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ABSTRACT 

Researcher: Gregory Stephen Woo 

Title: VISUAL DETECTION OF SMALL UNMANNED AIRCRAFT: 
MODELING THE LIMITS OF HUMAN PILOTS 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2017 

The purpose of this study was to determine the key physical variables for visual detection 

of small, Unmanned Aircraft Systems (UAS), and to learn how these variables influence 

the ability of human pilots, in manned-aircraft operating between 60-knots to 160-knots 

in the airport terminal area, to see these small, unmanned aircraft in time to avoid a 

collision.  The study also produced a set of probability curves for various operating 

scenarios, depicting the likelihood of visually detecting a small, unmanned aircraft in 

time to avoid colliding with it.  The study used the known limits of human visual acuity, 

based on the mechanics of the human eye and previous research on human visual 

detection of distant objects, to define the human performance constraints for the visual 

search task. 

The results of the analysis suggest the probability of detection, in all cases 

modeled during the study, is far less than 50 percent.  The probability of detection was 

well under 10 percent for small UAS aircraft similar to the products used by many 

recreational and hobby operators. 

The results of this study indicate the concept of see-and-avoid is not a reliable 

technique for collision prevention by manned-aircraft pilots when it comes to operating 

near small, unmanned aircraft.  Since small, unmanned aircraft continue to appear in 
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airspace where they do not belong, regulators and the industry need to accelerate the 

development and deployment of alternative methods for collision prevention between 

sUAS aircraft operations and manned-aircraft. 

The analysis effort for this study included the development of a new simulation 

model, building on existing models related to human visual detection of distant objects.  

This study extended existing research and used currently accepted standards to create a 

new model specifically tailored to small, unmanned aircraft detection.  Since several 

input variables are not controllable, this study used a Monte Carlo simulation to provide a 

means for addressing the effects of uncertainty in the uncontrollable inputs that the 

previous models did not handle.  The uncontrollable inputs include the airspeed and 

direction of flight for the unmanned aircraft, as well as the changing contrast between the 

unmanned aircraft target and its background as both the target aircraft and the observer 

encounter different background and lighting conditions. 

The reusable model created for this study will enable future research related to the 

visual detection of small, unmanned aircraft.  It provides a new tool for studying the 

difficult task of visually detecting airborne, small, unmanned aircraft targets in time to 

maneuver clear of a possible collision with them.  The study also tested alternative input 

values to the simulation model to explore how changes to small, unmanned aircraft 

features might improve the visual detectability of the unmanned aircraft by human pilots 

in manned aircraft.  While these changes resulted in higher probabilities of detection, the 

overall detection probability remained very low thereby confirming the urgent need to 

build reliable collision avoidance capability into small UAS aircraft. 
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CHAPTER I 

INTRODUCTION 

Federal Aviation Administration (FAA) records, over the past several years, show 

pilots are reporting visual contact with small Unmanned Aircraft System (sUAS) aircraft 

flying near their manned aircraft in locations where no sUAS aircraft should be operating 

(FAA, 2017b).  This study provides new perspectives about the limits, issues, and key 

factors associated with human visual detection of sUAS, for collision avoidance by pilots 

in manned aircraft operating in the airport terminal area at airspeeds ranging from 60-

knots to 160-knots. 

This study also includes the construction and use of a mathematical model to 

determine the ability of a human pilot, flying a manned aircraft, to spot and maneuver 

clear of a sUAS in time to avoid colliding with it in the airport terminal area.  The 60-

knot to 160-knot airspeed range used in this study represents common operating profiles 

for aircraft, ranging from light sport aircraft to airliners, during airport approach and 

departure operations where these manned aircraft are most likely to encounter sUAS 

aircraft (FAA, 2016a).  The mathematical model applies the known limits of human 

visual performance to conditions pilots encounter when looking for small, distant objects 

from the cockpit of an aircraft. 

Technically, an Unmanned Aircraft System (UAS) includes the unmanned 

aircraft, its control station, and the infrastructure and communications systems needed for 

the aircraft to complete its mission as determined by the aircraft’s operator.  Historically, 

people have referred to the actual unmanned aircraft as an Unmanned Aerial Vehicle 

(UAV) or drone.  The FAA refers to the actual Unmanned Aircraft as a UA (FAA, 2013).  
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Since the literature often uses these terms interchangeably, for the purposes of this 

research project, the reader should assume UAS, UAV, and UA mean unmanned aircraft. 

To date, no specific solutions exist to help manned aircraft pilots see and avoid 

UA, especially small UA.  Instead, many research and development initiatives are 

underway to develop strategies for the safe, efficient integration of UAS operations into 

our National Airspace System (NAS) in a manner designed to prevent unmanned aircraft 

from colliding with manned aircraft.  These studies include the use of existing collision 

avoidance systems for manned aircraft and a variety of future sensing technologies for 

unmanned aircraft (Yu & Zhang, 2015).  Other research explores the use of 

communications networks and cooperative management strategies in which aircraft 

communicate with each other and with ground-based and satellite-based systems to 

achieve collision avoidance, coordination, and in-flight decision-making (Frew & Brown, 

2008).  The appropriate solution for keeping UA and manned aircraft from colliding in 

the NAS will ultimately depend on the mission requirements and operational boundaries 

for the UA. 

This study focuses on sUAS aircraft because they make up the fastest growing 

component of the UA population and are the most likely to appear improperly in airspace 

near manned aircraft.  Aviation Week & Space Technology concurs and further states that 

non-commercial operators have easy access to sUAS aircraft and are often the operators 

who fly UAs in unauthorized or prohibited areas (Esler, 2015). 

According to a recent retail tracking study by The NPD Group, Inc., sUAS sales 

are growing dramatically.  Their study found a 224 percent increase in drone sales to 

nearly $200 million from April 2015 to April 2016 (NPD Group, 2016).  The NPD 
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Group, an international market research corporation, predicted continued strength in retail 

sales of drones for both 2016 and 2017.  An FAA industry forecast report estimates 2.5 

million sUAS sales in 2016, 4.8 million sales in 2017, and yearly growth to 7.0 million 

sales in 2020 (FAA, 2016b).  The FAA (2016a) also states reports of UAS sightings 

“have increased dramatically since 2014” (para. 2).  The FAA is concerned about the 

sightings because “safely integrating unmanned aircraft into the national airspace system 

is one of the FAA's top priorities, and the agency wants to send a clear message that 

operating drones around airplanes and helicopters is dangerous and illegal” (FAA, 2016a, 

para. 2). 

Based on the large volume of literature about UAS sense and avoid technology, 

the UAS industry, government agencies, and educational institutions are aggressively 

researching and developing technology-based proposals for keeping small UA away from 

manned aircraft.  These technology efforts include sense-and-avoid systems, machine 

vision, radar, electronic collaboration and decision-making, and air traffic control 

augmentation systems (FAA, 2016c; Gettinger & Michel, 2015; Lai, Mejias, & Ford, 

2011; Mcfayden & Mejias, 2015; Yu & Zhang, 2015).  However, current guidance to 

pilots calls for visual separation by the operators of both the manned and unmanned 

aircraft (Consiglio, Chamberlain, Muñoz, & Hoffler, 2012; Operation and Certification of 

Small Unmanned Aircraft, 2016; Yu & Zhang, 2015). 

Le Tallec (2005) raised concern about the lack of specific solutions for general 

aviation pilots for the safe avoidance of UAVs, over 10 years ago.  In 2005, Le Tallec 

proposed a converging traffic alert system as a strategy to make it easier for manned 

aircraft pilots to find, see, and avoid UAV-related traffic conflicts.  Though the industry 
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did not adopt Le Tallec’s proposal, the underlying concern remains true in 2017.  Until 

industry deploys such a solution in the NAS, see-and-avoid remains the primary tool for 

collision avoidance between aircraft (Le Tallec, 2005).  To date, no solution exists in the 

NAS to address the UAV detection challenge for manned aircraft pilots. 

Visual detection and identification studies on full-sized, passenger-carrying 

aircraft exist in the literature and have many years of relevant application validating their 

findings; however, few studies address the identification and avoidance of small UAV 

hazards by manned aircraft pilots.  One recent study conducted by Loffi, Wallace, Jacob, 

and Dunlap (2016) attempted to establish performance benchmarks related to the 

detection of sUAS aircraft by pilots on manned aircraft.  Their study collected data from 

actual flight test encounters between manned and unmanned aircraft.  Loffi et al. did not 

attempt to connect their findings with the physiological limits of human performance nor 

did they attempt to create a flexible model for simulating human visual performance in 

varying operational environments where closure rates, background contrast, and apparent 

sUAS size might change depending on viewing angles and mission conditions.  The 

pilots of manned aircraft, both now and for the next few years, must rely on their vision 

to avoid small UAs.  The question is, how reliably can a pilot of a manned aircraft see 

and avoid a small UA? 

Statement of the Problem 

Every month, the FAA receives over 100 reports of small UA operating in 

airspace where they do not belong (FAA, 2017b) and the industry has not deployed any 

specific, ubiquitous solution to preclude this potential collision hazard for pilots of 

manned aircraft.  While some manufacturers build geo-fencing and other operational 
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safety constraints into their UA products, such features are not standard for the industry, 

and many UA products exist in the field without such safeguards.  Therefore, manned 

aircraft pilots must have some means of detecting and avoiding these UA intrusions. 

At present, no specific solutions exist to help the pilots of civilian manned aircraft 

spot and avoid a small UA in flight.  In the near-term, pilots of civilian manned aircraft 

must rely on their own ability to visually detect and avoid UA because no other 

technology-based UA avoidance solutions are available. 

The FAA’s current strategy to keep small, recreational UA separated from 

manned aircraft is to educate UA operators about regulations and airspace constraints 

designed to keep small UA away from manned aircraft (Loffi, Wallace, & Ison, 2016).  

Given the number of sightings of small UA operating outside of the FAA-defined 

regulations, these procedures and regulations are not producing the reliable separation of 

manned and unmanned aircraft needed to ensure safety in the NAS (Gettinger & Michel, 

2015; Loffi, Wallace, & Ison, 2016). 

