
1

A11L.UAS.95_A58: Illustrate the Need for UAS Cybersecurity
Oversight & Risk Management

Appendix B: Task 3 Scenario Summaries and Lessons Learned

January 2, 2025

Modeling UAS w/ Chase

Garrett Mills <glm@ku.edu>

The UAS

Linux controller:
UxAS - flight plan & decisions

ArduPilot - directs flight hardware

Stat - reports state to UxAS/Ground

Flight hardware:
Sensors - current state of UAS

Hardware - physical flight controls

Ground Station/Network

Model consists of:

Architecture of UAS

Rules for corruption

Initial points of corruption

% Architecture of UAS
controls(network, uxas).
controls(uxas, ardu).
controls(ardu, hardware).

1
2
3
4

 5
informs(sensors, ardu).6
informs(stat, uxas).7
 8
% Rules for corruption9
cor(C1) & informs(C1, C2) => misinformed(C2).10
cor(C1) & controls(C1, C2) => puppet(C2).11
 12
% Initial points of corruption13
cor(network).14

% Architecture of UAS
controls(network, uxas).
controls(uxas, ardu).
controls(ardu, hardware).

1
2
3
4

 5
informs(sensors, ardu).6
informs(stat, uxas).7
 8
% Rules for corruption9
cor(C1) & informs(C1, C2) => misinformed(C2).10
cor(C1) & controls(C1, C2) => puppet(C2).11
 12
% Initial points of corruption13
cor(network).14

informs(sensors, ardu).
informs(stat, uxas).

% Architecture of UAS1
controls(network, uxas).2
controls(uxas, ardu).3
controls(ardu, hardware).4
 5

6
7

 8
% Rules for corruption9
cor(C1) & informs(C1, C2) => misinformed(C2).10
cor(C1) & controls(C1, C2) => puppet(C2).11
 12
% Initial points of corruption13
cor(network).14

% Architecture of UAS
controls(network, uxas).
controls(uxas, ardu).
controls(ardu, hardware).

1
2
3
4

 5
informs(sensors, ardu).6
informs(stat, uxas).7
 8
% Rules for corruption9
cor(C1) & informs(C1, C2) => misinformed(C2).10
cor(C1) & controls(C1, C2) => puppet(C2).11
 12
% Initial points of corruption13
cor(network).14

informs(sensors, ardu).
informs(stat, uxas).

% Architecture of UAS1
controls(network, uxas).2
controls(uxas, ardu).3
controls(ardu, hardware).4
 5

6
7

 8
% Rules for corruption9
cor(C1) & informs(C1, C2) => misinformed(C2).10
cor(C1) & controls(C1, C2) => puppet(C2).11
 12
% Initial points of corruption13
cor(network).14

% Rules for corruption
cor(C1) & informs(C1, C2) => misinformed(C2).
cor(C1) & controls(C1, C2) => puppet(C2).

% Architecture of UAS1
controls(network, uxas).2
controls(uxas, ardu).3
controls(ardu, hardware).4
 5
informs(sensors, ardu).6
informs(stat, uxas).7
 8

9
10
11

 12
% Initial points of corruption13
cor(network).14

% Architecture of UAS
controls(network, uxas).
controls(uxas, ardu).
controls(ardu, hardware).

1
2
3
4

 5
informs(sensors, ardu).6
informs(stat, uxas).7
 8
% Rules for corruption9
cor(C1) & informs(C1, C2) => misinformed(C2).10
cor(C1) & controls(C1, C2) => puppet(C2).11
 12
% Initial points of corruption13
cor(network).14

informs(sensors, ardu).
informs(stat, uxas).

% Architecture of UAS1
controls(network, uxas).2
controls(uxas, ardu).3
controls(ardu, hardware).4
 5

6
7

 8
% Rules for corruption9
cor(C1) & informs(C1, C2) => misinformed(C2).10
cor(C1) & controls(C1, C2) => puppet(C2).11
 12
% Initial points of corruption13
cor(network).14

% Rules for corruption
cor(C1) & informs(C1, C2) => misinformed(C2).
cor(C1) & controls(C1, C2) => puppet(C2).

% Architecture of UAS1
controls(network, uxas).2
controls(uxas, ardu).3
controls(ardu, hardware).4
 5
informs(sensors, ardu).6
informs(stat, uxas).7
 8

9
10
11

 12
% Initial points of corruption13
cor(network).14
% Initial points of corruption
cor(network).

% Architecture of UAS1
controls(network, uxas).2
controls(uxas, ardu).3
controls(ardu, hardware).4
 5
informs(sensors, ardu).6
informs(stat, uxas).7
 8
% Rules for corruption9
cor(C1) & informs(C1, C2) => misinformed(C2).10
cor(C1) & controls(C1, C2) => puppet(C2).11
 12

13
14

Ex.1: Simple Corruption

ArduPilot is corrupt

A component "mutates" another when it can
entirely compromise it

A component "informs" another when it
provides read-only information

Mutates Informs Corrupt

Ex.2: Control- & Data-Flow Separation

Network is corrupt

Introduced embedded controller

"Control" lets a corrupt component direct the
actions of another without corrupting it

Distinct from "mutates"

Mutates Informs Controls Corrupt Misbehaving

Ex.3: Misinformation & Misbehavior

Stat reporter is corrupt

Bad information travels along data flows

If component A is controlled by a misinformed
component B, then A will misbehave.

If A is both misinformed and misbehaving, then it
is fully compromised.

Mutates Informs Controls Corrupt Misbehaving Misinformed Misinformed,

Misbehaving

Ex.4: Sanitization

Network is corrupt

UxAS is protected by an authentication
check

e.g. Ground station can send messages, but 3rd-
party actor cannot

Mutates Sanitizes Informs Controls Corrupt Misbehaving Misinformed

Misinformed,

Misbehaving

Ongoing Work

Auto-generating models (corruption points, structures)

Automated analysis (scoring heuristics)

Analysis of UxAS in Coq

Analysis of UxAS in Coq

Documentation defines
core task pipeline as
collection of transition
systems

Model in Coq and
compose into a single
system

Inductive uxas_state :=
| UxasState
 (atom: nat)
 (messages: list uxas_message)
 (arvs: arvs_state)
 (task: task_state)
 (ras_agg: ras_aggregator_state)
 (ras_col: ras_collector_state)
 (atbbs: atbbs_state)
 (pbs: pbs_state)
.

1
2
3
4
5
6
7
8
9

10
11

A58 Monthly TIM: November, 2022
(UAS Static Analysis updates)

Outline

1. Overview of CHASE model finder
2. Overview of UxAS + architecture
3. Initial findings: Modeling UxAS architecture + attacks
4. Initial findings: Modeling UxAS message sequences

2

CHASE model finder (Overview)

• CHASE[1]
o Model finder for first-order logic with equality
o Open source: https://github.com/ramsdell/chase

• Model specifications
• Written in Finitary Geometric Form
• A1 & A2 & … & Am => C1 | C2 | … | Cn .
• Each Ai (Antecedent – Left of “=>”): Atomic Formula
• Each Cj (Consequent – Right of “=>”): Conjunction of Atomic Formulas (Bj,1 & Bj,2 & … & Bj,p)

• Custom Predicates
o P(c1, c2, …, cn)
o f(c1, c2, …, cm) = c0
o Example:

author(X) & paper(Y) & assigned(X, Y).
author(X) & paper(Y) => read_score(X, Y) | conflict(X, Y).
assigned(X, Y) & author(X) & paper(Y) => read_score(X, Y).
assigned(X, Y) & conflict(X, Y) => false.

3

[1] Ramsdell, J. D. Chase: A model finder
for finitary geometric logic.
https://github.com/ramsdell/chase, 2020.

https://github.com/ramsdell/chase
https://github.com/ramsdell/chase

CHASE model finder (Example)

4

[2] C. Parran et. al, Trust Analysis of Copland Phrases
(Tutorial), copland-lang.org, 2022.

https://copland-lang.org/

CHASE model finder (Example)

5

==>

Corruption
events

Repair
events

==>

[3] Petz, A., G. Jurgensen, and P. Alexander, Design and Formal Verification of a Copland-
based Attestation Protocol, ACM-IEEE International Conference on Formal Methods and
Models for System Design (MEMOCODE’21), Virtual, Nov 20-22, 2021.

UxAS (Overview)

• OpenUxAS[4]
o “Software architecture … to enable autonomous capabilities on-board unmanned

systems”
o Open source: https://github.com/afrl-rq/OpenUxAS
o Developed under AFRL’s ICE-T program

• Core software
o Implemented in C++
o LMCP (Lightweight Message Construction Protocol): Message structure +

serialization
o ZeroMQ: Data bus for publish/subscribe message passing between services

• Applications
o Collaboration algorithms (i.e. route planning) on-board UAVs
o Core functionality of Unmanned Ground Sensors (UGS)

6

https://github.com/afrl-rq/OpenUxAS

UxAS (Architecture)

7

UAS

UxAS AutoPilot

STAT

UAS Controller

UAS Hardware

Sensor

Actuator

Ground Station

UxAS

Network

References

• [1] Ramsdell, J. D., Chase: A model finder for finitary geometric logic.
https://github.com/ramsdell/chase, 2020.

• [2] Parran, C., I. Kretz, Ramsdell, J., and P. Rowe, Trust Analysis of Copland Phrases (Tutorial),
copland-lang.org, 2022.

• [3] Petz, A., G. Jurgensen, and P. Alexander, Design and Formal Verification of a Copland-based
Attestation Protocol, ACM-IEEE International Conference on Formal Methods and Models for
System Design (MEMOCODE’21), Virtual, Nov 20-22, 2021.

• [4] UxAS Developers, UxAS User’s Manual, https://github.com/afrl-
rq/OpenUxAS/tree/develop/doc/reference/UserManual, 2022.

