbation T.eS' evalua[hon (X
using Dcc values
1 Attack drone
| 1 — - configurations, causing
\ © Mission failure / mission failures
D - /

Did the mission succeed or fail?

Drone crashes

Takes more than 2x the time relative to the unperturbed execution (without attack drone).
Did the attacker cause a new behaviour?

But how do you define a behavior? What is a new behavior?

22

Deg ree of Causal Contribution wased on counterfactual execution)

Counterfactual
Execution

(8] [c87]
(xJ Obstacle ’ (JX\)
E Obstacle
Follower 1
time = 1 sec time = 2 sec

Original execution

Delta (A,)
(%)) G2 a4
() -» <X>
Follower 1
time = 1 sec time = 2 sec

Counterfactual execution
(without the obstacle)

Abstraction of Swarm'’s Behavior

Time = 265
I=r,fl=0bl12=0brf3=o0r
0
x
x

Top-view of the simplified mission

~

Degree of Causal Contribution (DCC) for Follower 1

23

Degree of Causal Contribution .t euidean distance)

(‘015‘.

@ -
Follower 1 Obstacle

QP
R
Leader
_QP
RS
Follower 2
Original swarm
mission

Delta (A) Delta

.

e P

O |
Followen 1

Y
R

Alternative 1:
without the obstacle

A

(Obstacle

A,),

'(")lf.

L)

Follower 1

' Leader
' QP
X

éAItemative 2
without Leader

(Leader) Jf*--- :

3 <

l)ella(A‘) y
I A(i) g)’
(]

Follower 1

Follower 2

Alternative 3:
without Follower 2

(Follower 2) '

Follower 1

Degree of causal contribution

(DCC) values

24

Normalized Cross Correlation:NCC pegree of similarity of the DCC)

60 80 100 120
(a) Dcc from the original execution

20 40 60 80 100 120 140 160 180
(b) Dcc from the similar execution to (a) (NCC = 0.923, compared with (a))

20 40 60 80 100 120 140 160 180
(c) Dcc from the different execution to (a) (NCC = 0.650, compared with (a))
Legend

M Destination @ Follower 2 B Follower 3 [Attacker 1 [J Wall M Moving Obstacle

Fig. 6. Example of NCC scores from three executions.

Original Execution

Test Input causing Similar Behavior

Test Input causing New Behavior

25

\
1 Feedback-driven fuzzing I Output
@ + 1)
@I.:,‘. —— @ Mission '@,p‘_x f?; .!_x @mli | [+ *9—> Timeout
cD = x x %
Swarm algorithm |V ‘._'&?’_J s 1+]l % A r[Ix (No errors found)
o Koot Hx]X] TO ™ [0k O . % . x
Exec and Eval * 3 ¥ oo LI 1 frRBeR - X B
] N X 0 omen x
Swarm mission Test creation and execqun Execution perturbation T_eS' Gt inn (X
using Dcc vahues
1 Attack drone
L | — - configurations, causing
\ © Mission failure / mission failures
D - /

Did the mission succeed or fail?

Drone crashes

Takes more than 2x the time relative to the unperturbed execution (without attack drone).
Did the attacker cause a new behaviour?

But how do you define a behavior? What is a new behavior?

DCC and NCC

26

Test Case Mutation

if New Behavior:

(@)

(@)

make small mutation

change pose alone

if Same Behavior:

(@)

(@)

make big mutation

change pose and strategy

1 Output

e
/
‘ Feedback-driven fuzzing
- Il I
&P —e—s @ esion _Q:)ti@#_g L _(;ﬁ#
@D - ~ x| 7 5 X%
Swarm algorithm | _l ﬂ_u SI_l-cess [l‘: | ‘: 1 1%
e Flxlx "0~ [oLo5E
X N o —ro—> l x T
x 1 I 53 O O e .
‘est evaluation

Swarm mission

Test creation and execuli‘)n

Execution perturbation .
P using Dcc values

o) A

[**®—> Timeout

(No errors found)
o X Y

Attack drone
configurations, causing

© Mission failure

/ mission failures

27

ECEIRE

28

\
1 Feedback-driven fuzzing I Output
@ + 1)
@I.:,‘. —— @ Mission '@,p‘_x f?; .!_x @mli | [+ *9—> Timeout
cD = x x %
Swarm algorithm |V ‘._'&?’_J s 1+]l % A r[Ix (No errors found)
o Koot Hx]X] TO ™ [0k O . % . x
Exec and Eval * 3 ¥ oo LI 1 frRBeR - X B
] N X 0 omen x
Swarm mission Test creation and execqun Execution perturbation T_eS' Gt inn (X
using Dcc vahues
1 Attack drone
L | — - configurations, causing
\ © Mission failure / mission failures
D