Since UA continue to appear outside the airspace they are supposed to be 

constrained to, and since UA continue to be sighted in areas where they pose a conflict 

hazard for the pilots of manned aircraft, see-and-avoid is an essential, last defense against 

mid-air collisions.  Additionally, the literature review effort did not reveal any studies 

specifically designed to determine the key factors and human performance limits for the 

small UA avoidance task.  The studies on visual detection of UA that do exist focus on 

the future of how UA can avoid encroaching upon other aircraft. 
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Purpose Statement 

The purpose of this study was to determine the key physical attributes related to 

visual detection of sUAS aircraft and their operations.  The study also related these key 

attributes to the ability of human pilots in manned aircraft to see these sUAS aircraft in 

time to avoid a collision.  Graham (1989) and Morris (2005) suggest smaller-sized 

aircraft are generally difficult to see in time to allow a pilot to avoid colliding with them.  

The smaller aircraft in the Graham and Morris studies were much larger than the small 

UAS aircraft targets in this study.  Loffi et al. (2016) conducted flight test studies and 

found pilots generally had difficulty spotting small UAS targets from the cockpit of their 

Cessna 172 aircraft.  This study therefore hypothesized small UA targets would be very 

difficult to visually spot in time to allow action for collision avoidance.   

An additional purpose of this study was to determine the likelihood a manned 

aircraft pilot would detect a small UA in time to avoid colliding with it.  The analytical 

model developed for this study produced probability of visual detection numbers using 

specific input variable values appropriate for the scenarios defined in the study.  The 

study also produced a reusable mathematical model for future research, related to the 

visual detection of small UA, in applications such as visual detection by law 

enforcement / safety officers and visual tracking of small UA by the UA operator. 

Significance of the Study 

This study extends the research from previous studies on visual target 

recognition and human visual search performance by building on existing models 

developed by Howett (1983) and Andrews (1991a), to create a new model specifically 

tailored to predicting the probability of visually detecting a small UA from a distance of a 
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few thousand feet or more.  For each case of a manned aircraft encountering a small UA, 

the contrast of the target against its background is likely to change (Poe, 1974).  Contrast 

is therefore an uncontrollable input variable.  This study expands the utility of existing 

visual detection models by adding a Monte Carlo simulation framework to address 

uncontrollable input variables such as target contrast and target airspeed, to address the 

uncertainty in the visual search task. 

The study integrates the research findings from Wulfeck et al. (1958), Erickson 

and Burge (1974), Poe (1974), Chisolm (1977), and Hirsch and Curcio (1989) to provide 

the justification for the selection of the input variables and to explain the assumptions 

used for the treatment of the data in this study.  Data from previous studies and existing 

research reports provided the information on human visual search performance and 

human physiological constraints needed to construct the simulation model for this study.  

The selected inputs target the limits of human visual performance based on the mechanics 

of the human eye.  As a result, the simulation model for this study used the following 

inputs: 

x Size of the target UAS vehicle, 

x Airspeed of the unmanned aircraft, 

x Relative heading of the unmanned aircraft, 

x Airspeed of the manned aircraft, 

x Minimum time needed to avoid colliding with the target (includes both 

human see / react time and aircraft trajectory alteration time), and 

x Contrast factor between the target and the background scenery. 



8 

 

The simulation model determined the probability, given specific conditions, that a 

human pilot will see a sUAS aircraft in time to avoid colliding with it.  The output of the 

model, rendered in both numerical table form and graphical form, relates the probability 

of sUAS target detection to the values of the controllable input variables.  The probability 

curves illustrate how visual detection probability varies as a function of UAS size, 

manned aircraft airspeed, closure rate between the manned and unmanned aircraft, and 

contrast between the UA and its background. 

The resulting model produced by this research also provides a mechanism for 

modeling future research questions related to the visibility of small UA by the UA 

operator under various conditions.  The model could address questions related to the 

visual detection of other small objects, from the aircraft cockpit, such as foreign object 

debris on the runway at airports.  Though these visual detection tasks are outside the 

scope of this study, the model produced by this study would be applicable to those types 

of tasks. 

Additionally, this research provides aviation regulators with science-based 

analysis of the visibility of small UA from the manned aircraft cockpit given the current 

lack of sUAS target detection technology available to pilots in the cockpit.  The 

probability of detection curves produced by this study, relating the likelihood of visual 

detection to the controllable input parameters of this model, provides rule-makers with 

context as they produce practical, near-term regulations for sUAS operations in airspace 

used by manned aircraft.  At the very least, agencies who promote aviation safety now 

have additional insights to share with aircraft operators regarding the limits of human 

vision performance and the timely detection of sUAS collision hazards. 
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Research Questions 

The research questions for this study were: 

1. What variables in the small UAS probability of detection model, related to the 

physical features of a small UAS or the manner in which pilots operate their 

manned aircraft, limit the manned aircraft pilot’s ability to see a small UAV in 

time to avoid a potential collision with it? 

2. What is the probability a manned aircraft pilot will see a small UAV in time to 

avoid colliding with it, given different scenarios determined by the 

controllable input variables? 

3. What simulation model parameters, if changed, would improve the manned 

aircraft pilot’s ability to see and avoid a small UAV? 

Delimitations 

This study focused only on the visual detection and avoidance of small UAS 

aircraft.  Small UAS aircraft are those UA with a maximum gross weight of less than 55 

pounds, including any cargo or equipment carried by the aircraft (Operation and 

Certification of Small Unmanned Aircraft, 2016).  Aviation Week & Space Technology 

noted small UAs often appear in FAA sighting reports of improper or illegal operations 

(Esler, 2015).  Small UA products are now available to consumers at affordable prices, 

enabling non-professional remote pilots to obtain these aircraft.  Without the formal 

training and operational proficiency testing imposed on professional UAS operators, 

recreational and hobby operators are more likely to fly their aircraft into conflict 

situations with manned aircraft (Esler, 2015).  The FAA Mandatory Occurrence Report 

(MOR) summaries appear to confirm this belief with hundreds of UAS sighting reports 
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describing small UA flying illegally in areas reserved for manned aircraft operations 

(FAA, 2017b). 

The study did not include large-sized UAV because they typically operate in 

reserved airspace under the control of a professional, well-trained, UAV pilot.  Large 

UAV operations are also typically coordinated with Air Traffic Control (ATC), so air 

traffic controllers can pass along UAV location data to other aircraft in the area.  Large 

UAV may also carry position-reporting technology such as a radar transponder or an 

Automatic Dependent Surveillance-Broadcast (ADS-B) device, which can alert manned 

aircraft pilots about their presence in the area (Yu and Zhang, 2015).  Small UAV 

products sold to date generally lack transponders and ADS-B technology (Gettinger and 

Michel, 2015). 

This study also modeled the probability of detection based on human visual 

detection and recognition capabilities as described in multiple previous research efforts.  

However, this investigation did not include human subject testing because the intent of 

this study was to extend existing, validated models of human visual target identification 

to the identification of small UAVs.  The focus of this study compares the known limits 

of human vision to the physical requirements for sighting a small UA from an adequate 

distance to allow time to react and maneuver clear of a collision with the UA.  The study 

did not test human subjects in this role since previous research used by this study already 

did human subject testing for validation of the underlying concepts related to the human 

aspects of the visual search performance algorithm used in this study (Andrews, 1991). 

Additionally, this study modeled operations in daytime, good visibility weather 

conditions.  This study did not attempt to model poor visibility weather conditions, 
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nighttime or dim light conditions, or adverse conditions such as storms.  Recreational 

UAV operators are less likely to fly their UA in these types of conditions due to aircraft 

vulnerability and aircraft control difficulties. 

The manned aircraft speeds used in this study range from 60 knots to 160 knots.  

The study used this range of airspeeds because they are typical for the civilian aircraft 

from which pilots often report sUAS sightings (FAA, 2017b).  Civilian aircraft operating 

at the lower altitudes, where sUAS encounters are most likely to occur, are typically 

departing, approaching, or arriving at airports at airspeeds within this proposed range. 

The study ignored the potential for degraded visual capability in the population of 

manned-aircraft pilots because pilots with abnormal or degraded visual capacity should 

not be capable of passing the FAA’s medical requirements for pilots.  The study also 

excluded consideration of poor pilot proficiency and poor pilot scanning techniques.  

Instead, it focused on the limitations imposed by the performance constraints of the 

human eye. 

While there are a number of delimitations identified for this study, they are all 

consistent with operational constraints relevant to the use of current-day small UA.  

Therefore, the focused nature of this study does not detract from its utility nor its 

suitability for generalized use when it comes to modeling the performance limitations of 

human vision for small UA detection.  

Limitations and Assumptions 

The simulation model in this study assumed no technology-based image 

enhancement and no electronic UA position sensing information are available to the 

manned aircraft pilot for the purposes of detecting and identifying small UA collision 
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threats.  This assumption reflects the current state of small UA operations and the current 

lack of technology in manned civilian aircraft cockpits to detect and avoid small UA.  

This study did not include consideration for manned military aircraft, with high-

resolution surveillance and small target detection capabilities. 

The study used a Monte Carlo simulation to model uncertainty in the 

uncontrollable input variables representing the speed, relative direction, and contrast of 

the UA.  Though there are a wide variety of additional human factors variables that affect 

the ability of a human pilot to see and avoid airborne collision hazards, such as small 

UAs, this study did not account for them in its model.  The reason for excluding these 

other human factors issues, including cognitive workload, misplaced attention, other 

distractions, fatigue, poor physical health, and loss of situation awareness, is they are 

numerous and vast in terms of how they may manifest themselves.  The resulting model 

would be cumbersome and difficult to understand, and the output would potentially be of 

little use.  The inclusion of these human factors variables would require a separate human 

subject experiment for validation of the model, and the additional variables could 

potentially obscure the effect of the controllable input variables of primary interest. 

Furthermore, the study did not model the effects of background clutter.  The 

validated models for visual search and detection of airborne targets found during the 

literature review also excluded any special logic for the effects of background clutter.  

Instead, existing models of airborne target detection focus on target contrast against the 

background.  This study used the contrast-based approach as well, and it used a Monte 

Carlo simulation to model the uncertainty associated with target contrast values. 
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All of the additional variables identified and not included in the model to date 

reduce the likelihood of detecting and recognizing a small UA at a distance.  Since some 

of the references and preliminary testing of the visibility concepts found during the 

literature review suggest small UAV are difficult to see at distances of a few thousand 

feet or more, the extraneous variables not included in the model would all serve to 

strengthen the study’s findings by further reducing the likelihood of detection.  None of 

the potential extraneous variables improves the human pilot’s ability to see and avoid 

small airborne objects from manned aircraft.  The variables chosen for use in this study 

target investigation of the limits of human vision performance to determine the degree to 

which human visual acuity affects the small UA sighting task. 