8

https://github.com/ramsdell/chase
https://copland-lang.org/
https://github.com/afrl-rq/OpenUxAS/tree/develop/doc/reference/UserManual

Practical Software Defense for
GPS Spoofing on a Hobby UAV

Bailey Srimoungchanh
The University of Kansas

J. Garrett Morris
The University of Iowa

Drew Davidson
The University of Kansas

This Research

• GPS spoofing detection
• No need for pre-trained models
• Detects even subtle deviations
• Low false positive rate
• Fast time to detect attack

1

Sensor Spoofing

• Goal
– Implicitly control the behavior of a system

and cause it to behave irregularly
– Appreciable effect on the behavior of the

system

• Capabilities
• Knowledge of the system components and

software
• Subvert predictive models

• Complete control and knowledge of GPS
receiver

• Radio transmission
• Malicious firmwareRadio GPS Receiver

Sensor
Fusion

Accelerometer

Magnetometer

Optical Flow

Control
Program Actuation

�𝑥𝑥

�𝑥𝑥2Linear
Forces

Magnetic
Field

Light

�𝑥𝑥3

�𝑥𝑥4

�𝑦𝑦

2

�𝑥𝑥1

Key Insight
• Observations by the GPS need to confirm with observations by

other sensors

3

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2
GPS

Accelerometer

Defense Implementation

• Detect when 2 sensors are no
longer confirming within some
margin of error

• Modified ArduPilot
• Evaluated on Quadcopter

4

Challenge 1: Orthogonal Sensors

5

Requirement 2:
Have different physical attack surfaces

Requirement 1:
Measure different phenomena

Challenge 2: Disentangle Sensors
• Gyroscope

– Measure angular rate
• Optical Flow

– Derive velocity
• Entanglement

– Optical Flow rotates into GPS frame
– Uses rotation matrix from Compass
– Rotation matrix influenced by GPS

6

Challenge 3: Operating Limitations
• Yaw rate from GPS

– Too slow
• Altitude from rangefinder

– Too high
• Body rate from optical flow

– Too dark

7

Evaluation Questions

1. Does this technique have a low false positive rate?
2. Does this technique detect attacks within our threat model?
3. Does the technique address a credible attack undetected by

current approaches?

8

Benign Flights
• 100mx200m rectangle
• Maintain altitude of 10m
• Maintain speed of 10m/s
• 5 total flights
• Goal

– Collect sensor data

9

Adversarial Flights
• F-Subtle (4)

– Same mission as Benign Flights
– Spoofed 2.5m at a rate of

0.1m/s2 from real location
• L-Overt

– Spoofed 2m from real location in
a single timestep and held there

• L-Subtle
– Spoofed 2m at a rate of 1m/s2

from real location and held there

10

Optical Flow Performance

• Average TTD of 2.04s
• Average Displacement of 7.81m
• False Alarm in 1 flight

11

False Alarm

• Single timestep
• Instability due to noise or

environmental conditions
• Can be smoothed with filtering

at the cost of delaying
detection

12

Gyroscope Performance

• No Loiter data
– Limitation of GPS

• Average TTD of 1.66s
• Average Displacement of 7.61m

13

Composable Defense

• Average TTD of 1.29s
• Average Displacement of

3.64m

14

Comparison to Existing Defenses

Are orthogonal sensors necessary in the context of other defenses?

15

Are they sufficient?
ArduCopter Health Checks

F-Subtle 1
System Identification

F-Subtle 3 and F-Subtle 4

16

Future Work
• Develop a formal notion of good sensor candidates and build

tooling that can automatically identify entanglement
– Identification of sensor pairs and discovering entanglement was a manual

process
• Generalize our approach to more than just GPS spoofing detection

17

Conclusion
• We show how orthogonal sensors are effective and can overcome

the limitations of sensor fusion
• Implement a novel defense that detects GPS spoofing with either a

Gyroscope or an Optical Flow sensor
• Evaluate our defense with live flight tests

– 0.001% False Positives
– 1.29s Average Time-To-Detection

18

Thanks for listening!
Data and Implementation files can be found in the OSF Repository:

https://osf.io/qj97w/?view_only=721a3b784e004465a0f8bbd548da09c6

QR Code to the repository:

Acknowledgements
Jayhawk Model Masters for providing us a safe testing site

Flight Research Lab at The University of Kansas for data collection

Questions?
19

Presentation on
Ardupilot SITL

Name: Sadia Afrin Ananna

Ph.D. Student in Electrical and Computer Engineering,

Drexel University

Supervised By: Dr. Steven Weber

What is SITL?

- SITL(Software In The Loop) is a build of the autopilot code using C++ compiler.

- SITL simulator allows us to run plane, copter or rover without any hardware.

- ArduPilot is a portable autopilot that can run on a very wide variety of platforms. Our PC is

just another platform that Ardupilot can be built and run on.

- SITL takes the advantage of the fact and so it allows us to run ArduPilot on our PC directly

without any special hardware.

ArduPilot

- ArduPilot is an open source, unmanned vehicle AutoPilot Software Suite. It enables the

creation and use of trusted, autonomous, unmanned vehicle systems.

- Since ArduPilot is an open-source project, it is constantly evolving based on rapid feedback

from a large number of users.

- Being coupled with ground control software, unmanned vehicles running ArduPilot can have

advanced functionality

- ArduPilot has a wide range of vehicle simulators built in. Also, it can interface to several

external simulators.

ArduPilot(Contd.)

- Although ArduPilot does not manufacture any hardware, ArduPilot firmware works on a

wide variety of different hardware to control unmanned vehicles of all types.

i. Copter

ii. Plane

iii. Fixed-wing aircrafts

iv. Rover

v. Multi-rotor drones

vi. Submarines

vii. Antenna trackers

Fig.1: Different type of unmanned vehicles that ArduPilot

firmware can work on.

ArduPilot Hardware and Firmware
- Hardware: It is the peripheral sensors, controllers and output devices that acts as the vehicle’s eyes,

ears, brain and arms. It runs on a variety of hardware platforms such as Navio2, Pixhawk, Parrot Bebop

etc.

- Firmware: It is the code running on the controller. The firmware can be chosen to match the vehicle and

mission: Copter, Plane, Rover, Sub, or Antenna Tracker.

Fig.2: Different type of autopilots.

Ground Control Station
- Software: It is the interface to the controller. Also called a Ground Control Station (GCS), the software

can run on PC’s or mobile devices.

- Ground Control Station runs on a ground-based computer, that communicates with the UAV

via wireless telemetry.

- It displays real-time data on the UAVs performance and position and can serve as a “virtual cockpit”,

showing many of the same instruments.

- A GCS can also be used to control a UAV in flight, uploading new mission commands and setting

parameters.

- It is often also used to monitor the live video streams from a UAV’s cameras.

Ground Control Station(Contd.)
- There are at least ten different ground control stations. On desktop, there is:

- For Tablet/Smartphone there is :

- The decision to select a particular GCS often depends on your vehicle and preferred computing

platform.

• Mission Planner,

• APM Planner 2,

• MAVProxy,

• QGroundControl and

• UgCS

• Tower (DroidPlanner 3),

• MAVPilot,

• AndroPilot and

• SidePilot

Ground Control Station(Contd.)
- Mission Planner is a full-featured GCS supported by ArduPilot. It offers point-and-click interaction

with your hardware, custom scripting, and simulation.

Fig.3: Mission Planner Ground Control Station.

Background of ArduPilot
- In year 2007, Jordi Munoz and Chris Anderson wrote an Arduino program (which he called

“ArduCopter”) to stabilize an RC helicopter.

- In 2009 Munoz and Anderson released Ardupilot 1.0 (flight controller software) along with a hardware

board it could run on.

- The years 2011 and 2012 witnessed an explosive growth in the autopilot functionality and codebase

size, thanks in large part to new participation from Andrew Tridgell and Pat Hickey. Tridge's

contributions included automatic testing and simulation capabilities for Ardupilot, along with

PyMavlink and Mavproxy.

- Between 2013 and 2014 ArduPilot evolved to run on a range of hardware platforms and operating

system.

- In late 2014, the DroneCode was formed and in Fall 2015 again, with a swarm of 50 planes running

ArduPilot simultaneously flown. Within this time period, ArduPilot's code base was

significantly refactored, and the code evolution continues.

Intended Scope

- The basic goal of the software is to provide control of the vehicle. It can be done either autonomously,

or via pilot input through radio control transmitter. It can also be done through ground control station.

- ArduPilot offers a wide range of features and capabilities including:

• Autonomous flights.

• Telemetry.

• Sensor integration

• GPS-base navigation

• Customization.

ArduPilot use cases

• Aerial photogrammetry

• Aerial photography and filmmaking.

• Remote sensing

• Search and rescue

• Robotic applications

• Academic research

• Package delivery

Integration with software packages

- Ground control stations(GCS): ArduPilot can

integrate with various GCS software, including

Mission Planner, MAVProxy, QGroundControl

etc.

- Simulation: ArduPilot can integrate with

simulation software such as ArduPilot-SITL.

Fig. 4: MAVProxy command prompt,console and map.

Security Objective Threats Mitigations

Confidentiality Eavesdropping Data link encryption

Identity spoofing

Hijacking

Integreity Man-in-the-middle Hash Authentication MAC

Message modification

Replay attack

Availability Jamming Authentication

Routing attack

Flooding

Cyber-security Threats and Counter
Measures

Future plan

- Mission Planner Simulation allows us to see the expected behavior for vehicles in missions, or with a

joystick attached, be able to fly/drive the vehicle simulation as if with RC.

- Mission Planner supports swarming or formation-flying with multiple drones or UAVs (Unmanned

Aerial Vehicles).

- This concept can be useful to design and implement tests to attack UAS (Unmanned Aerial Vehicle).

Demonstration

Thanks

Logical Bugs in Drones and
Swarms (2)
A survey of recent papers

Presented by Akshith for A58

Oregon State University

1

Papers:

Part 1 No code! Just behavior.

a. SwarmFlawFinder: Discovering and Exploiting Logic Flaws of Swarm Algorithms, Jung et. al,
IEEE Symposium on Security & Privacy May 2022

Part 2 Yes code! Code analysis.

b. PGFuzz: Policy-Guided Fuzzing for Robotic Vehicles, Kim et. al.
The Network and Distributed Systems Security Symposium, Feb 2021

c. PGPatch: Policy-Guided Logic Bug Patching for Robotic Vehicles, Kim et. al.
IEEE Symposium on Security & Privacy May 2022

2

https://www.computer.org/csdl/proceedings-article/sp/2022/131600b447/1FlQvj6isus
https://www.ndss-symposium.org/ndss-paper/pgfuzz-policy-guided-fuzzing-for-robotic-vehicles/
https://ieeexplore.ieee.org/document/9833567

Motivation

● 1.8% are memory corruption bugs

● 98.2% of bugs are logic bugs

○ 97.3% logic bugs lead to physical damage

3

Threat Model

We know what the mission and algorithm is !

No sensor spoofing, No malware in the system !

Basically looking for design flaws in the algorithm / software implementation.