14 

 

Definitions of Terms 

sUAS A small Unmanned Aircraft System weighing less than 55 pounds 

including its payload, cargo, etc. (Operation and Certification of 

Small Unmanned Aircraft, 2016). 

NPD Group The NPD Group, Inc. is an international market research 

corporation.  The NPD initials came from the company’s history 

with its previous National Purchase Diary data service; however, 

the current company name is not an acronym and the previous data 

service is not a core component of the company’s current identity 

(http://www.npd.com). 

List of Acronyms 

ADS-B Automatic Dependent Surveillance - Broadcast 

AMA Academy of Model Aeronautics 

AMSA Australian Maritime Safety Authority 

ATC Air Traffic Control 

ATSB Australian Transport Safety Board 

BASI Bureau of Air Safety Investigation 

CFR Code of Federal Regulations 

EO Electro-Optical system 

ERAU Embry-Riddle Aeronautical University 

FAA Federal Aviation Administration 

GBSAA Ground-based Sense and Avoid 

IR Infrared 
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IRB Institutional Review Board 

LIDAR Laser Detection And Ranging 

MOR Mandatory Occurrence Report 

NAS National Airspace System 

SAR Synthetic Aperture Radar 

sUAS Small Unmanned Aircraft System 

TCAS Traffic Alert and Collision Avoidance System 

TIS Traffic Information Service 

TSSIM Target Structure Similarity 

UA Unmanned Aircraft 

UAS Unmanned Aircraft System 

UAV Unmanned Aerial Vehicle 
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

This chapter describes the existing literature documenting the concerns, flight 

hazards, and current mitigation work related to the prevention of collisions between 

manned and unmanned aircraft.  It details the importance of visual detection of both 

manned and unmanned aircraft until the government or industry can establish and enforce 

technology standards to prevent unmanned aircraft from creating safety hazards for 

aircraft with onboard human pilots. 

In order to understand and describe the limits of human visual capability this 

study used a Monte Carlo simulation model to gather insight about the limits and 

sensitivity of key parameters affecting a human pilot’s ability to see and avoid an 

unmanned aircraft.  Therefore, this chapter also describes the supporting rationale for the 

input variables to the Monte Carlo model, how the variables are treated, and the 

algorithms used in the simulation model.  It explores the available literature describing 

human vision and visual performance limits.  The chapter also addresses the applicability 

of Monte Carlo simulation modeling to the characterization of human visual search 

capabilities. 

The Significance of Small UAS 

The Federal Aviation Administration (FAA) defines Small Unmanned Aircraft 

Systems (sUAS), commonly referred to as drones, as aircraft weighing less than 55 

pounds (FAA, 2016b) with no onboard pilots.  Within the last two years, sUAS sales 

have grown rapidly.  Sales of sUAS grew 224 percent from April 2015 to April 2016, and 

the NPD Group expects sUAS sales to remain strong through 2017 (NPD Group, 2016).  
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The FAA industry forecast report also estimates strong growth in annual sales to 7.0 

million in 2020 (FAA, 2016b). 

To manage the influx of these sUAS aircraft in our nation’s skies, the FAA, user 

community organizations such as the Academy of Model Aeronautics (AMA), and many 

of the vendors and manufacturers of sUAS have created public awareness campaigns to 

educate sUAS operators with the knowledge and information needed to fly their vehicles 

safely in accordance with FAA regulations.  Despite government and industry efforts to 

educate the sUAS operator community, manned aircraft pilots and ground observers 

continue to report sUAS aircraft operating improperly in controlled airspace (FAA, 

2017b; Gettinger & Michel, 2015). 

The continued presence of improperly operated sUAS presents both operational 

and safety challenges for pilots of manned aircraft.  According to the FAA’s UAS 

Sightings Report web page from both March 2016 and February 2017, the agency 

receives more than 100 sighting reports each month (FAA, 2017a; FAA, 2017b).  The 

FAA also states potential drone sighting reports increased over 45% between February 

through September 2016 compared to the same period in 2015 (FAA, 2017a).  While 

many of these reported sightings did not describe immediate collision hazards, the 

ongoing occurrence of these incidents suggests there are a number of sUAS operators 

who are not abiding by the regulatory constraints and best practice guidelines taught by 

industry user organizations such as the AMA.  Additionally, finding the irresponsible or 

misinformed sUAS operators can be difficult given the products already deployed to the 

consumer market (Esler, 2015). 
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Very few sUAS aircraft already sold to consumers contain any means of tracing 

the link between the operator and the actual aircraft; therefore, it is often difficult to hold 

sUAS operators accountable for improper operation of their aircraft (Loffi, Wallace, & 

Ison, 2016).  The FAA is attempting to create both awareness and accountability among 

sUAS operators by requiring them to register as operators and to identify their aircraft 

with registration identification markings.  As of March 2016, the FAA (FAA, 2016a) had 

over 406,000 registered sUAS operators, though they had estimated that as many as 1.6 

million sUASs would be sold in 2015 (Registration and Marking Requirements for Small 

Unmanned Aircraft, 2015).  It is likely many sUAS operators have not registered their 

unmanned aircraft, and the FAA expected up to 1.9 million additional sUASs to be sold 

to hobbyists in 2016 (Registration and Marking Requirements for Small Unmanned 

Aircraft, 2015). 

Given the large number of sUAS vehicles purchased by consumers in 2015 and 

2016, the ongoing reports of improper sUAS operations (Loffi, Wallace, & Ison, 2016; 

Gettinger & Michel, 2015), and the lack of tracking and / or collision avoidance 

technology deployed in these vehicles, sUAS and manned aircraft pilots must rely on 

visual detection and human action to avoid collision hazards.  “See and avoid capability 

… is considered the last line of defence against a mid-air collision once all auxiliary 

layers of the collision avoidance process have failed” (Mcfadyen & Mejias, 2016, p.2).  

Since nascent sUAS aircraft sold in 2016 and earlier do not generally have reliable 

detect-and-avoid technology to guide them away from manned aircraft, visual detection 

and avoidance will serve as a crucial function in the manned aircraft cockpit for as long 

as these early generation UAV aircraft continue to fly in the public airspace.  The FAA 



19 

 

describes the requirement for manned aircraft pilots to see and avoid other aircraft in its 

final rule for operation and certification of small UAS – Federal Register, Volume 81, 

No. 124, published on June 28, 2016 (Operation and Certification of Small Unmanned 

Aircraft, 2016). 

Though the FAA and other aviation industry groups have repeatedly expressed 

safety concerns related to ongoing reports of UAV sightings in airspace prohibited for 

UAV operations, other industry organizations believe the concerns are over stated.  The 

AMA countered concerns by the FAA, news media, and various researchers such as 

Gettinger and Michel (2015) stating, “Only a small number of sightings were legitimately 

reported as ‘near misses,’ the most serious reports involved government-sponsored 

military drones and some reports appeared to involve people flying responsibly” (AMA, 

2016, p. 1).  The same AMA report also states there are decreased sightings of drones 

despite the large number of purchases by consumers.  In general, the AMA calls for a 

more comprehensive analysis and less “inflammatory terminology” (p. 11) when 

characterizing the reported sightings of UAS.  The AMA report based these conclusions 

on the AMA’s analysis of the FAA’s UAS sightings report (FAA, 2017b) covering the 

period August 2015 to January 2016. 

Conversely, while the sUAS sighting reports issued by the FAA contain 

preliminary information, and a number of those reports may be found irrelevant upon 

further investigation, there are still hundreds of sUASs reported to be operating 

improperly in controlled airspace or in the vicinity of manned aircraft – even if no 

imminent collision hazard was perceived (FAA, 2017b).  Between the period of 

November 2014 and September 2016, the FAA received 2,617 reports of UAS sightings, 
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and the agency reported on February 23, 2017, they were receiving over 100 additional 

reports of sightings each month (FAA, 2017b). 

There are well over one million consumer-owned sUAS aircraft capable of 

operating in the nation’s airspace with no automated means of abiding by airspace 

restrictions or avoiding other aircraft.  Since these sUASs do not generally have 

technology to render their whereabouts on existing traffic position awareness systems, 

such as the Traffic Alert and Collision Avoidance System (TCAS) and the Traffic 

Information System (TIS), see-and-avoid remains the fundamental means for manned 

aircraft pilots to avoid collisions with sUASs (Yu & Zhang, 2015).  In fact, “the US Code 

of Federal Regulations (CFR) [requires] that pilots see and avoid other aircraft” 

(Consiglio, Chamberlain, Muñoz, & Hoffler, 2012, p. 2). 

The need for reliable detection, identification, assessment, and avoidance action is 

widely recognized in the literature.  However, nearly all of the research and analysis work 

to date addresses the sense and avoid capability of the unmanned aircraft and its operator.  

Very little recent work exists on the challenges of sUAS see and avoid for pilots of 

manned aircraft.  Safe operation of aircraft in the National Airspace System (NAS) is the 

driving force behind the need for reliable detect / sense and avoid systems in UAS 

aircraft.  Since UAS aircraft do not have an onboard pilot, it can be difficult to impossible 

for UAS operators to use the see and avoid concept to remain clear of low-flying manned 

aircraft.  This is especially true if the UAS is operating in a field surrounded by trees or 

buildings that prevent the operator from seeing approaching aircraft behind the tree line 

or building skyline.  The lack of visual capability in the sUAS operating environment 
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amplifies the need for technology-based sense-and-avoid solutions to prevent collisions 

(Lai, Mejias, & Ford, 2011; Mcfadyen & Mejias, 2016; Yu & Zhang, 2015). 

Potential Technology-based Solutions 

The technology to prevent collisions exists; however, the sUAS industry still 

needs to agree on and produce the standards and products required to address the 

collision avoidance challenge introduced by sUASs.  Yu and Zhang (2015) divided these 

technologies into cooperative and non-cooperative technologies based on whether aircraft 

work collaboratively to avoid collisions or independently to generate their own collision 

avoidance solutions.  Table 1 summarizes the set of technologies available to address the 

collision avoidance problem between manned and unmanned aircraft.  Though these 

technologies exist today, none of them stands as a standard for small UA and none of 

them are widely deployed as a requirement for small UA. 

The following paragraphs provide additional details regarding these technologies, 

which may resolve concerns about collisions between manned and unmanned aircraft in 

the future.  The implementation of these technologies would eventually eliminate the 

concerns of this study about a manned aircraft pilot’s ability to see and avoid a small 

UAV in time to prevent a collision.  However, since these technologies do not exist 

across the current fleet of small UA products for sale today, the research questions in this 

study remain for the near-term.  The following literature illustrates the current focus on 

enabling UA and UA operators to avoid manned aircraft with little to no work focused on 

enabling manned aircraft pilots to avoid UA – especially small UA. 
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Table 1 

Technologies to Prevent Manned vs. Unmanned Traffic Conflicts  

Technology Type Function 
Traffic Collision Avoidance System (TCAS) Cooperative Detection / Alert 
Automatic Dependent Surveillance – Broadcast 
(ADS-B) Cooperative Detection / Alert 

Network Meshing Cooperative 
Communication 
Bandwidth 
Management 

LIDAR (Laser Detection and Ranging) Non-Cooperative Sense and Avoid 
Synthetic Aperture Radar (SAR) Non-Cooperative Sense and Avoid 
Electro-Optical (EO) systems Non-Cooperative Sense and Avoid 
Acoustic sensing systems Non-Cooperative Sense and Avoid 
Ground-based Sense and Avoid (GBSAA) Non-Cooperative Sense and Avoid 

Geo-fencing Non-Cooperative Airspace 
restriction 

Counter-UAS Technologies Non-Cooperative Defensive 
Note.  Material obtained from Campbell (2012, October); Doll, McWhorter, Wasilewski, and Schmieder 
(1998); Frew and Brown (2008); Gettinger and Michel (2015); Lai, Mejias, and Ford (2011); Mcfadyen and 
Mejias (2015); and Yu and Zhang (2015). 

 
 

The cooperative systems identified by Yu and Zhang (2015) include TCAS and 

Automatic Dependent Surveillance – Broadcast (ADS-B).  These systems engage other 

aircraft with an information exchange process that enables the participating aircraft to 

work out a well-defined collision avoidance solution.  These systems may also inform 

ground-based surveillance systems about their location, altitude, and track so ground-

based processors can calculate potential traffic conflicts and relay alerts and warnings to 

aircraft in the sky.  However, ground-based sense and avoid systems require the UA to be 

equipped with ADS-B or radar transponder equipment to provide a signal for the ground 

systems to detect (Campbell, 2012). 

Some larger UAS vehicles have TCAS and / or ADS-B capabilities; however, 

these technologies are limited in terms of their capacity to operate in environments with 
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high numbers of targets.  TCAS and ADS-B technology may also exceed the payload 

capacities of small UAS (Yu & Zhang, 2015).  Though the UAS industry is addressing 

the weight and size issues, the limited radio bandwidth to accommodate TCAS and ADS-

B technologies remains problematic when many hundreds of vehicles operate within a 

small geographic area.   

Yu and Zhang do not discuss the radio bandwidth requirements for these 

technologies when many hundreds or thousands of aircraft are within communications 

range of each other.  However, Frew and Brown (2008) described the bandwidth 

limitation issues for sUAS operations a number of years ago, long before the rapid 

growth in the number of sUAS that exists today.  In their research, Frew and Brown 

examined direct link, satellite-based, and cellular strategies for control and aircraft-to-

aircraft communications with UA.  They concluded the use of meshed, ad-hoc 

communications was the only viable bandwidth solution for sUAS communication 

requirements in the future.  Network meshing means the participants and nodes in the 

communication network have the ability to forward and route data between themselves, 

from aircraft to aircraft, aircraft to satellite, or from aircraft to ground network nodes, in 

an ad hoc fashion.  Such a network could dynamically accommodate high-density 

communications traffic over long distances; however, current cooperative air traffic 

control and collision avoidance systems do not use meshed networking architectures. 

The wide variety of laser, electro-optical, acoustic, and infrared sensor-based non-

cooperative systems described by Yu and Zhang (2015) all have potential benefits that 

circumvent the radio bandwidth limitations and the requirement for all aircraft to be 

properly equipped for cooperative collision avoidance.  Non-cooperative systems do not 
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communicate and negotiate with each other.  Rather, they independently sense and assess 

the operating situation and make their own decisions regarding their collision avoidance 

actions.  These non-cooperative technologies do not generally exist in sUAS aircraft and 

do little to help the pilots of manned aircraft detect and avoid sUASs operating outside of 

their authorized airspace. 

The majority of the other traffic detection and conflict avoidance strategies found 

in the literature describe advanced technology sensor systems and strategies for 

autonomous sense and avoid capabilities for the unmanned aircraft.  The sensor 

technology for these systems include Laser Detection and Ranging (LIDAR), Synthetic 

Aperture Radar (SAR), Electro-Optical (EO) systems, acoustic sensing systems, and 

Infrared (IR) sensors designed to create an image or model of the physical world from the 

UA’s perspective (Yu & Zhang, 2015).  LIDAR scanning and SAR use active light or 

radio energy emissions to scan the environment for objects that reflect the emitted energy 

back to sensors for interpretation.  These systems analyze the reflected energy to 

determine the distance, relative direction, and ultimately the size and shape of the objects 

scanned by the system.  However, LIDAR sensors have a limited field of view, and SAR 

sensors lack the resolution and accuracy needed to create the same quality imagery as an 

EO system.  EO systems are essentially sophisticated camera systems designed to capture 

optical images of the environment and its content.  Acoustic sensors detect engine sounds 

and sounds related to propulsion devices such as rotors and propellers.  Acoustic sensing, 

using an array of sensitive microphones, can provide location and tracking information 

on airborne targets; however, acoustic systems lack target range determination capability 

and are susceptible to adverse weather, winds, and temperatures (Yu & Zhang, 2015).  
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Passive IR sensing systems provide better image quality than acoustic or radar systems, a 

wider field of view than LIDAR, and improved performance over other optical systems at 

night.  However, IR systems do not provide range-to-target information.  While EO 

systems use optical image sensors such as visible-light camera systems to create detailed 

visual representations of the environment, such systems generally lack range calculation 

capability (Yu & Zhang, 2015).  Though the captured image can be very detailed, 

researchers and engineers must implement sophisticated methods and algorithms to 

identify targets of interest and to determine if those targets present a potential collision 

hazard.  Though a great deal of research has been invested into the development of such 

artificial vision concepts, replicating the multitude of input channels such as color, 

movement, temporal location, conceptual shape, context, orientation, etc. is a complex, 

systems-oriented task (Doll, McWhorter, Wasilewski, & Schmieder, 1998).   

Doll et al. produced their work on artificial vision nearly two decades before the 

current surge in sUAS sales.  Lai, Mejias, and Ford (2011) describe recent applications of 

machine vision systems to the task of airborne target collision detection as being 

attractive due to their “relatively low cost, size, weight, and power requirements” (p. 

137).  Lai et al. point out the numerous advances made over the past decades regarding 

multi-stage processing of image data, advances in noise filtering, advances in image 

stabilization, and the treatment of background clutter.  During in-flight testing, their 

machine vision-based detection algorithms found targets “at distances ranging from 400 

to around 900 m (depending on the collision geometry)” (Lai et al., 2011, p. 155), 

providing between eight to ten seconds of warning prior to a collision. 
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Mcfadyen and Mejias (2015) recently confirmed assertions by Yu and Zhang and 

Lai et al. regarding the merits of vision-based sense and avoid technology – especially for 

sUAS applications.  Mcfadyen and Mejias described active radar-based technology as 

being functionally “attractive” (p. 3) though “typically either too heavy or too expensive 

for many small unmanned aircraft operations” (p. 3).  Instead, Mcfadyen and Mejias 

suggest electro-optical system strategies are a more realistic approach for sense and avoid 

capability on sUAS aircraft.  Furthermore, they suggest the same type of sense and avoid 

system could be installed on manned aircraft to help pilots detect, see, and avoid small 

UA more readily. 

The current literature documents the many artificial vision and target sensing 

research efforts from the past two decades; however, the sUAS industry has yet to select 

specific standards for sense and avoid operations.  Yu and Zhang (2015) also provide a 

comprehensive description of many of the published approaches and methods for using 

the data from the sensor options available today.  In the end, they conclude none of the 

available sensor technologies nor the methods for using them in sense and avoid 

applications are available as certified products yet.  While there are numerous 

publications on studies of how to implement reliable sense and avoid systems in the 

future, there is comparatively little literature on the challenge of detecting UAs, 

especially small UAs, from the manned aircraft cockpit.  There is also very little literature 

on the realistic limits and likelihood of visual detection of sUAS aircraft by pilots of 

manned aircraft. 

Another strategy for the application of technology-based solutions to the problem 

of sUAS and manned aircraft collision avoidance uses technology to prevent sUAS from 
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operating in areas off limits to sUAS.  These strategies include geo-fencing software 

designed to disable or redirect the sUAS when they reside in or approach inappropriate 

airspace.  People have mixed opinions on the concept of geo-fencing across the industry.  

While some believe it will provide important protection against dangerous or careless 

operations, others believe it will only keep inept but well-meaning operators out of 

trouble because those who do not wish to comply with regulations can easily defeat the 

feature.  At present, a few manufacturers offer geo-fencing as a feature on their sUAS 

products (Gettinger & Michel, 2015). 

Other technology-based solutions to keep sUAS out of restricted airspace or to 

remove them from the air when they appear will likely emerge in the future.  In 2016, the 

U.S. Senate passed a transportation bill to fund research on counter UAS technologies 

(Senate passes transportation, 2016).  Counter UAS technologies are envisioned to 

“detect, locate, and track both UAS and their operators and mitigate unauthorized 

operations” (Warwick, 2016, para. 9).  Since these new defensive technologies are not yet 

available for deployment, pilots of manned aircraft cannot benefit from them at present. 

Existing Studies in Human Observer Capabilities 

Given the current lack of technology-based collision avoidance options for sUAS 

aircraft already sold to consumers, and given the ongoing stream of reports filed with the 

FAA regarding sUAS sightings (FAA, 2016a), visual detection and identification of 

airborne traffic conflicts remains an important task for present-day pilots of both manned 

and unmanned aircraft (FAA, 2016c).  However, the see and avoid concept is far from 

perfect.  The Australian Transport Safety Board (ATSB) describes a variety of limitations 

constraining a pilot’s ability to successfully see and avoid collision hazards.  These 
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include workload and other distractions from the visual search task, obstructed views 

from the cockpit, glare, the retinal blind spot, accommodation or focus delays, complex 

or cluttered backgrounds, atmospheric visibility, the contrast between the target and the 

background, the size of the target when it is safely distant, and a variety of other 

detractors (ATSB, 1991). 