Not memory corruption bugs

Only logical bugs

4

PGFuzz: Policy-Guided
Fuzzing for Robotic Vehicles
Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, and Dongyan Xu
Purdue University

2021 NDSS

5

Components of a Drone/Robotic Vehicle

6

Fuzzing a Drone: Traditional Fuzzers

Fail-safe mode must be triggered when the engine temperature is higher than 100 C° (212 F°)

7

PGFuzz

Software Fuzzing

Image: Connected Papers

Fuzzing a Drone: Existing Drone Fuzzers

Can fuzzers specialized for RVs discover the design flaw? (RVFUZZER)

9

Fuzzing a Drone: PGFuzz

Existing methods DO NOT:

1. Know the RV’s correct behaviors

2. Consider entire input space

But PGFuzz …

10

PGFuzz: Defining policies in formulas

11

PGFuzz: Finding inputs for mutation
(Reducing fuzzing space)

Huge fuzzing space

- 1,140 configuration parameters

- 58 user commands

- 168 environmental factors

Only mutating inputs relevant to the policy

12

PGFuzz: Finding inputs for mutation
(Reducing fuzzing space)

Policy consists of terms (physical states) - Decompose the formula into terms (states)

Mutate inputs related to the terms

13

PGFuzz: Mapping parameters to each term
(Reducing fuzzing space)

Static analysis to identify which states are affected by each parameter.

14

PGFuzz: Mapping other types of inputs to each term
(Reducing fuzzing space)

How to map environmental factors and user commands to each term from source code?

Use an RV simulator!

15

PGFuzz: Two types of distances to mutate inputs
(Building distance metrics)

Propositional distance: To efficiently mutate inputs. Quantifies how close a proposition to the policy

violation

16

PGFuzz: Two types of distances to mutate inputs
(Building distance metrics)

Global distance: to detecting a policy violation

17

PGFuzz: Example
(Building distance metrics)

18

Evaluation

RV control software

ArduPilot, PX4, and Paparazzi

56 extracted policies

Fuzzing 48 hours per each control software

Found 156 bugs

Violating 14 policies in the three-control software

19

PGPatch: Policy-Guided Logic
Bug Patching for Robotic
Vehicles
Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, and Dongyan Xu
Purdue University

2022 IEEE S&P

20

Previous work : PGFUZZ

● Discovered 156 logic bugs using linear temporal logic formula

● Correct behavior vs Incorrect behavior defined using LTL

21

Linear Temporal Logic

22

Main Idea: Can we fix these automatically?

Can we automatically fix these logical errors?

23

PGPatch

Program Repair

Image: Connected Papers

Limitations of existing tools

1. Largely focus on fixing memory corruption bugs

2. Need a complex set of test cases

3. Use constraint solver - Poor support for floating
point operations

25

Can we reuse the LTL formulas to fix them automatically?

26

PGPatch: Overview

27

1. Parse the Formula

28

2. Map formula terms to variable in source code

Heuristics:

1. RV software port the configuration

parameters from XML files to source code

2. RV software’s strict coding conventions

eg: Each variable’s name denotes a physical

state

29

3. Analyze how to access the mapped variables

30

4. Generate patch

31

5. Patch Verification

32

Supports 5 patch types

1. Disabling a statement

2. Checking valid ranges of configuration parameters

3. Updating a statement

4. Adding a condition check
5. Reusing an existing code snippet

33

Evaluation
● RV control software

○ ArduPilot

○ PX4

○ Paparazzi

● Dataset
○ 94 logic bugs from GitHub commit history

○ 203 logic bugs from RV fuzzing works (PGFuzz and RVFuzzer)

● PGPatch succeeds in fixing 258 out of 297 bugs
○ 86.9% success rate

34

User Study: Usage scenario

35

User Study: Evaluation

How efficient is PGPatch in patching logic bugs compared to manual patching ?

● Recruit

○ 6 RV developers

○ 12 experienced RV users

○ 1 subject was an official ArduPilot developer

● Ask participants to create

○ 5 PGPatch formulas

○ 5 corresponding source-level patches

36

User Study: Evaluation

Is less error-prone compared to manually patching bugs

37

Logical Bugs in Drones and
Swarms (1)
A survey of recent papers

Presented by Akshith for A58

Oregon State University

1

Papers:

Part 1 No code! Just behavior.

a. SwarmFlawFinder: Discovering and Exploiting Logic Flaws of Swarm Algorithms, Jung et. al,
IEEE Symposium on Security & Privacy May 2022

Part 2 Yes code! Code analysis.

b. PGFuzz: Policy-Guided Fuzzing for Robotic Vehicles, Kim et. al.
The Network and Distributed Systems Security Symposium, Feb 2021

c. PGPatch: Policy-Guided Logic Bug Patching for Robotic Vehicles, Kim et. al.
IEEE Symposium on Security & Privacy May 2022

2

https://www.computer.org/csdl/proceedings-article/sp/2022/131600b447/1FlQvj6isus
https://www.ndss-symposium.org/ndss-paper/pgfuzz-policy-guided-fuzzing-for-robotic-vehicles/
https://ieeexplore.ieee.org/document/9833567

Threat Model

We know what the mission and algorithm is !

No sensor spoofing, No malware in the system !

Basically looking for design flaws in the algorithm / software implementation.

Not memory corruption bugs

Only logical bugs

3

Why Focus on Logical Bugs?

● Survey of 1250 Software Bugs:

92.8% Logical Bugs

1.8% Memory Corruption Bugs

● 97% of logical bugs can lead to real physical harm.

4

SwarmFlawFinder: Discovering and
Exploiting Logic Flaws of Swarm
Algorithms
Chijung Jung∗, Ali Ahad∗, Yuseok Jeon†, and Yonghwi Kwon∗

*University of Virginia , †UNIST

2022 IEEE S&P

5

Drone Swarms

Complex system of drones that coordinate to complete a task.

● Search and Rescue

● Monitoring wildfires

● Agricultural Shepherding

6

Motivation

1. Test with adversarial scenarios.

2. Show critical logical flaws in swarm algorithm.

Systematize by building an effective and automated test system to find critical logic flaws in swarm

algorithms.

7

which is similar to …

Fuzzing in Traditional Software Testing

How to efficiently find test inputs that cause a crash due to software flaw?

8

Random (Fuzz) Testing Traditional Software

● random data as test inputs to a program

○ efficient strategies exist

● monitor for crashes, or potential memory leaks

coverage is a good proxy for how good a test input is

9

But… Random (Fuzz) Testing a Swarm Systems

coverage is NOT a good proxy for how good a test input is

Robotic system in general are designed to have:

● less-diverse control flow

● more-diverse data variance

Makes traditional software coverage-based methods

● ineffective in determining a test cases effectiveness

● ineffective in guiding the test generation
10

Contributions

1. Based on the idea of Counterfactual Execution

2. Proposes an abstraction of Swarm’s Behavior (DCC - Degree of Causal Contribution)

3. Fuzz based on DCC as feedback.

11

12

42 Logic Flaws

13

SwarmFlawFinder

14

Swarm Algorithms that were tested

15

Swarm Algorithms

collision avoidance logic is present in all 4

16

Threat Model … again

We know what the mission and algorithm is !

No sensor spoofing, No malware in the system !

Basically looking for design flaws in the algorithm / software implementation.

17

Overview - Testing Loop

18

We Know/Given

● Swarm Mission

● Swarm Algorithm

We know what the mission and algorithm is !

No sensor spoofing, No malware in the system !

Basically looking for design flaws in the algorithm / software implementation.

19

How do we provide a test input?

Use an attack drone.

We know what the mission and algorithm is !

No sensor spoofing, No malware in the system !

Basically looking for design flaws in the algorithm / software implementation.

20

Test Case

● attack pose : {x,y,z}

● attack strategy : {chasing}

21

Exec and Eval

Did the mission succeed or fail?

Drone crashes

Takes more than 2x the time relative to the unperturbed execution (without attack drone).

Did the attacker cause a new behaviour?

But how do you define a behavior? What is a new behavior?

22

Degree of Causal Contribution (based on counterfactual execution)

23

Degree of Causal Contribution (w.r.t Euclidean Distance)

24

Normalized Cross Correlation:NCC (Degree of similarity of the DCC)

Original Execution

Test Input causing Similar Behavior

Test Input causing New Behavior

25

Exec and Eval

Did the mission succeed or fail?

Drone crashes

Takes more than 2x the time relative to the unperturbed execution (without attack drone).

Did the attacker cause a new behaviour?

But how do you define a behavior? What is a new behavior?

DCC and NCC

26

Test Case Mutation

● if New Behavior:

○ make small mutation

○ change pose alone

● if Same Behavior:

○ make big mutation

○ change pose and strategy

27

Baseline

28

Exec and Eval

Did the mission succeed or fail?

Drone crashes

Takes more than 2x the time relative to the unperturbed execution (without attack drone).

Did the attacker cause a new behaviour?

But how do you define a behavior? What is a new behavior?

DCC and NCC

Did the mission succeed or fail?

Drone crashes

Takes more than 2x the time relative to the unperturbed execution (without attack drone).

29

SwarmFlawFinder vs Random testing

30

Results

How effective are the test cases generated from
SwarmFlawFinder vs the Random testing?

31

Test cases Distribution

Legend:

Red dots - Mission Failures
Blue dots - Mission Success

Big Dots - Unique Behavior
Small Dots - Duplicate Behavior

plotted w.r.t initial spatial distance of the attacker from
the swarm.

32

Distribution of Test cases

● 2x more unique swarm behaviors

● in much smaller search space

● 25% more failure cases

33

Root Cause Analysis
(Manual Analysis)

34

Root cause: Example 1

 leader does not consider followers as external objects

35

Root cause: Example 2

algorithm computes the centroid of all drones to measure the current position of the swarm
as the centroid is not falling behind, the leader keeps moving forward

36

Comments

37

Comments

The authors acknowledge that:

● there can be more sophisticated attack strategies, which may improve the SwarmFlawFinder’s

performance.

● do not argue that DCC is a direct abstraction of the swarm behavior, but it is an approximation of

the abstraction.

● however argue that it captures the behavior differences of swarm algorithms effectively.

38

Thank you!

39

Extra Slides

40

A Logical Flaw wrt Naive Multi Force Handling

Naive Multi Force handling

1. F
G

 = Force towards goal

2. F
O

 = Force against obstacle

3. F
A

 = Force against attacker

Net Force results in a Crash

41

Attack Example

42

DCC Calulation

43

DCC based on Counterfactual Causality

Degree of Causal Contribution DCC : Impact of external factors measured by drone’s reaction.

Counterfactual causality: If A has not occurred, B would not have occurred.

Actual execution - all external factors present.

Alternative Executions - without external factors one at a time.

44

Computing DCC

45

46

47

48

49

Thank you!

Questions?