Since see-and-avoid is the only current, consistent tactic manned aircraft pilots 

have to prevent collisions with airborne sUAS, it is important to understand the 

limitations associated with the tactic; therefore, this dissertation examines a number of 

models designed to predict the detection and recognition of airborne objects viewed from 

a distance.  The distance must be large enough to afford the pilot time to recognize the 

object as a potential collision hazard and to take appropriate evasive action.  Conversely, 

the further away the manned aircraft pilot is from the small UA, the smaller the UA will 

appear to be. 

Visual acuity.  Before examining other extraneous factors affecting the human 

ability to detect and recognize a small distant object, it will be helpful to understand how 

small an object can appear within the human field of vision before it is no longer reliably 

recognizable.  Howett (1983) states humans with a Snellen visual acuity of 20/20 vision 

can generally see and resolve image details as fine as one minute of arc within their field 

of vision.  Though many humans can resolve detail smaller than one minute of visual arc, 

the National Bureau of Standards has used this standard as a conservative limit for detail 

resolution when it comes to defining guidelines for the development of readable signage.  

Gibb, Gray, and Scharff (2010) describe collision avoidance with full-sized, manned 

aircraft as challenging because of the small angular size of the target when viewed from 
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an adequate distance to make proper evasive actions.  Gibb et al. suggest the minimum 

visual angle for target detection in the aircraft collision-avoidance scenario is 0.2 degrees 

or 12 arc minutes based on information from National Transportation Safety Board 

investigations.  Their assertion is different from the one arc minute threshold described 

by other researchers, though Gibb et al. focus on recognizing the overall target instead of 

recognizing the detailed features of the target.  Howett’s one arc minute minimum refers 

to recognizing the strokes that form a letter so the observer has enough detail to identify 

what the letter is (Howett, 1983).  In either case, all of the researchers agree that aircraft 

collision avoidance requires pilots to detect and comprehend the location and trajectory 

of potential collision targets while they appear as small, distant objects. 

Objects tend to appear larger when they are close to the observer because they 

occupy more of the observer’s field of vision.  Conversely, when the object is distant, it 

appears to be smaller.  The difference in size is a mathematical result of trigonometry, as 

shown in Figure 1.  Given an object AB of size w, and a viewing distance of d between 

the object and the observer O, it is possible to determine the visual angle T subtended on 

the eye’s retina in terms of minutes of arc.  Since there are 60 minutes of arc in a degree, 

and there are 2 S radians in a circle, the following logic defines a constant to convert 

radians to minutes of arc.  Given 2 S radians = 360 degrees, the following transforms can 

be made: 1 radian = 360 / 2 S degrees which equals (360 / 2 S) x 60 minutes.  This yields 

a conversion constant of 1 radian = 3437.75 minutes of arc (Howett, 1983).  By dividing 

the object height AB in half, as shown in Figure 1, the size of the visual arc subtended is 

the sum of two lines of a right triangle - AC and BC.  Using trigonometry, one half of the 

subtended visual arc for triangle ACO is: tan-1 ( w / 2 ) x 3437.75, which converts the arc 
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size from radians to minutes of visual angle.  Finally, since the visual angles are so small 

in this study of sUAS visibility, ( w / 2) / d nearly equals tan-1 (( w / 2 ) / d), so it makes 

sense to simplify tan-1 (( w /2 ) / d) to ( w / 2) / d (Howett, 1983).  The two values are 

within 1.0 E-07 of each other for the values encountered when the sUAS is less than 50 

feet in size at a distance of 2400 feet. 

 
 

 
Figure 1.  Determination of visual angle.  The visual angle T (in minutes) of an object 
having width w (extending from A to B) can be calculated using the formula 
2 x 3438 x tan-1( ( w / 2 ) / d), where d is the distance between the observer (O) and the 
object AB (Howett, 1983, p.7). 

 
 

To get the complete visual angle subtended by the distant sUAS on the retina in 

terms of visual arc, Howett (1983) combined the two half-arcs resulting in the simplified 

equation 2 x 3438 ( w / 2 ) / d which was simplified further, as shown in Equation 1.  

Note, the derived constant 3437.75 was rounded up to 3438 in these simplified equations. 

 

Visual Angle in minutes of arc  =  3438 x ( w / d ) (1) 

where: 

 w = size of the target sUAS 

 d = distance between the target sUAS and the observer O. 
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The important consideration when making these calculations is repeated studies of 

human visual target recognition capabilities suggest that most humans with normal vision 

can recognize fine detail in an image down to about one arc minute in size.  This limit 

assumes normal visual acuity, high contrast lines against a plain background, and 

moderate illumination (Howett, 1983).  Howett suggests other studies have shown that 

many humans can identify even finer details, with visual arcs less than one minute, under 

ideal conditions; however, the National Bureau of Standards uses the one arc minute limit 

as a common minimum standard. 

Howett (1983) provides data indicating that a person with a visual acuity of 20/10 

on the Snellen scale can identify image components down to a critical visual angle of 0.5 

arc minutes under the same conditions that a person with 20/20 vision can identify image 

components down to a critical visual angle of one arc minute.  It is important to note that 

while there are many people with visual acuity better than the norm of 20/20 for the 

general population, they represent only a small portion of the population.   

Table 2 shows the Snellen visual acuity relationships to the detail or stroke width 

of letters on a standard eye test chart.  It also shows the percentage of the population with 

visual acuity at each level.  Visual acuity worse than 20/40 is not depicted because such 

individuals would not pass the required FAA medical exam to fly an airplane.   

Table 2 also shows that a portion of the population may be able to see fine detail 

down to 0.75 arc minutes of subtended image on the foveal center of the retina; however, 

very few people have the 20/10 vision required to see 0.50 arc minutes of detail.  
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Table 2 

Snellen Notation Relationship to Visual Arc Size in Minutes  

Snellen 
Notation 

Critical Visual 
Angle (minutes)

Cumulative % 
of population 
un-corrected 

Cumulative %  
of population 

corrected 
20/10 0.5 1.1 1.5 
20/15 0.75 30.3 40.0 
20/20 1.0 53.9 72.9 
20/30 1.5 69.3 90.6 
20/40 2.0 75.8 95.1 

Note.  Depiction of the relationship between visual acuity in Snellen notation, the critical visual angle or 
minimum number of arc minutes that can be seen with each Snellen rating, and the percentage of the 
population who have such visual acuity (or better) – both un-corrected and corrected with glasses, contact 
lenses, or now eye surgery.  Adapted from “Size of letters required for visibility as a function of viewing 
distance and observer visual acuity.” by G. L. Howett, 1983. Copyright 1983 by U.S. Government Printing 
Office. 

 
 

Howett’s (1983) research and studies relate to the minimum size of detail for 

human recognition of letters in signage (e.g. Exit signs and other signage for public safety 

applications).  The critical visual angle refers to the minimum size of the letters’ stroke 

width or ink width.  The typical full letter is generally five times larger than the stroke 

width, in terms of letter height.  Howett describes the stroke width as being the critical 

level of detail for letter recognition, however.  Howett’s use of the one arc minute 

minimum for human visual acuity aligns well with research done by Hirsch and Curcio 

(1989) on the ability of the human retina to resolve fine details.  Hirsch and Curcio 

compared the foveal section of human retinas to gather data on the density or spacing of 

cone cells, which the eye uses to detect detail and color.  Based on their findings 

regarding the spacing of cone cells in the foveal area of the retina where the cones are the 

most densely populated, Hirsch and Curcio predicted the best case acuity for the human 

eye.  They compared their predictions with a variety of visual acuity test measures 
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performed on living human subjects.  Their findings suggested the best-case visual 

acuity, based on analysis of the retina’s cone cells in the dense foveal section of the 

retina, was about 68 cycles per degree or about 0.88 arc minutes.  Actual human subject 

performance ranged from one to two arc minutes with most of the samples falling in the 

range of 1.15 to 1.50 arc minutes (Hirsch & Curcio, 1989). 

Retinal eccentricity.  In addition to the apparent size of the image as measured 

by visual angle, another key factor in a human’s ability to detect distant, airborne objects 

is the location the image appears on the retina relative to the center of the fovea where the 

cone cells are the most densely populated.  Retinal eccentricity refers to the distance from 

location of the target image on the retina to the center of the fovea.  Vision researchers 

measure retinal eccentricity in degrees or minutes of visual arc (Hirsch & Curcio, 1989; 

Westheimer, 2010).  Other researchers refer to this same offset distance as the angle-off-

the-visual-axis (Greening, 1976). 

The minimum visual angle of one arc minute, described in the previous section on 

visual acuity, only applies if the object renders its image in the foveal region of the eye’s 

retina where the cone cells are the most densely packed together.  Hirsch and Curcio 

(1989) found the cone cells less densely spaced as they examined the retina further away 

from the foveal center.  The resulting loss of resolution results in an increased minimum 

visual angle for fine detail recognition of two or more arc minutes when the image falls 

just two degrees away from the foveal center.  As the image falls further from the center 

of the foveal region of the retina, human ability to resolve and recognize finely detailed 

images degrades rapidly. 
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The peripheral areas of the retina contain the highest concentration of rod cells.  

Rods are more sensitive to light than cones. Rods are also sensitive to image movement; 

however, rods do not detect color and are unable to resolve fine detail like cones (Gibb, 

Gray, & Scharff, 2010).  For maximum visual acuity, it is important to use the foveal 

portion of the field of vision when searching for small, distant objects (Erickson & Burge, 

1974; Graham, 1989).  Using the center of the field of vision allows the fine detail of an 

image to appear on the foveal section of the retina where the color and detail-oriented 

sensory cells, or cones, are closely spaced with around 150,000 cones per square 

millimeter (Frisby & Stone, 2010). 

Retinal eccentricity is important when searching for distant objects because 

distant objects appear to be small, and the ability to discern fine detail is therefore 

essential.  Figure 2 provides a graphical depiction of the loss of visual acuity as images 

render on the retina further away from the foveal center.  The graph depicts research 

findings based on peripheral vision work originally conducted by Theodor Wertheim in 

the late 1890s (Wulfeck, Weisz, & Raben, 1958).  As the target image moves further 

from the one degree-wide foveal center in the field of vision, the density of cone cells 

decreases rapidly.  From the four-degree eccentricity point out to the peripheral edge of 

the vision field, the number of cone cells remains somewhat constant.  Rod cells 

predominate the retina at about 4 degrees of eccentricity going out to the edge of the field 

of vision, and are more sensitive to motion and to light in the upper end of the visible 

spectrum.  Since this region of the retina, populated predominantly by rod cells, cannot 

resolve details as fine as the foveal region of the retina can, the smallest visual angle the 
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eye can see at 30 degrees of eccentricity is approximately 30 minutes of arc size 

(Wulfeck, et al., 1958). 

 
 

 

Figure 2.  Visual acuity related to retinal eccentricity.  Adapted from “Vision in military 
aviation,” by Wulfeck et al., 1958, p. 130.  Copyright 1958 by Armed Services Technical 
Information Agency,  Graph shows the decrease in visual acuity as eccentricity increases.  
Eccentricity is the angular offset from the center of the foveal region of the retina.  As 
images appear to the left or right of the foveal center, the retina’s ability to resolve fine 
detail diminishes. 

 
 

Wulfeck, Weisz, and Raben (1958) also map the eye’s blind spot, where the optic 

nerve connects to the retina, between approximately 11 degrees to 17 degrees of 

eccentricity on the nasal side of the retina.  As a result, the missing image data will occur 

11 to 17 degrees on the temporal side or outer axes of the visual scene, in any given eye.  

Since the two eyes have blind spots in different locations, and since the brain cognitively 

merges image data from the two eyes, the blind spot is not generally an issue for normal 
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vision.  This is true unless the second eye also has no view of the target due to some 

object blocking only its view (ATSB, 1991). 

Contrast threshold.  Another key attribute used in human visual search models is 

contrast between the target and its background (Greening, 1976).  Researchers have a 

variety of methods to choose from for determining contrast.  The best choice depends on 

the circumstances of the search operation, the characteristics of the target, and the 

environmental conditions in which the target is operating.   

For this study, the target object was a small UA operating in daylight conditions 

between the ground and a few thousand feet.  Small UAs are limited to operation no 

higher than 400 feet above the ground unless special permission has been obtained from 

the FAA (Operation and Certification of Small Unmanned Aircraft, 2016); however, a 

number of unauthorized small UA have been reported at altitudes above 400 feet, as high 

as several thousand feet (FAA, 2017b).  This means likely backgrounds for the UA target 

detection task will include both light, medium, and dark luminosity levels.  Based on a 

convenience sample of information gathered from popular sUAS websites, small UAV 

devices come in a variety of shapes and colors, though the most common UAV colors are 

black, white, and gray.  The details of how this information was gathered are in Chapter 

3. 

In general, most studies calculate contrast using a formula similar to the one 

shown in Equation 2 (Akerman & Kinzley, 1979; Chisum, 1977; Poe, 1974).  To 

calculate contrast, divide the difference between the luminance of the target and the 

luminance of the background by the luminance of the background resulting in contrast in 

terms of a ratio.  Not all models use the absolute value of the difference.  Some models 
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have a positive or negative contrast to show whether the target or the background is 

lighter. 

 
 

C = | LT – LB | / LB    (2) 

where: 

C = contrast 

LT = luminance of the target UA 

LB = luminance of the background 

 

The confusing issue in the literature regarding contrast is that some researchers 

use the opposite order of terms in the numerator to calculate contrast.  Howett (1983) and 

Erickson and Burge (1974) calculate contrast using (LB – LT) / LB which yields negative 

contrast values when the target is lighter than the background.  Howett reverses the terms 

so that the formula yields positive values for black letters on white backgrounds to 

represent the more common scenario for letters on signs.  The study will need to use a 

variety of contrast values to model the luminance and background contrasts that could 

potentially exist in a given sUAS scenario.  Poe (1974) acknowledges, in general, 

“substantial variations in contrast over a flight path lasting 20 sec (sic) are common.  

Common levels of aircraft intrinsic contrasts are between 0.05 and 0.75” (p.11). 

Previous researchers model the effect of contrast using different strategies.  Poe 

(1974) used data from Blackwell and McCready (1958), Blackwell and Moldauer (1958), 

Sloan (1961), and Taylor (1963) to create his own model to determine contrast thresholds 

at which the probability of sighting an object drops below 50%.  Poe spent months 
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crosschecking his model against multiple databases.  The resulting formulas in Poe’s 

model are somewhat similar to those used by Howett (1984) and Andrews (1991a); 

however, the integration of the multiple datasets creates a cumbersome set of formulas 

which Ackerman and Kinzly (1979) found mismatched actual experimental data.  

Ackerman and Kinzly recommended further recalibration of Poe’s contrast thresholds.  

Andrews (1991a), unlike Poe’s work, calibrated and tested his model using actual 

experimentation. 

Andrews (1984) cites studies relating small target detectability to the product of 

target area and contrast.  Andrews defines small targets as those subtending an arc size of 

one to ten minutes to the human observer.  Since detectability is a function of the target 

area multiplied by the target’s contrast, if the contrast decreases by one-half, then the 

target size must double to produce the same level of detectability.  Andrews (1984) 

provides Equation 3 to illustrate this relationship.  Note the expression exp ( 2.996 r / R) 

represents the contrast reduction element of this equation, based on Koschmieder’s Law. 

 

	ࣅ ൌ 	 ૛࢘࡭ࢼ 	࢖࢞ࢋ		 ቔ
ି૛.ૢૢ૟		࢘

ࡾ ቕ    (3) 

where: 

ૃ = target acquisition rate 

઺ = experimentally derived constant  (17,000 for single pilot operations) 

A = area of the target 

r = range or distance between the target and the observer 

R = meteorological range (atmospheric visibility) 
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Koschmieder’s Law describes an equation accounting for the loss of visibility 

resulting from the scattering and absorption of light energy as it travels through the 

atmosphere.  When light, reflected off an object the eye is watching, travels through hazy 

or misty air, some of its energy is scattered and some is absorbed, resulting in a reduced 

amount of the reflected light from the object reaching the eye’s retina.  The resulting 

reduced amount of light from the target makes it more difficult to see (Lee and Shang, 

2016).  Andrews (1984) accounts for Koschmieder’s Law in Equation 3.  Andrews also 

states if the visibility through the atmosphere is two or three times the distance to the 

object under observation, then the effect of atmospheric scattering is minimal.  Therefore, 

the Koschmieder term in the equation is unnecessary when clear atmospheric conditions 

prevail (Andrews, 1991b). 

Target discrimination against background clutter.  Depending on the altitude 

and operating phase of the manned aircraft (takeoff, departure climb, cruise, descent, 

approach, or landing), given the variety of improper places that small UA have been 

spotted near airports and aircraft, the likely background for the target UA will vary 

widely.  Possible backgrounds could include a bright homogeneous sky; a complex, 

textured cloudy sky; a homogeneous, monochromatic landscape; or a complex 

metropolitan skyline.  Many other background scenes are possible too, including 

suburban neighborhoods, lakes, forests, hills, and ocean settings. 

In order to capture the effect of background clutter in the Monte Carlo simulation 

for this dissertation, the literature research examined a variety of background clutter 

modeling and analysis strategies.  Chang and Zhang (2006) developed the Target 

Structure Similarity (TSSIM) metric for characterizing clutter in an image when 
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searching for a target.  The concept divides the image into blocks and compares the 

background area characteristics to those of the target, block-by-block.  TSSIM divides the 

background image into blocks that are twice the size of the apparent target area.  Since 

the apparent target area is tiny for small UA viewed from large distances, the background 

blocks are also very small. 

The analysis examines the structure, luminance, and contrast features in each 

block and in the target, and analyzes the similarities statistically.  Higher levels of 

similarity will require higher amounts of time for the observer to search through the 

background scene.  In the case of small UA images, the target and the tiny background 

blocks are generally featureless blocks of homogeneous grayscale level.  If the 

background image contains many areas of similar grayscale to the UA grayscale, the 

similarity score will be high, and longer search times will be required to find the UA. 

When Chang and Zhang compared their model results with the results obtained 

from 62 test observers searching for targets in 44 different high-resolution color images 

of natural complex scenes, their model produced outputs with Pearson correlation 

coefficients ranging from 0.75 to 0.87 when related to the results of the human observer 

tests.  Subsequent testing showed the TSSIM structural similarity metric “correlates 

significantly with human visual search performance, and outperforms other clutter 

metrics” (Toet, 2010, p. 467).  Toet’s (2010) conclusion was when the TSSIM metrics 

identified increased levels of similarity between search target features and features of the 

natural scenic backgrounds, visual search time increased, and the correlation between 

actual human search time and TSSIM predictions of search time per the clutter metric 

was very strong. 
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Additional research by Itti and Koch (2000) examines search methods and search 

times in the presence of background clutter using a multi-layered processing approach in 

which color, contrast intensity, and visual feature orientation are inputs to the creation of 

feature and conspicuity maps.  These maps provide the information needed to produce a 

saliency map that predicts the human search focus within the search area.  While Itti and 

Koch used a very different search technique for their model, their model produced similar 

results to the TSSIM outcomes in terms of added search time requirements for scenes 

with a higher volume of background features similar to the visual features of the target.  

Both research teams found a minimum increase of 2 seconds for non-homogeneous 

search area backgrounds in which the target is somewhat conspicuous, and up to 15 

seconds or more for the backgrounds with features in which the target is less conspicuous 

(Itti and Koch, 2000; Toet, 2010).  Though experimental testing is required to determine 

the precise amount of increased search time needed because of background clutter or 

feature similarity, the increased time requirement is clear. 

Other factors affecting visual target detection.  “Many other target attributes 

are known to influence detectability including shape, motion, and color” (Akerman & 

Kinzley, 1979, p. 278).  Graham lists “variability of pilot visual acuity and of air-to-air 

visibility, target size and aspect, target contrast, background complexity, crew workload 

and search patterns, and sun position” (Graham, 1989, p. 6) as additional factors affecting 

successful see and avoid operations.  For the purposes of the Akerman and Kinsley study, 

some of these additional target attributes were secondary or irrelevant to their study 

because of the scope and focus of their research questions.  The scope and purpose of this 

study also makes many of the additional target attributes not addressed by this study less 
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important or irrelevant.  Small UA operate in daylight, fair weather conditions since the 

operator is required to have visual line of sight to their aircraft and to the obstacles in the 

environment in which the UA is operating (Operation and Certification of Small 

Unmanned Aircraft, 2016).  Additionally, small UA viewed from distances of hundreds 

or thousands of feet appear as very small angular sizes.  They occupy or subtend only a 

few minutes of visual arc on the retina.  When targets subtend less than 0.5 degrees or 30 

arc minutes of angular size, “the contribution of any chromatic difference to the overall 

perceived difference [in contrast with the background] drops off more rapidly than the 

contribution of the lightness difference (Howett, 1983, p. 27).  Graham (1989) also cites 

multiple field studies in which the use of color, even fluorescent color, has no significant 

effect on visual detection of aircraft. 