38

System Call Processing Using
Lightweight NLP for IoT Behavioral

Malware Detection
John Carter, Spiros Mancoridis, Malvin Nkomo, Steven Weber &

Kapil R. Dandekar

Introduction
● IoT devices have quickly become used in

many aspects of everyday life, such as

security cameras, UAVs, air quality

sensors and many more, which makes

their security increasingly important

● In this work, we look at a small, yet

usable, IoT ecosystem as a testbed for

deploying and detecting malware

● Specifically, we use a multi-modal

open-source IoT platform named VarIoT

which has dozens of connected devices

https://mashable.com/deals/june-8-foldable-hd-drone

https://www.amazon.com/Security-Wireless-Outdoor-Spo

tlight-Detection/dp/B09DSMZ387

https://www2.purpleair.com/products/purpleair-pa-ii-flex

Introduction
● The VarIoT-gateway connects an Air

Quality Sensor and a VarIoT server for

remote data sharing

● The Air Quality Sensor communicates with

the VarIoT server once every minute and

uses TLS encryption

● Our goal is to deploy malware onto the

gateway and detect it using behavioral

malware detection

● We show that while a machine learning

model trained with a simple unigram

representation of system calls works well for

noisier and more disruptive malware, it does

not perform as well for stealthier malware

Malware - Advanced Persistent Threat
● Advanced Persistent Threat (APT)

○ An APT is a type of malware often used

for espionage and spying, sometimes by

nation-states and other larger

organizations

○ In this work, the APT is designed to copy

and exfiltrate the contents of files to a

user-specified remote host

○ A C&C server initiates and supervises the

data exfiltration

○ It is randomized in terms of its exfiltration

behavior, which is shown in the figure to

the right

Malware - Denial of Service using Netwox
● Denial of Service (DoS)

○ The DoS is a simpler type of malware that seeks to make a host inoperative by overloading the host

with packets

○ In this work, the DoS malware uses a TCP Reset Attack to sever the connection between the IoT

device and the VarIoT server

■ A TCP Reset Attack listens to an ongoing TCP connection and then sends a spoofed packet

with the “R” flag set to the victim, which will terminate the TCP connection

● Netwox, a popular network utility, is used for the TCP Reset attack

○ netwox is first downloaded onto the gateway by our malware using the standard apt-get procedure

common on Linux machines

○ It is unpackaged and ready to attack the communication between the Air Quality Sensor and the

VarIoT server using the netwox 78 attack

Data Collection
● The raw data consists of system calls

executed on the VarIoT-gateway

○ Collected during periods of benign

behavior and of malware execution on the

device

● Grouped by timestamp using a

user-specified window size, which is a

parameter that breaks up the total

amount of data collection time into a

user-specified number of buckets

https://www.tutorialspoint.com/what-are-system-calls-in-operating-system

Data Processing using NLP
● bag-of-n-grams approach

○ The feature set is composed of the

number of observations of each n

consecutive system calls in a particular

time window

○ A value of n = 1 was chosen, which means

the feature set consists simply of the

number of times each system call was

observed during each time window

○ The number of observations of the

system calls were then normalized using

Term Frequency-Inverse Document

Frequency (TF-IDF)

Experimental Results Overview
● Area Under the Receiver Operating Characteristic Curve (AUC) is used to

measure the efficacy of the models

● AUC measures a classifier’s ability to differentiate between classes in the data and

is useful as a summary of the Receiver Operating Characteristic (ROC) curve

● Three specific malware are used for evaluation

○ Stealthy APT malware

○ A simple installation and uninstallation script, which is responsible for repeatedly downloading

netwox, unpackaging and installing it, and then removing it from the device. This is useful to show

how easily these simple ML models can detect the malware before any execution starts, which is

especially important for zero-day attacks

○ The randomized netwox, which not only encompasses the installation/uninstallation process, but

also executes the netwox TCP Reset Attack for a random duration of time.

Experimental Results - Logistic Regression
● Logistic Regression is one of the most

lightweight, yet effective, machine

learning models suitable for our task

○ LR also does not require much data for

training, also making it ideal for our

problem space

● The results show that the LR model

could easily detect the netwox-related

malware, but struggled more to

detect the APT

Experimental Results - Neural Network
● As with the LR model, the NN is

easily able to detect the

netwox-related malware, but again

struggled more to detect the APT

● The AUC values for both the LR and

NN models follow the same

trajectory and have essentially the

same values for the netwox-related

malware, with the only major

difference being that the NN had

marginally better results for the APT

malware

Conclusions
● Two lightweight and efficacious machine learning classifiers were built

○ Both were successful in classifying malware, especially the netwox-related malware

● The models can detect the installation/uninstallation malware using only 1 minute

of training data with greater than 90% Area Under the Curve

○ A very useful finding for users - if malware can be stopped early before it executes, the user has a

chance to prevent malware from damaging their system

● Both models were also able to detect the randomized netwox with greater than

90% Area Under the Curve

● The models were significantly less successful in classifying the APT malware

○ The randomization of the APT's behavior, as well as its much smaller system call footprint, make it

more difficult to detect using only the lightweight NLP data representations used in this work

Future Work
● Use more advanced NLP techniques, such as Recurrent Neural Networks (RNN),

Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM)

● Use other IoT devices that communicate using a variety of protocols, such as:

○ Bluetooth

○ LoRa

○ ZigBee

○ SigFox

○ UHF RFID

○ mmWave radar

● Expand this research to include UAVs and potentially more types of UAV-focused

malware attacks, such as spoofing and jamming on UAV GPS systems and

Man-in-the-middle attacks

Extension to UAV
● Attack surface

○ Drone on-board control

○ Raspberry Pi taking photos from the

drone

○ Drone remote control

○ Computer processing data from the

Raspberry Pi

● Each of these places can be targeted

by malware and are possible locations

for malware detectors

Malware Survey
A58 TIM

Spiros Mancoridis, John Carter

Drexel University

Introduction

● Software has had a net positive impact on

society, but a small subset of users impact

society negatively with software called

“malware”

● Malware can infect any host, including

Internet of Things (IoT) devices like

Unmanned Aerial Vehicles (UAVs)

● These malware can take different forms
○ Encrypted malware

○ Polymorphic malware

○ Metamorphic malware

IoT Ecosystem

The IoT Ecosystem has three main

components, but can include four

● Device - hosts such as UAVs, smart

thermometers, etc.

● Gateway - the device’s access to the

outside world

● App - some server with which a user can

manipulate the device

● Cloud - optional, but can be used for

data storage from the device as well as

hosting the user app, etc.

Types of Malware Attacks

Common malware attacks can include:

● Viruses - any malware that spreads between hosts by replicating themselves

● Trojans - attacker places malicious code into a benign application to gain control of the

IoT device in order to, for example, exfiltrate data

● DoS attacks - attacker overloads component(s) of IoT device, such as the CPU or memory

access, leaving it unable to process requests

● Intrusion - attacker tries to gain control of a shell on the victim via ssh

● Power cut - attacker removes the power source from IoT device

● Overheating - attacker places heat source near victim, causing it to overheat and

malfunction

Malware Detection Methods

● With or without machine learning (ML)?

○ Non-ML malware detection uses

signature analysis

○ ML uses tools such as honeypots

to capture malware data and

study its behaviors

● Anomaly detection has become the

preferred method due to
○ Limited resource consumption

○ Works well for zero-day attacks

Example ML-based detection pipeline

Data Acquisition

A common way to create malware data

organically is to use a honeypot, which lures

potential hackers and allows for security

researchers to study their code

● Can accomplish this with lax security

measures, as well as other things

● Example is IoTPOT, which uses Telnet as

its siren

● Another way is to create multiple virtual

private network (VPN) tunnels

forwarding to an IoT device

https://medium.com/@mr.jchens/how-to-set-up-a-honeypot-in-10-minutes-580e5d990d32

Malware Mitigation Methods

● After detecting malware running on IoT devices, the next step is to mitigate the impact

● Propagation risk is high given the network interconnectivity of IoT devices

● One option is to confine infected nodes, but this is not usually feasible since it often

renders the device useless and can be based on a false positive

● Another option is a centralized framework to mitigate the effects of on a larger scale
○ IoT device is connected to a cloud server that collects data related to known IoT vulnerabilities

○ The server maintains vulnerability mitigation policies for known vulnerabilities and exposures

(CVEs) of the specific device it protects

Conclusion

● Research in securing UAVs and the networks in which they reside is an important

and interesting area of research

● This research is also at the intersection of two interesting and timely areas of

research: machine learning and cybersecurity

● Anomaly detection is useful for this task
○ Traditional machine learning models

○ RNNs for sequential data

● Network traffic data passing through the gateway and the system calls being

executed by the Linux kernel are useful datasets for malware anomaly detection

FAA Demo
John Carter, Spiros Mancoridis, Malvin Nkomo

21 March 2024

Introduction
● Many types of attacks can be directed at IoT devices

○ In this work, we focus on video streaming attacks

● Using an IoT ecosystem at Drexel comprised of Jetson nano based edge IoT
gateway running a the web server, a client, and a hacker, we show how a video
feed can be disabled

● Although the camera is stationary, the attack could be just as easily launched if
the camera were streaming video from a UAV using the VarIoT ecosystem that
supports multimodal sensors with WiFi, BLE, LoRa and ZigBee
○ The payload is reduced by implementing an edge deployment of the IoT ecosystem

● We show that a video feed can be easily disabled by standard Linux command
line networking tools

Experimental Setup
Four components

● USB Camera
● Jetson Nano - video web

server
● Hacker - gains remote

access to Jetson Nano
and launches attack

● Client - views video
stream from Jetson Nano

Malware Landing
● We assume the malware has already landed for simplicity, but it could have

infected the camera server via a remote attack and then download the
malicious netwox payload

● Some ways the malware could land on device
○ Weak default passwords for IoT devices and routers
○ Backdoors in downloaded or third-party software
○ Buffer overflow vulnerabilities
○ Race conditions in OS kernel software (like Dirty Cow)

● In this case, the network utility netwox is installed via apt-get and then
initiates the attack

TCP Reset Attack using netwox
● The attack uses the network utility netwox

○ netwox provides a suite of network utilities, one of which is a TCP Reset Attack
○ Also includes attacks such as syn flooding and tools like traceroute

● A TCP Reset attack is a denial-of-service (DoS) attack which floods a server
with many bogus packets making it unable to respond to genuine requests
○ In this case, they are TCP packets with the reset flag set to 1

● The attack is run directly on the Jetson Nano by a host that is connected
remotely

● While the attack is running, the video web server is inaccessible from the client

Conclusion
● A video feed was viewed on a client connected to a video web server living on

a Jetson Nano
● Malware living on the Jetson Nano was initiated via a remote connection from

another host
● The malware executes a TCP Reset Attack against the port from which the web

server is streaming the video
● Although this video is from a camera connected to a stationary Jetson Nano,

this could easily be a video feed from a UAV in flight

References
1. https://web.ecs.syr.edu/~wedu/Teaching/cis758/netw522/netwox-doc_html/to

ols/index.html
2. https://web.ecs.syr.edu/~wedu/Teaching/cis758/netw522/netwox-doc_html/to

ols/78.html
3. https://nordvpn.com/cybersecurity/glossary/tcp-reset-attack/
4. https://developer.nvidia.com/blog/jetson-nano-ai-computing/
5. https://www.elecbee.com/en-27983-No-Drive-Mini-USB-Camera-For-Raspberry

-Pi

www. ASSUREuas.org

ASSURE A58
Black hole network attack

October 17, 2024
Steven Weber

Drexel University

www. ASSUREuas.org

Outline

1. Routing protocols
2. Black hole routing attack
3. Black hole routing attack for UAS

www. ASSUREuas.org

Routing protocols

At each location in the network, the routing protocol should provide
direction as to the next stop on the lowest cost route to each possible
destination.

www. ASSUREuas.org

Network abstraction as a directed graph

• Treat all computing resources (computers, routers, switches,
relays, etc.) as vertices.

• Treat every direct communication link between resources as a
directed edge.

• Ensure each vertex knows the next hop on the lowest cost path to
each destination (e.g., 1 knows that 3 is the best way to get to 4)

Figure from https://en.wikipedia.org/wiki/Directed_graph

www. ASSUREuas.org

Handling multiple paths by computing cost-to-go

• There are often multiple paths to a destination: how does B decide
whether to use relay C vs. D in getting to E?

• Selecting between multiple routing options requires a cost
measure; there are many possible criteria (we will focus on the
simplest: hop count)

https://computersciencewiki.org/index.php/The_web_as_a_directed_graph

www. ASSUREuas.org

All-pairs shortest path (e.g., Floyd-Warshall)

• Routing requires solving the "all pairs shortest path" (ASPS)
problem in a distributed manner.

• Floyd Warshall algorithm solves ASPS, leverages the principle of
dynamic programming.

https://www.cl.cam.ac.uk/teaching/1516/Algorithms/apsp.pdf

www. ASSUREuas.org

Dynamic programming recursion

• Dynamic programming is the basis for most algorithms that find
lowest cost routes

• DP relies on program decomposition, instantiated using the
Bellman optimality equation (not shown here)

• Routing protocols exchange messages regarding cost-to-go to
compute solutions

https://en.wikipedia.org/wiki/Dynamic_programming

www. ASSUREuas.org

Outline

1. Routing protocols
2. Black hole routing attack
3. Black hole routing attack for UAS

www. ASSUREuas.org

Black hole routing attack

Vertex 3 is malicious:
• it may report lower than actual "costs to go" to its neighbors in

order to attract more traffic its way (e.g., 1 chooses 3 instead of 2
to get to 4)

• it may fail to relay traffic sent to it (e.g., 3 doesn't relay 1's traffic)

Hongmei Deng, Wei Li, and Dharma P. Agrawal, "Routing Security in Wireless
Ad Hoc Networks" IEEE Communications Magazine, vol. 40, no. 10, pp. 70-75,
October 2002 https://ieeexplore.ieee.org/document/1039859

https://ieeexplore.ieee.org/document/1039859

www. ASSUREuas.org

Outline

1. Routing protocols
2. Black hole routing attack
3. Black hole routing attack for UAS

www. ASSUREuas.org

Black hole routing attack for UAS
Runqun Xiong, Lan Xiong, Feng
Shan, and Junzhou Luo, "SBHA: An
undetectable black hole attack on
UANET in the sky," Wiley
Concurrency and Computation:
Practice and Experience, vol. 35,
no. 13, 2021
https://onlinelibrary.wiley.com/doi/1
0.1002/cpe.6700

https://onlinelibrary.wiley.com/doi/10.1002/cpe.6700
https://onlinelibrary.wiley.com/doi/10.1002/cpe.6700

www. ASSUREuas.org

Optimized Link State Routing Protocol (OLSR)

• Optimized Link State Routing (OLSR): a routing protocol designed for
mobile wireless networks (such as networks involving UAS)

• OLSR maintains a set of multipoint relays (MPR) which relay messages
between nodes, and are used in computing routes

• By positioning itself correctly, a malicious UAS can ensure that it will be
selected as an MPR by the MPR selection protocol

• In fact, the Sky Black Hole Attack (SBHA) replaces the Central Node:

www. ASSUREuas.org

Representative simulation results

SBHA significantly
increases the packet loss
rate relative to a
"normal" black hole
attack.

IoT Malware Survey

John Carter and Spiros Mancoridis

Department of Computer Science, Drexel University

19 April 2022

1 Introduction

Over the past few decades, software has evolved from being an obscure tool used
by few, to a ubiquitous tool used by virtually everyone. While software has had
a net positive impact on society, a small subset of users use it to impact society
negatively. The software they write, called “malware,” is costly and difficult to detect
and mitigate. The malware infects any host they manage to infect, including Internet
of Things (IoT) devices.

The Internet of Things can be described as a network consisting of “smart ob-
jects,” which are everyday items with Internet connectivity embedded into them to
give them remote data sharing capabilities [1]. The number of active IoT devices
has risen sharply during the past decade, and as a result, their security is very im-
portant. Many devices perform essential tasks that need to be running continuously
and uninterrupted, such as security cameras, home locks, heart monitoring devices,
and even Unmanned Aerial Vehicles (UAVs). Such devices are the potential targets
of malware, as are the components that help power them: gateway devices and the
cloud.

There are several common IoT attack models, such as Denial-of-Service or Dis-
tributed Denial-of-Service (DoS/DDoS) attacks, jamming, and spoofing [26]. DoS or
Distributed DoS attacks refer to when attackers flood the target server (with which
the IoT device communicates) with bogus requests, leaving the server unable to fulfill
the requests of the IoT device. Jamming refers to when attackers send fake signals
to interrupt ongoing communication between the device and the server(s) with whom
the device is communicating. This results in a depletion of the device’s resources,
such as power and/or bandwidth. Lastly, spoofing refers to when attackers imper-
sonate a genuine IoT device to gain unauthorized access to an IoT system in hopes
of launching another attack once inside, perhaps a DDoS attack.

Detecting malware attacks can be difficult. For instance, an attacker could embed
malware into trusted applications and/or could send malware over protocols that
are traditionally allowed by firewalls and access lists [22]. Another problem is that
attackers can try to obfuscate their malware or encrypt it, which presents further

1

IoT Malware Survey

challenges for someone trying to figure out what is happening on their network [22].
Scale tends to exacerbate these problems. Because of this, an organization with more
hosts on the network will generate more network traffic, thus making it even more
difficult to manually or automatically scrutinize the large amounts of data [22].

New methods for obfuscating malware have emerged, built on previous methods
to make their detection more difficult. One of the first methods used to try to cir-
cumvent traditional anti-virus software was encrypted malware. Encrypted malware
makes detection more difficult because they make the bit sequence of the malware
binary different than all of the bit sequences in the malware signature databases
created by anti-virus companies. Another way that adversaries can make malware
less detectable is by creating polymorphic malware, which alter the decryption code
each time a copy of the malware is created. This succeeds in making the detection
process more difficult, but not impossible, because once the code is decrypted, the
malware can be analyzed in the computer’s local memory. Once adversaries found
that polymorphic malware was not the best solution, a new idea emerged: metamor-
phic malware. Metamorphic malware modify all of their malware code, rather than
only the decryption code, every time the code is copied during the malware propa-
gation process. Metamorphic malware are less prevalent because they are harder to
create, but are more alarming due to their ability to bypass anti-virus software.

2 The IoT Ecosystem

The IoT ecosystem is divided into four main components: the app, the router or
gateway device, the cloud, and the IoT device. Each of these components are impor-
tant and need to be functioning correctly for the IoT device to work properly and as
expected. Below, is an illustration of these components, and each has a section in
this document devoted to their roles in the ecosystem.

2

IoT Malware Survey

Figure 1: The IoT ecosystem consists of a mobile/web app, an IoT device, a gateway,
and the cloud.

2.1 App

The app is the part of the IoT ecosystem with which a consumer interacts. Usually
either through a web app or a mobile app, these apps are where users can configure
their device, change the settings of the IoT device (such as the temperature on a
Smart thermometer), and get the information the IoT device is there to collect (i.e.,
“what is the current temperature of my home?”).

The most likely and possible attack vector for malware to manifest itself in apps
is through permissions granted to an app by an operating system. For example,
the Android mobile operating system (OS) has malware due to malicious apps that
exploit excessive permissions for certain apps that are available for download [13].
Each app running on the Android OS must declare the permissions it requires to
run, which provide access to device functions such as “INTERNET” or “SMS RECEIVED”
[13]. Attackers can create malicious apps that declare the permissions they need to
run, and thus are granted unneeded access to data such as text messages received or
Internet activity. These apps could potentially be used to control IoT devices, such
as an app that provides the live camera feed of an IP camera.

However, in terms of the IoT ecosystem, this component is less likely than the
others to be hacked or targeted for a number of reasons. The first reason is that
the app is likely on a device that the consumer uses regularly, and thus monitors
frequently. If something suspicious or malicious is happening on the app, the user is
much more likely to spot it rather than something suspicious happening on a device
that is likely not near them. The second reason is related to the first. Since the app
is probably either on a user’s laptop or mobile device, it’s more likely to be patched

3

IoT Malware Survey

and kept up-to-date. If the app is running on a phone or tablet, this is probably
even more likely, as far fewer malware are able to infect a cell phone in contrast with
an IoT device running an outdated version of Linux. The user probably will have
changed the default passwords and credentials on these devices as well, which is not
commonly done on IoT devices. While the app is an important component in any
IoT network, for the aforementioned reasons, this survey focuses more on the other
three components of the IoT ecosystem.

2.2 Router/Gateway Device

The router is an essential part of the IoT ecosystem, as it allows for the IoT device
and the user to be connected. The information exchanged between the device and
the user is at the mercy of the information the router allows to be exchanged. As a
result, there is an increasing amount of malware targeting the router. One example is
when infected routers are recruited to be part of DDoS attacks, similar to IoT devices
being recruited for the same purpose [4].

A router-specific example is malware that forces the router to drop certain pack-
ets, making communication difficult or impossible. Often this is accomplished by
requesting a packet resubmission when the packet has already been submitted suc-
cessfully. This action can harm the IoT device’s battery life, and diminish the net-
work’s throughput and increase its delay time [24]. One way to combat this issue is
to secure the gateway device or access point (AP), which will then ensure that the
communication flowing through it is unhampered. To accomplish this, for example,
one may implement an intrusion detection system (IDS) on the access point, and
let the IDS decide whether the access point is infected or not, as described in [24].
The IDS first keeps track of the number of packets flowing through the IoT device,
which includes the packets sent as a result of a NACK (no-acknowledgement) packet
sent from the gateway. The access point keeps track of the number of uplink packets
successfully received from the gateway. In addition, each IoT device updates the AP
regarding the number of packets sent through the non-main channel to the AP at a
regular time interval. In prior work, a higher time interval T yields a more accurate
classification of the anomaly with a higher probability [24]. This method proved use-
ful for determining if there is an adversary corrupting a communication between an
IoT device and an access point by way of an infected gateway device.