Graham (1989) also concludes the use of aircraft lighting and anti-collision strobe 

lights do not improve the visibility of an aircraft during daylight hours.  The Australian 

Bureau of Air Safety Investigation (BASI) agrees with Graham’s findings, claiming that 

an anti-collision strobe light on an aircraft would have to output more than 100,000 

candelas to be effective in full daylight.  On a dark, cloudy day, the strobe would have to 

emit around 5,000 candelas to stand out.  In practice, BASI claims most aircraft strobe 

lights emit between 100 to 400 candelas—far short of the required light output to be 

effective (ATSB, 1991).  Therefore, adding lights to small UA will not likely make the 

UA more visible to manned aircraft pilots. 

One other consideration that could improve target detection in search scenarios is 

the perception of relative motion.  When an object moves within the field of vision, it 

captures the attention of the brain more readily than a stationary object (ATSB, 1991; 
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Regan, 2000).  However, “an aircraft on a collision course will usually appear to be a 

stationary object in the pilot’s visual field” (ATSB, 1991, p. 13).  The perception of 

relative motion is also minimal due to the small level of angular velocity a slow moving 

UA creates when observed from several thousand feet away.  The tiny visual angle 

subtended on the retina for a small UAV at distances of several thousand feet may also be 

a factor (Wulfeck, Weisz, and Raben, 1958).  Though the peripheral field of vision 

sensed by the rods in the human eye is very sensitive to image movement, rods cannot 

discriminate image features smaller than 30 minutes of arc.  The image sizes of small 

UA, at the distances relevant to this model, tend to be in the range of one to six minutes 

of arc—too small for low velocity motion detection by the motion-sensitive rods (McKee 

and Nakayama, 1984; Wulfeck, Weisz, and Raben, 1958).  Therefore, the relative motion 

concept is not a key factor for the visual detection of distant, small UA rendering very 

low velocity motion across the field of vision. 

The effects of relative motion in the context of small UA target detection as 

described above may account for the “unexpected finding” (p. 12) in the Loffi et al. 

(2016) study where test subjects (flying manned aircraft) did not detect small UAS 

targets until the UA was in close proximity to the manned aircraft.  Loffi et al. expected 

the motion of the UA in the pilots’ peripheral vision to have captured their attention.  

Instead, the pilots generally detected the motionless UA more reliably. 

One more visual detection factor not modeled by this study is empty field myopia.  

Empty field myopia is a phenomenon in which the eye relaxes into a state where it 

focuses to a distance of around 56 cm in a plain daylight sky with no particular object for 

it to target on.  In this state, distant small objects will be out of focus and will not be 
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visible.  Since aircraft collision avoidance requires pilots to consciously focus their eyes 

on distant objects to avoid the hazards of empty field myopia, and since it is not possible 

to characterize when a pilot may let down their guard and enter the empty field myopic 

state, the condition is not part of this study. 

Useful Models for Visual Recognition of Airborne Objects  

The literature contains numerous studies and models to describe the human 

capacity to detect, identify, and comprehend the status and movement of objects within 

one’s field of vision.  These models use a variety of input variables to determine the 

detection outcomes.  Since this study involves the detection, identification, and 

comprehension of sUAS aircraft in time for the pilot to avoid any collision hazard, the 

relative size of the target aircraft is likely to be very small within the observer’s field of 

vision (ATSB, 1991).  This is especially true since sUASs tend to present a small visual 

cross section compared to the full-sized passenger-carrying aircraft the ATSB referred to 

in its report on the see and avoid concept.  The size of the target object for most of the 

scenarios of this study occupies only a few arc-minutes (fractions of a degree) of one’s 

field of view, even when the target is within a few hundred feet of the observer.  Many of 

the models in previous studies of visual aircraft detection assume target sizes much larger 

than the small UAVs in this study, thereby allowing other constraints to be limiting 

factors.  Given the tiny size small UAVs appear to be from a distance, they may not be 

visible at the ranges used for previous studies and model testing (Stephenson, O’Young, 

& Rolland, 2015; Loffi, Wallace, Jacob, & Dunlap, 2016). 

Chisum (1977) used a comparatively large AQM-37B target drone as one of the 

targets for a study on the predictability of airborne target detection.  The AQM-37B is 
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only 13 inches in diameter, though it is 200 inches long and has a 40-inch wide tail 

section (Chisum, 1977).  This target looks like a missile.  Chisum’s model uses a 

graphical chart to determine a target’s detection range based on the visible area of the 

target’s cross section, the ambient light level, the meteorological range, and the inherent 

contrast of the object against its background.  Chisum’s model predicts the target, when 

viewed from the side, should be detectable at an 8,000 yard range when the 

meteorological range or visibility is 20,000 yards. 

Greening (1976) summarized and compared six different models designed to 

predict the probability of visual detection for airborne targets.  These models include: 

x Multiple Airborne Reconnaissance Sensor Assessment Model developed 

for the U.S. Air Force by Honeywell, Inc.; 

x General Research Corporation, Model A; 

x Combined Reconnaissance, Surveillance, and SIGINT developed for the 

U.S. Army by Stanford Research Institute; 

x Visual Target Reconnaissance and Acquisition developed by Sandia 

Corporation; 

x DETECT II and III – visual models developed by the U.S. Air Force 

Studies and Analysis Group with the Air Force Armament Laboratory; and 

x AUTONETICS – a visual model supplied to the U.S. Naval Air 

Development Center by Rockwell International. 

These models, as described by Greening (1976), vary in complexity and take into 

account numerous input variables beyond those in the Chisum model or the Howett 

(1983) letter recognition model.  The extra input variables include concepts such as: 
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x Probability of the existence of a line of sight to the target; 

x Probability of fixating and dwelling on a target element; 

x Probability of confusion; 

x Angular rate; 

x Time and glimpse allocations; 

x Object density or the number of similar-featured objects in the search area; 

and 

x Crew size. 

While these models are more comprehensive and complex then needed for the 

purpose of this study, the overall results from these six models are useful.  This study 

focuses on the limitations imposed by human vision since the detection of small UA 

encroaches on those limits.  While each model presented by Greening produced its own 

unique probability of detection or probability of recognition curve, the summarized 

results from the various models are: 

1. Targets with visual angles less than one arc minute are unlikely to be seen; 

2. Targets with visual angles greater than 10 arc minutes are likely to be 

detected (but not necessarily recognized) (Greening, 1976, p. 139); 

3. Targets become recognizable between 30% to 40% of the time when they 

render a visual angle of 15 arc minutes or more; and 

4. In four of the six models, targets become recognizable 50% to 100% of the 

time when the visual angle exceeds 30 arc minutes (Greening, 1976, p. 

140). 
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The models described by Greening are more complex and require more input data 

than are required for this study.  Since the visual angle size of a small UA viewed from a 

distance is likely to be a key limitation for target detection and recognition, many of the 

additional inputs required for the models described by Greening are of secondary 

importance.  Additionally, the Andrews (1991b) model used in this study accounts for 

most of the input considerations described by Greening through Andrews’ experimentally 

derived B constant.  Andrews refers to B as the pilot search effectiveness constant.  It is 

also convenient that the Andrews model produces the required output for this study in a 

direct and usable form—probability of detection.  While the Monte Carlo engine in this 

study will not use any of the models described by Greening because of their excessive 

complexity, Greening’s summarized results will provide implicit validation data for the 

results of this study. 

Howett (1983) offers a more practical model for determining if a human can 

recognize a shape at a given distance.  Howett has a well-defined, validated model to 

determine the required size of letters in signs, given a specified range of human visual 

acuity, distance, lighting, and contrast values.  Howett combines these input parameters 

in a manner that produces a required letter size for readability at a given distance.  

Howett uses contrast and lighting to modulate visual acuity.  In order for a person to 

recognize a letter, the letter must be larger when contrast or lighting levels are lower. 

This study assumes small UA operations are taking place during daylight hours, 

so luminance levels are generally high.  Chisum (1977) provides the following table of 

typical luminance levels for various sky conditions (see Table 3). 
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Table 3 

Sky Luminance  

Day Time Sky Condition Sky Luminance 
(Foot Lamberts) 

Clear Day, Full Daylight 1000 
Overcast Day 100 
Dark Cloudy Day 10 
Twilight 1 

Note.  This table provides typical luminance values for various sky conditions.  Adapted from “Prediction 
of airborne target detection” by G. T. Chisum.  Copyright 1977 by Naval Air Development Center. 

 
 

Since the luminance levels during daylight hours, even on overcast days, provide 

ample illumination for object recognition, the key factor for Howett’s equations will be 

contrast.  Poe (1974) offers a contrast formula that adjusts the inherent contrast of the 

target UAV to an apparent contrast as seen by the eye.  The apparent contrast value takes 

into account the distance to the target and the meteorological visibility.  The combination 

of Howett’s model, Chisum’s data, and Poe’s contrast equation can potentially provide a 

useful model for determining the visibility of the target object as seen from a distance. 

Andrews (1991a) provides a model that builds on concepts used by Howett, 

Chisum, and Poe to create an output in the form of a probability of visual target 

acquisition.  Testing involved 24 general aviation pilots, ranging in age from 24 to 60, 

flying a Beechcraft Bonanza airplane.  There were 64 total encounters with the target 

aircraft – a Cessna 421.  The test subjects were not aware that a Cessna 421 twin-engine 

aircraft would be intercepting their route of flight; however, they were aware that other 

aircraft might be operating in the vicinity (Andrews, 1991b). 

Andrews used solid angles, based on two-dimensional measurements, to take into 

account the fact that objects appear to be different sizes based on the perspective from 
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which the observer views the object.  An aircraft provides a much greater visual target 

area if viewed from above than it does if viewed from a head on perspective, as shown in 

Figure 3. 