Securing the router connecting the IoT ecosystem is imperative, since without the
router the ecosystem is useless due to none of the devices being able to communicate.

2.3 The Cloud

The cloud usually consists of storage on servers belonging to a third party, such as
Amazon Web Services (AWS), where data is stored. For example, perhaps a user
has a Raspberry Pi with a web camera attached acting as a security camera. The
Raspberry Pi can transmit the feed to the user, but also to the cloud to save a record
of the video data. Although the cloud has malware concerns of its own, usually these
issues are monitored by their proprietors, such as Amazon, and are out of the scope

4

IoT Malware Survey

of this document. The important aspect of the cloud that pertains to this research
are the data retention policies employed by the cloud. In other words, users want
to know (and have control over) what data is stored in the cloud, and for how long.
The data retention policy will answer these questions and outline the data to keep or
delete based on the amount of time it has been available in the cloud [12]. With this
comes the problem of proof-of-deletion, which is basically the guarantee to the user
that the cloud no longer has access to the data and that is has been permanently and
irrecoverably deleted.

2.3.1 Docker Hub

A related issue is the security of reusable Docker Hub images. Docker containers have
become popular alternatives to traditional virtual machines over the past few years
to use applications shared over physical hosts [19]. Because of this, a registry called
Docker Hub was created, which acts as a type of cloud application where users can
upload and download Docker images. This registry shares both official and community
images to users. Official images are public and certified by vendors, such as Oracle or
Red Hat, while community images can be created by any user. The sharing of images
between users presents a potential security breach in which a user could inject malware
into an image that is then shared with other Docker users without their knowledge
of the pre-installed malware. In addition, new images (called child images) can be
created from current images (called parent images), which means malware can be
embedded in parent images and passed along to numerous child images.

Another reason to be alarmed about possible vulnerabilities with Docker is that
it, by default, runs with root privileges [25]. More than 350,000 images were ana-
lyzed in current research, and over 180 vulnerabilities were found on average in the
images [19]. This research also exposed that the vulnerabilities found in the images
often propagated from parent images to child images, similar to how malware are
spread in other types of attacks [19].

Docker provides a way to certify images by running their inspectDockerImage

tool, which minimally checks user-created images for adherence to some basic best
practices and rules. However, work by Wist et al. showed that over 80% of certified
images contain at least one critical vulnerability [25]. While there is some mechanism
for certifying Docker images, as shown, the current way is certainly not comprehen-
sive. Using machine learning anomaly detection could be a useful avenue of research
to explore, as more needs to be done to guarantee the security of images downloaded
from Docker Hub.

2.4 Device

The IoT device itself is a very important aspect of the ecosystem, and is often the
target of malware. These devices take many forms, and can be anything from a wind
meter to a refrigerator to a driving assistant in a car or a UAV.

5

IoT Malware Survey

2.4.1 Raspberry Pi

One device that is especially useful in IoT malware detection research is a Raspberry
Pi. Raspberry Pi’s are small, single-board computers that run a Linux distribution,
often the Debian-based Raspbian, as well as other Linux distributions such as Ubuntu.
The Raspberry Pi is desirable as a testbed for IoT research primarily for its ease of
use and its use of the Linux kernel, as well as its ability to act as many different IoT
devices, limited only by the users’ configuration. For instance, a Raspberry Pi could
be connected to a webcam and become an IP camera that is able to communicate
with other hosts via ssh, or it could run downloadable Amazon Alexa software and
become a customized AlexaPi [2]. Likewise, Raspberry Pi’s can also be used for
photography, surveillance and other tasks when connected to a UAV [17]. As such,
many different IoT ecosystems can be created simply by changing the configuration
of this one device.

2.4.2 IP Camera

A common type of IoT device that is the target of malware is an IP camera, which
can be used for tasks such as security or surveillance. In these areas, their security is
essential, as well as a guarantee of data integrity. If, for example, an IP camera in a
bank is compromised by a looping attack, the camera could capture an actual video
feed, and play back this old video recording when the bank is being robbed. Fur-
thermore, any IoT device is susceptible to malware, and while some may be deemed
more important than others, any device can be recruited to take part in a Distributed
Denial-of-Service (DDoS) attack, or other type of coordinated attack.

2.4.3 Unmanned Aerial Vehicle

Another increasingly common IoT device is an Unmanned Aerial Vehicle (UAV).
Originally used in military operations, UAVs have become popular for commercial
and personal tasks as well due to the decreasing costs to own and operate them as
well as their recent technological improvements [10]. They are often used for tasks
in agriculture, commercial delivery, media applications, border control, search and
rescue, et cetera. [15] [16] [17]. Since UAVs have grown in popularity, the interest in
attacking them has grown proportionally. The attacks are often focused on the GPS
systems guiding the UAVs as well as the data and communications streams between
the UAV and the user [7]. Attacks on the GPS systems can include spoofing and
jamming attacks, while the possible threat vectors can include errors in configuring
communication, sensor, and system settings [7] [16]. It has also been shown that
some UAVs are susceptible to man-in-the-middle attacks because of weak Internet
security and other vulnerabilities [15]. Lastly, like many IoT devices, UAVs can also
fall victim to DoS attacks [16]. A UAV is simply a specialized IoT device, so many
of the attacks lodged against a typical IoT device are similarly used against UAVs
as well. Since UAVs often perform critical tasks, the security of these devices is
extremely important. As their popularity and use continues to grow, so will their
vulnerability.

6

IoT Malware Survey

IoT devices can take on many forms, and attacks on these devices can likewise
vary. Whether IoT devices are attacked using DDoS or physical attacks, these devices
should be set up to withstand a variety of attacks from adversaries. The variety of
known attacks will be explained more in Section 3 of this document.

3 Types of Attacks

Attacks on IoT devices are diverse, but usually fall into two broad categories: physical
and virtual. Examples of physical attacks include overheating, which involves placing
a heat source in close proximity to the victim device in order to overheat it, as well
as cutting off power to the IoT device. Virtual attacks are attacks emanating from
another computing device, and include attacks such as malware. Research by Shi et
al. identified six different types of attacks on IoT devices [18], and the list of six is
far from comprehensive:

1. Viruses - any malware that spreads between hosts by replicating themselves.

2. DoS attacks - attacker overloads component(s) of IoT device, such as the CPU
or memory access, leaving it unable to process requests.

3. Trojans - attacker places malicious code into a benign application to gain control
of the IoT device in order to, for example, exfiltrate data.

4. Intrusion - attacker tries to gain control of a shell on the victim via ssh. An
example of this is a Remote Access Trojan (RAT).

5. Power cut - attacker removes the power source from IoT device.

6. Overheating - attacker places a heat source near the victim, causing it to over-
heat and malfunction.

The main idea presented in a paper by Shi et al. to detect this diverse group
of attacks is to use energy consumption as a metric to determine whether or not a
device is infected [18]. This is to overcome the problem of not being able to trust a
(potentially) infected device after it has been compromised by an adversary. It also
provides a way to detect both physical and virtual attacks.

Perhaps the most common attack on IoT devices is a DoS/DDoS attack. In a
DDoS attack, malware takes over a device and is recruited to be part of a botnet and
connects to other malicious IoT devices [22]. A botnet can be described as a group of
connected computers recruited to take part in a coordinated task [22]. Once infected,
the IoT device may behave normally for a time, but will eventually be used for a
malicious purpose: disabling a targeted website or service, for example. One essential
part of a DDoS attack is IP spoofing, which is the act of forging the sender’s address
in the IP header [8]. Specifically, spoofing is used in Volumetric and Reflector DDoS
attacks. Volumetric attacks send a large volume of packets to a target. Reflector
attacks involve spoofing the IP address of the victim in service requests sent to other

7

IoT Malware Survey

servers [8]. The servers then respond to the victim device instead of the desired
destination and flood the IoT device. After the victim is flooded with packet data, it
may not be able to respond to legitimate requests due to insufficient bandwidth.

4 Malware Data Acquisition

One of the main ways to collect data for experimentation in IoT malware detection is
to create a honeypot. This acts to lure would-be hackers in order to get their malware
code and study it. Often this is accomplished by exploiting lax security on a device,
such as using default passwords and ports left open unintentionally. Once the device
is attacked, the owners of the honeypot are able to study and replicate the code,
thus learning more about the malware targeting their devices. As a result, malware
detection and mitigation software can be developed through reverse-engineering the
captured malware sample. Since it is now known how the malware infects the device,
all that needs to be done is prevent that method from working again. Unfortunately,
the problem with this approach is that the creators of the malware will continue to
find new ways to infect devices. However, there are instances where one of the families
of IoT malware is found, such as Mirai, and thus gives us insight into other kinds of
malware due to the similarities between different malware variants.

A honeypot specifically designed for IoT-related malware is IoTPOT, launched in
2015, which emulates Telnet services of various IoT devices to attract new viruses
that use Telnet [11]. According to their research, the most commonly attacked IoT
devices are DVRs, IP cameras, and routers. The IoTPOT architecture has a few com-
ponents, the most important of which is the Frontend Responder, which is responsible
for emulating different IoT devices by handling incoming TCP connection requests,
banner instructions, authentication, and command interactions. It then sends these
commands to the IoTBOX backend, which is a set of sandbox environments running
different Linux configurations. IoTBOX determines the response to the command
request, and forwards it back to the Frontend Responder, which then forwards it to
the client. The Profiler, a second component, parses commands between the Frontend
Responder and IoTBOX and saves them for later use to reduce the need to communi-
cate with IoTBOX (also subjecting it to fewer malware). The third component is the
Downloader, which examines the interactions for download triggers of remote files,
such as malware binaries or files obtained from running wget, ftp, et cetera. The
fourth component is the Manager, which handles configuration of IoTPOT, such as
connecting IP addresses with device profiles. During 39 days of data gathering, over
70,000 hosts visited the honeypot [11]. There were three typical stages of attacks:

1. Intrusion - login attempts, in which adversaries try to log into the honeypot to
gain access to the device.

2. Infection - discover and change the environment to enable downloading malware.
Usually these activities are automated.

3. Monetization - a command and control (C&C) server is used to control the
device and perform the malicious activities, such as a DoS attack or bitcoin

8

IoT Malware Survey

mining. The attacker is now able to use the newly recruited device for malicious
activity.

Many of the attacks observed when IoTPOT was running were coordinated, in that
one compromised host would infiltrate the victim and find out its login credentials
and CPU architecture, and then send that information to other hosts so they can
attack the victim as well [11]. Most of the attacks observed were UDP floods and
different types of TCP floods, which is a type of Denial-of-Service attack in which the
attacker overwhelms the target’s ports with IP packets containing large datagrams.
DNS and SSL attacks were also observed [11].

Another similar project, proposed in the CODASPY 2019 proceedings, increased
the chances of their honeypot being attacked by creating multiple virtual private
network (VPN) tunnels forwarding to an IoT device [23]. The usage of a real IoT
device lends credibility to the honeypot, and by leaving it completely exposed to
hackers, increases the chances of it being attacked. The key to this type of honeypot
is to restrict all outside information to the honeypots, such as surrounding WiFi
networks, and to set up a firewall to prevent the malware from propagating further
on the network [23] [11].

In the last five years, a large amount of data has been collected from these vari-
ous research projects, especially the IoTPOT project. Although it was conducted in
2015, that project continues to inspire others in the IoT security field and provides
a guide for collecting data. While this data can be used to build more robust mal-
ware detection systems, there are still areas in which this data is not comprehensive.
For instance, collecting more data in the area of securing the routers and gateway
devices that connect the IoT devices, and not just in the securing of the IoT devices
themselves, is a useful research avenue to explore. Most of the current data avail-
able focuses on securing the IoT devices themselves, without much thought given to
securing the routers that connect them to the Internet.

5 IoT Malware Detection Methods

Malware detection can generally be approached in two ways: with and without the use
of machine learning. Non-machine learning malware detection uses signature analy-
sis. Static analysis often reviews the language and syntax structure while dynamic
analysis uses tools such as honeypots to capture malware and study its behaviors [9].
Historically, most malware detection has been signature-based. This method works
well on personal computers, but does not work as well on IoT devices, for a variety of
reasons. Perhaps the most important reason is that IoT devices constantly contend
with a scarcity of resources, as well as a lack of protection against metamorphic mal-
ware [3]. This includes memory as well as computing and electrical power. Because of
these reasons, machine learning and deep learning methods have become useful due
to their high detection rate and low resource consumption. Deep Learning uses a lot
of resources to train the model, but uses relatively few resources to detect malware
after the model has been trained. Traditional machine learning techniques include

9

IoT Malware Survey

Support Vector Machines, Logistic Regression, et cetera, while deep learning models
are usually Artificial Neural Networks (ANNs) or their specializations such as deep
ANNs, which include Convolutional Neural Networks. Recently, using Convolutional
Neural Networks for anomaly detection has become more common. This process uses
gray-scale images of binary files for malware classification. This topic is described in
Section 5.2.

5.1 Anomaly Detection using Machine Learning

Recently, anomaly detection has become the preferred method for detecting malware
on IoT devices due to its limited resource consumption and flexibility. It also has
proven successful because of the limited and predictable behavior of IoT devices. IoT
devices are usually set up to complete a few specific tasks, and because of this, they
often communicate with a limited number of external servers, and their resultant
network traffic behavior and execution behavior (via, for example, system calls) is
predictable [5]. Anomaly detection also works well for zero-day malware attacks, since
anomalies in kernel and network behavior can be detected almost instantaneously.
The general anomaly detection pipeline consists of four main steps when collecting
captured network traffic data:

1. Traffic capture - record metadata such as the timestamp, protocol, source IP
and port, destination IP and port, packet size, and contents. tcpdump is useful
for recording this data and saving it in a pcap file.

2. Group packets by device and time - separated by source IP, then divided into
non-overlapping time windows.

3. Feature extraction - determine the most useful metadata to explain the data,
such as the destination IP.

4. Binary classification - using ML methods such as Artificial Neural Networks
(ANNs), SVMs, KNN, random forests, decision trees, et cetera, to classify data
points as benign or malicious.

10

IoT Malware Survey

Figure 2: The Data Generation Process used for Anomaly Detection with Network
Traffic data

This type of malware detection works well with the standard IoT ecosystem de-
scribed above, and has been used by multiple research projects. A common ecosystem
consists of a Raspberry Pi acting as a router, an IP camera (also possibly implemented
as a Raspberry Pi), and any other IoT devices connected to the router, such as a ther-
mostat or a light. There is some feature engineering that can be done to the collected
data, and the features fall into two categories: stateless features and stateful features.
Stateless features include packet protocol, size, and inter-packet interval, while state-
ful features include IP destination address cardinality and novelty, and bandwidth
[5]. It has been shown that stateless features outperform stateful features in this type
of anomaly detection [5].

The features needed for anomaly detection could also be drawn from system data,
consisting of a log of system calls made during the data capturing timeframe. On
Linux-based IoT devices, the command ftrace can be used to record system call
information and create the log file [1]. Capturing the system calls during a period of
known benign activity, as well as during a time of known malware execution, could
provide insight into any connections between malware running inconspicuously and
the system calls executed by the malware. The feature engineering process outlined
above would be very similar in this case. In previous work by [1] and [2], a bag-of-
n-grams approach was used, in which short sequences of system calls during a small
period of time are considered. This approach often yields patterns between the system
call n-gram sequences that make malware detection easier. In addition, there has also
been work done where a combination of both system calls and network traffic data

11

IoT Malware Survey

was captured and used together for feature engineering successfully [2]. In fact, it was
shown that a malware detector based on combined system call and network traffic
data detected malware better than the system call malware detector or network traffic
malware detector did individually [2]. These methods can use RNNs and LSTMs as
well, because they work on sequential data n-grams.

Figure 3: The Data Generation Process used for Anomaly Detection with System
Call data

5.2 Image Recognition for Malware Detection

An alternative IoT malware detection method has emerged recently: using a Convolu-
tional Neural Network (CNN) to classify binaries transformed into gray-scale images.
Classifying code binaries in the form of images has proven to be successful, at least
in a limited data scope. In work conducted by Su et al., malware samples collected
from two malware families, Mirai and Linux.Gafgyt, were able to be classified cor-
rectly 94% of the time, with a 5% false positive rate [21]. This research used malware
samples collected by the IoTPOT honeypot, and were transformed from binaries to
gray-scale images by reformatting them into an 8-bit string sequences [21]. A decimal
encoding represents the value of a one-channel pixel, which is then formatted into a
64x64 image to be fed into a CNN. Their results indicated that malware images tend
to be more dense than benign images [21].

In related work, application binaries are converted into gray-scale images, which
are then transformed into sequences of patterns and fed into a Recurrent Neural
Network (RNN) [20]. The steps to convert the binary are:

12

IoT Malware Survey

1. Perform raster scanning to find patterns in the image.

2. Use Cosine similarity to distinguish between patterns. The Cosine similarity
measures the similarity between two non-zero vectors, and is defined to be the
Cosine of the angle between them.

3. Convert the image into a sequence of patterns, and feed the result into a RNN.

This approach yielded the same 94% accuracy rate, but a downside of this approach,
as discussed by the authors, is the latency that is involved in the image-based malware
detection [20].

Convolutional Neural Networks can be difficult, time-consuming, and resource-
consuming to train well enough to classify accurately. One solution to this problem
is to upload the binaries to a cloud application with more resources that can perform
the classification, and send the results back to the device. If the CNN were running on
a large cloud application, it could be trained faster and provide quicker classification
results to the IoT device without putting further constraints on the IoT device’s
resources.

Using image recognition for IoT malware detection is one of the newest fields of
research within IoT security, and there are still many problems to mitigate in order
to make it a viable solution on actual IoT devices. Training a normal CNN on a
small IoT device seems impractical for the foreseeable future due to IoT resource
constraints. As a result, a better solution is needed, and provides another avenue of
research in IoT malware detection.

6 IoT Malware Mitigation Methods

After detecting malware running on IoT devices, the next step is to mitigate the
impact of the malware infection. The risk of malware propagation is especially high
in IoT devices, because whenever one device on a network is compromised, it is much
easier to continue and infect more devices connected to the network.

One general mitigation idea is to confine the infected nodes and not let the malware
spread. The biggest problem with this method, however, is that it often hampers
the throughput of the network, thus degrading its performance [14]. This method
also presupposes that the malware was detected correctly, which can be difficult
considering that malware often try to hide themselves. If the malware successfully
decoy themselves, then the confinement method will not be helpful. Similarly, if the
detection algorithm produces a false positive, a node will be confined for no reason,
which will also likely be detrimental to the network or could cause a denial-of-service.
One way to help resolve this problem would be to set a threshold on the amount
of throughput required of the network. Given this, the traffic flowing through the
infected node can be regulated, and the overall throughput of the network can be
tracked. If the traffic restriction results in a throughput that is lower than the required
level, the restrictions can be eased until it returns to being above the required level
of throughput again [14].

13

IoT Malware Survey

Another method for mitigating malware is a more centralized idea to mitigate
the effects of malware on a larger scale, encompassing more than one network. This
method connects to a cloud server that collects large amounts of data related to known
IoT vulnerabilities. The idea is to connect an “appliance” directly to the IoT device
that maintains vulnerability mitigation policies for known common vulnerabilities
and exposures (CVEs) of the specific device it protects [6] by connecting to the cloud
server and receiving them. Specifically, the security appliance is responsible for three
tasks:

1. Communication - receives packets that are addressed to the vulnerable IoT
device, processes and forwards them to the device at the discretion of the vul-
nerability mitigation policy.

2. Mitigation - called by the communication module. This module will have a list
of vulnerability mitigation policies to execute.

3. Updater - responsible for receiving updates about newly discovered vulnerability
mitigation policies for the IoT device.

The other component of the framework is the cloud-based service. This is responsi-
ble for the collection and affiliation of CVEs to specific devices, and for the generation
and representation of vulnerability mitigation policies [6]. This framework ensures
that IoT devices are up-to-date with recent security updates or patches and prevents
exploitation of CVEs. Adopting the framework removes the responsibility of keeping
the device up-to-date from the user. It is also efficient in that the security appliance
only protects the IoT device from known vulnerabilities that apply directly to the
type of IoT device to which it is connected.

While this framework appears to be a useful solution in theory, there are some
drawbacks to note. For instance, in work by Hadar et al., a Raspberry Pi 3 is used
as the security appliance to communicate with the cloud server that connects to the
IoT device [6]. If the IoT device itself is a Raspberry Pi, which is common, the cost
of operating the device has at least doubled due to now needing two Raspberry Pi’s.
There is also the cost to creating and maintaining the cloud service to stay up-to-date
with CVEs and be able to communicate with the many types of security appliances.

In summary, while the idea of having a cloud server and security appliance for
each IoT device does seem to be efficient and increase the security of the IoT devices,
it is likely not feasible because of the increased overhead that all consumers would
need to contribute.

7 Conclusion

Research in securing IoT devices and the networks in which they reside is an impor-
tant, and interesting, area of research. As the number of active IoT devices continues
to grow, the importance of their security grows accordingly. This research is also at
the intersection of two interesting and timely areas of research: machine learning and
cybersecurity.

14

IoT Malware Survey

The use of anomaly detection, either through traditional machine learning models
or through RNNs for sequential data, appears to be a viable means for completing
this task. Likewise, using both the network traffic data passing through the router,
as well as the system calls being executed by the Linux kernel, appear to be the best
combination of data for the model to make accurate classifications.

References

[1] N. An, A. Duff, G. Naik, M. Faloutsos, S. Weber, and S. Mancoridis. 2017.
Behavioral anomaly detection of malware on home routers. In 2017 12th Inter-
national Conference on Malicious and Unwanted Software (MALWARE). 47–54.
https://doi.org/10.1109/MALWARE.2017.8323956

[2] N. An, A. Duff, M. Noorani, S. Weber, and S. Mancoridis. 2018. Malware
Anomaly Detection on Virtual Assistants. In 2018 13th International Conference
on Malicious and Unwanted Software (MALWARE). IEEE Computer Society,
Los Alamitos, CA, USA, xa;124xa;–xa;131xa;. https://doi.org/10.1109/

MALWARE.2018.8659366

[3] Shiven Chawla and Geethapriya Thamilarasu. 2018. Security as a service: real-
time intrusion detection in internet of things. Proceedings of the Fifth Cyberse-
curity Symposium (2018).

[4] Ahmad Darki, Alexander Duff, Zhiyun Qian, Gaurav Naik, Spiros Mancoridis,
and Michalis Faloutsos. 2016. “Don’t Trust Your Router: Detecting Compro-
mised Routers”. In CoNEXT ’16. Irvine, CA, USA.

[5] Rohan Doshi, Noah Apthorpe, and Nick Feamster. 2018. Machine Learning
DDoS Detection for Consumer Internet of Things Devices. 2018 IEEE Security
and Privacy Workshops (SPW) (May 2018). https://doi.org/10.1109/spw.

2018.00013

[6] Noy Hadar, Shachar Siboni, and Yuval Elovici. 2017. A Lightweight Vulnerability
Mitigation Framework for IoT Devices. In Proceedings of the 2017 Workshop on
Internet of Things Security and Privacy (Dallas, Texas, USA) (IoTSamp;P ’17).
Association for Computing Machinery, New York, NY, USA, 71–75. https:

//doi.org/10.1145/3139937.3139944

[7] C. G. Leela Krishna and Robin R. Murphy. 2017. A review on cybersecurity
vulnerabilities for unmanned aerial vehicles. In 2017 IEEE International Sym-
posium on Safety, Security and Rescue Robotics (SSRR). 194–199. https:

//doi.org/10.1109/SSRR.2017.8088163

[8] Jelena Mirkovic, Erik Kline, and Peter Reiher. 2017. RESECT: Self-Learning
Traffic Filters for IP Spoofing Defense. In Proceedings of the 33rd Annual Com-
puter Security Applications Conference (Orlando, FL, USA) (ACSAC 2017).

15

https://doi.org/10.1109/MALWARE.2017.8323956
https://doi.org/10.1109/MALWARE.2018.8659366
https://doi.org/10.1109/MALWARE.2018.8659366
https://doi.org/10.1109/spw.2018.00013
https://doi.org/10.1109/spw.2018.00013
https://doi.org/10.1145/3139937.3139944
https://doi.org/10.1145/3139937.3139944
https://doi.org/10.1109/SSRR.2017.8088163
https://doi.org/10.1109/SSRR.2017.8088163

IoT Malware Survey

Association for Computing Machinery, New York, NY, USA, 474–485. https:

//doi.org/10.1145/3134600.3134644

[9] Youness Mourtaji, Mohammed Bouhorma, and Daniyal Alghazzawi. 2019. In-
telligent Framework for Malware Detection with Convolutional Neural Net-
work. In Proceedings of the 2nd International Conference on Networking, In-
formation Systems amp; Security (Rabat, Morocco) (NISS19). Association for
Computing Machinery, New York, NY, USA, Article 7, 6 pages. https:

//doi.org/10.1145/3320326.3320333

[10] Weina Niu, Jian’An Xiao, Xiyue Zhang, Xiaosong Zhang, Xiaojiang Du, Xiaom-
ing Huang, and Mohsen Guizani. 2021. Malware on Internet of UAVs Detec-
tion Combining String Matching and Fourier Transformation. IEEE Internet
of Things Journal 8, 12 (2021), 9905–9919. https://doi.org/10.1109/JIOT.

2020.3029970

[11] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. 2015. IoTPOT: Analysing the Rise
of IoT Compromises. In Proceedings of the 9th USENIX Conference on Offen-
sive Technologies (Washington, D.C.) (WOOT’15). USENIX Association, USA,
9.

[12] Nisha Panwar, Shantanu Sharma, Peeyush Gupta, Dhrubajyoti Ghosh, Sharad
Mehrotra, and Nalini Venkatasubramanian. 2020. IoT Expunge: Implementing
Verifiable Retention of IoT Data. In Proceedings of the Tenth ACM Confer-
ence on Data and Application Security and Privacy (New Orleans, LA, USA)
(CODASPY ’20). Association for Computing Machinery, New York, NY, USA,
283–294. https://doi.org/10.1145/3374664.3375737

[13] M. Ping, B. Alsulami, and S. Mancoridis. 2016. On the effectiveness of applica-
tion characteristics in the automatic classification of malware on smartphones. In
2016 11th International Conference on Malicious and Unwanted Software (MAL-
WARE). 1–8. https://doi.org/10.1109/MALWARE.2016.7888732

[14] S. M. Pudukotai Dinakarrao, H. Sayadi, H. M. Makrani, C. Nowzari, S. Rafati-
rad, and H. Homayoun. 2019. Lightweight Node-level Malware Detection and
Network-level Malware Confinement in IoT Networks. In 2019 Design, Automa-
tion Test in Europe Conference Exhibition (DATE). 776–781.

[15] Nils Miro Rodday, Ricardo de O. Schmidt, and Aiko Pras. 2016. Explor-
ing security vulnerabilities of unmanned aerial vehicles. In NOMS 2016 - 2016
IEEE/IFIP Network Operations and Management Symposium. 993–994. https:

//doi.org/10.1109/NOMS.2016.7502939

[16] Alessio Rugo, Claudio A. Ardagna, and Nabil El Ioini. 2022. A Security Review
in the UAVNet Era: Threats, Countermeasures, and Gap Analysis. ACM Com-
put. Surv. 55, 1, Article 21 (jan 2022), 35 pages. https://doi.org/10.1145/

3485272

16

https://doi.org/10.1145/3134600.3134644
https://doi.org/10.1145/3134600.3134644
https://doi.org/10.1145/3320326.3320333
https://doi.org/10.1145/3320326.3320333
https://doi.org/10.1109/JIOT.2020.3029970
https://doi.org/10.1109/JIOT.2020.3029970
https://doi.org/10.1145/3374664.3375737
https://doi.org/10.1109/MALWARE.2016.7888732
https://doi.org/10.1109/NOMS.2016.7502939
https://doi.org/10.1109/NOMS.2016.7502939
https://doi.org/10.1145/3485272
https://doi.org/10.1145/3485272

IoT Malware Survey

[17] Arnab Kumar Saha, Jayeeta Saha, Radhika Ray, Sachet Sircar, Subhojit Dutta,
Soummyo Priyo Chattopadhyay, and Himadri Nath Saha. 2018. IOT-based drone
for improvement of crop quality in agricultural field. In 2018 IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC). 612–615.
https://doi.org/10.1109/CCWC.2018.8301662

[18] Yang Shi, Fangyu Li, WenZhan Song, Xiang-Yang Li, and Jin Ye. 2019. Energy
Audition Based Cyber-Physical Attack Detection System in IoT. In Proceedings
of the ACM Turing Celebration Conference - China (Chengdu, China) (ACM
TURC ’19). Association for Computing Machinery, New York, NY, USA, Article
27, 5 pages. https://doi.org/10.1145/3321408.3321588

[19] Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabili-
ties on Docker Hub. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy (Scottsdale, Arizona, USA) (CODASPY
’17). Association for Computing Machinery, New York, NY, USA, 269–280.
https://doi.org/10.1145/3029806.3029832

[20] S. Shukla, G. Kolhe, P. Sai Manoj, and S. Rafatirad. 2019. Work-in-Progress:
MicroArchitectural Events and Image Processing-based Hybrid Approach for
Robust Malware Detection. In 2019 International Conference on Compliers, Ar-
chitectures and Synthesis for Embedded Systems (CASES). 1–2.

[21] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai.
2018. Lightweight Classification of IoT Malware Based on Image Recognition.
In 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), Vol. 02. 664–669.

[22] Luis Suastegui Jaramillo. 2018. Malware Detection and Mitigation Techniques:
Lessons Learned from Mirai DDOS Attack. Journal of Information Systems
Engineering Management 3 (07 2018). https://doi.org/10.20897/jisem/

2655

[23] Amit Tambe, Yan Lin Aung, Ragav Sridharan, Mart́ın Ochoa, Nils Ole Tippen-
hauer, Asaf Shabtai, and Yuval Elovici. 2019. Detection of Threats to IoT Devices
Using Scalable VPN-Forwarded Honeypots. In Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy (Richardson, Texas,
USA) (CODASPY ’19). Association for Computing Machinery, New York, NY,
USA, 85–96. https://doi.org/10.1145/3292006.3300024

[24] Nalam Venkata Abhishek, Anshoo Tandon, Teng Joon Lim, and Biplab Sik-
dar. 2018. Detecting Forwarding Misbehavior In Clustered IoT Networks. In
Proceedings of the 14th ACM International Symposium on QoS and Security
for Wireless and Mobile Networks (Montreal, QC, Canada) (Q2SWinet’18).
Association for Computing Machinery, New York, NY, USA, 1–6. https:

//doi.org/10.1145/3267129.3267147

17

https://doi.org/10.1109/CCWC.2018.8301662
https://doi.org/10.1145/3321408.3321588
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.20897/jisem/2655
https://doi.org/10.20897/jisem/2655
https://doi.org/10.1145/3292006.3300024
https://doi.org/10.1145/3267129.3267147
https://doi.org/10.1145/3267129.3267147

IoT Malware Survey

[25] Katrine Wist, Malene Helsem, and Danilo Gligoroski. 2020. Vulnerability Anal-
ysis of 2500 Docker Hub Images. ArXiv abs/2006.02932 (2020).

[26] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu. 2018. IoT Security Techniques
Based on Machine Learning: How Do IoT Devices Use AI to Enhance Security?
IEEE Signal Processing Magazine 35, 5 (2018), 41–49.

18

	draft
	FAA_A58_TIM_pres_11-17-22