 
 

 
Figure 3.  Changing visual target area based on perspective.  The size of the visual target 
area can be very different based on the visual perspective or viewing angle.  Adapted 
from “Air-to-Air Visual Acquisition Handbook” by J. W. Andrews, 1991, p. 19 to 
illustrate the concept of visual perspective for aircraft.  Copyright 1991 by Department of 
Transportation. 

 
 

Based on the use of two-dimensional solid angles, Andrews (1991a) extended the 

Howett model to the use of steradian units instead of the single dimension radian unit.  

This change better represents the target object when compared to Howett’s model where 

Howett was interested in the stroke width of a letter as being key to one’s ability to 

recognize a letter. 
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In the case of multiple rotor-copter sUAS aircraft, commonly flown by non-

professional remote pilots, it is important to note the visual target area presented by the 

aircraft tends to be more consistent than the aircraft shown in Figure 3 when viewed from 

different angles.  The consistent area, regardless of horizontal viewing angle, is the result 

of the round shape and consistent vertical profile of multi-rotor, copter-style sUAS 

aircraft.  Even when viewed from a different altitude, the presented area tends to be very 

consistent because a pilot must view the UA from a long distance in order to have time to 

maneuver clear of a collision with it, and therefore tends to view the UA primarily from 

the side. 

Additionally, Andrews (1991b) looks at the amount of time the pilot has to find 

the target aircraft in order to compute the probability of visual acquisition.  The search 

time is bound by the moment the target aircraft becomes large enough to be visible to the 

human eye (1.0 square arc minute) and the latest possible time at which visual acquisition 

can occur and still allow the pilot to maneuver clear of the target aircraft.  Unlike some 

other models, Andrews also accounts for the growth in the visual size of the target, as it 

gets closer to the observer, integrating the instantaneous probability of detection over 

each instance of time as the target aircraft approaches. 

Andrews (1991b) determined that the probability of visual acquisition is a 

function of the size of the target, the contrast of the target against its background, and the 

time available to detect the object multiplied by some constant determined through flight 

test experimentation.  Andrews refers to this constant as the search effectiveness 

parameter (B).  “B is the rate of visual acquisition per solid angle of target size per 

second of search” (Andrews, 1991a, p. 3).  Andrews established the B constant in a 
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manner to create the following relationship: if ઺ = 17,000 steradian-second units, then a 

target that subtends a one micro-steradian size at the human eye will generate a 1.7 

percent probability of acquisition per second of search time. 

઺ accounts for the human performance component of the search task, and it 

includes pilot workload, visual acuity, pilot training, effort spent searching, etc.  Based on 

the flight test experimentation referred to above, Andrews (1991a) determined ઺ to be 

17,000 per steradian-second for pilots experiencing low workload, normal traffic search 

effort, and no alert about traffic in the area.  This concept takes advantage of former 

research where the detectability of small targets, between one to ten minutes of arc in 

size, was determined to be a function of the target area and contrast (Andrews, 1984). 

Andrews (1991a) uses Koschmieder’s Law to model how the contrast of the target 

is reduced when the atmosphere is not clear.  Per Koschmieder’s Law, the atmosphere 

reduces the apparent contrast of an object according to Equation 4. 

 

ሻݎሺܥ	 ൌ 	଴ܥ ௥ோ	ଶ.ଽଽ଺ି	݌ݔ݁ 				    (4) 

where: 

C(r) = apparent contrast of the target observed from range r 

C0 = inherent contrast of the target 

r = distance from which the target is observed 

R = visibility or meteorological range dependent on clarity of the atmosphere 

 

Furthermore, Equation 5 describes the opportunity for visual acquisition Q(t) 

given time t, per the Andrews (1991a) model.  This relationship is based on studies that 
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determined the probability of sighting an aircraft is related to the product of the visual 

angle subtended by the target area and the target’s contrast against its background.  In this 

equation, the opportunity for visual acquisition is the sum of the instantaneous 

opportunities given target area A, visibility R, and an observation range r (Andrews, 

1991b). 

 
 

ܳሺݐሻ ൌ 	ܣ ቂ׬ ଵ
௥మ 	exp

ିଶ.ଽଽ଺	௥
ோ ௧ݐ݀

ିஶ		 ቃ																																												(5) 

 
 
With the appropriate ઺ constant, and when delimited by the appropriate range of 

times the pilot can theoretically see and still avoid the target aircraft, the probability of 

visual acquisition becomes P as shown in Equation 6 (Andrews, 1991a). 

 

ܲ ൌ 1 െ exp 	ሾ	ି஻஺௥ௗ௢௧ 		ሺ	
ଵ
௥మ
െ	 ଵ௥భ	ሻ	ሿ    (6) 

where: 

઺ = 17,000 (per Andrews test flight studies for un-alerted crew, normal search) 

A = the area of the target 

rdot = closure rate between the observer and the target 

r2 = range when the pilot must initiate a course change to avoid collision 

r1 = range when target becomes large enough in the field of vision to be visible 

 

Equation 6 is relevant when the atmospheric visibility is good so that visual 

contrast of the target to the background remains relatively constant as the target 

approaches (Andrews, 1991a).  Andrews (1991b) states that when the atmospheric 
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visibility is more than two or three times the distance between the observer and the target, 

the atmospheric visibility has little effect.  Since even a large sUAS aircraft becomes too 

small to see when it is just two miles away, as long as the visibility is greater than four 

miles, Equation 6 will be relevant.  This is true because the UA will generally be within 

observation range when it is only a few thousand feet away; therefore, long atmospheric 

visibilities are not required for the equation to be relevant.  Given this determination, 

Equation 6 could serve as a means for calculating the probability of visual acquisition of 

a small UA under conditions where the B constant used in the model matches the mission 

parameters. 

The Relevance of Monte Carlo Simulation 

A Monte Carlo simulation will model a range of potential values for input 

variables where uncertainty exists.  A Monte Carlo simulation will analyze a variety of 

combinations of these inputs by repeatedly executing the model and capturing the 

outcomes as a set of results.  This provides a range of possible outcomes at the output of 

the model, along with a probability density curve depicting the most frequent outcome 

along with the possible outcomes. 

Papadopoulos and Yeung (2001) list a number of advantages for using a Monte 

Carlo simulation to address uncertainty.  Two of these advantages include the ability of a 

Monte Carlo simulation to handle “both small and large uncertainties in the input 

quantities” (p. 293) and the elimination of concerns about covariance and dependency 

between the input variables. 

Veneri et al. (2010) used a Monte Carlo simulation to address uncertainty while 

building a model of human visual search performance.  Veneri et al. needed to address 
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uncertainty in how the eye might scan different regions of interest within the search area 

scene.  A Monte Carlo simulation was also used to model the absolute threshold of visual 

detection given low energy or faint image flashes (Cohn, 1981) 

Other peer-reviewed research done by Pretegiani, Federighi, Rosini, Federico, and 

Rufa (2010) used Monte Carlo methods to address uncertainty in variables used in 

formulas designed to model human performance.  The use of multiple simulations using a 

range of possible input data, weighted in the form of a distribution, enables the use of 

stochastic processing and the calculation of a range of possible results with uncertainty 

taken into account.  This study will follow the example of previous human visual 

performance studies and address the challenge of uncertainty in the input variables using 

Monte Carlo simulation methods. 

Other Factors Affecting the Visual Recognition Model  

A wide variety of factors not yet discussed exists with the potential to influence 

the visibility model’s output.  These include issues such as glare from sunlight, high 

cockpit workloads and other distractions, pilot age, fatigue, and hypoxia (ATSB, 1991; 

Morris, 2005).  While these considerations all affect a pilot’s ability to see a distant, small 

UA in flight, they all detract from the pilot’s ability to see the UA in time to avoid 

colliding with it.  These factors are all outside the scope of the proposed study, though 

they potentially strengthen the case for the finding that manned aircraft pilots are likely to 

have difficulty seeing a sUAS aircraft in time for collision avoidance. 

There are numerous reasons why pilots may fail to see and avoid other aircraft to 

prevent collision hazards from developing.  Morris (2005) and Graham (1989) present 

cases describing the difficult nature of seeing smaller-sized aircraft in time to avoid mid-
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air collisions in general.  Loffi et al. (2016) conducted flight test studies with human pilot 

test subjects and reported qualitative data on the difficulty of spotting sUASs from 

Cessna 172 aircraft.  Therefore, the literature suggests visual detection, recognition, and 

avoidance of sUASs by human pilots flying manned aircraft may be difficult.  Since this 

study confirms the findings of Morris, Graham, and Loffi et al., many of the extraneous 

variables and factors not addressed by this study strengthen the conclusion that sUASs 

are difficult to see from manned aircraft cockpits because they would make the visual 

detection task even more difficult. 

Conclusions from the Existing Literature  

The literature review confirms very little published research exists on the specific 

topic of the ability of a manned aircraft pilot to see and avoid a collision with a small UA.  

One recent study done by Loffi et al. (2016) does address the topic with human subjects 

participating in flight tests; however, the Loffi et al. study does not explore the use of 

mathematical simulation modeling based on biological information and visual acuity 

models.  The Loffi et al. study focused on visual detection of small UA from small, 

slower, general aviation aircraft.  This concept of modeling the visual detection of small 

UA is therefore still a new, important research topic.  The model also provides insight 

useful to other types of observation platforms such as airliner and business jet aircraft. 

Additionally, the literature provides precedence for the use of Monte Carlo 

techniques to model uncertainty when simulating human performance in airborne visual 

search and detection tasks.  Since there are a variety of examples of modeling for visual 

search and recognition tasks, and since there is adequate former research findings on 
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visual aircraft detection probabilities and limitations, the information and methods 

needed to create a Monte Carlo simulation model exists. 

Finally, the literature suggests small UAV may be difficult to spot from a manned 

aircraft in time to reliably avoid a collision.  This study focused on the physical modeling 

of whether it should be possible to see small UAV in time to avoid a collision, based on 

human physiology and physics.  In order to avoid skewing the results of the study to 

match the pessimistic outcome of other studies, this study excluded a number of negative 

extraneous factors.  Since the results of the study revealed that the physics and human 

physiology constraints, related to visual search and detection of distant objects, make 

small UAV targets hard to see in time for collision avoidance, the conclusions of Loffi et 

al., Morris, and Graham concur with and add strength to the study’s findings. 
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CHAPTER III 

METHODOLOGY 

The research model constructed for this study mathematically simulates the visual 

limitations for the detection of a small UA by the pilot of a manned aircraft.  The 

detection task is constrained by situational variables such as closure speed between the 

manned aircraft and the target UA, UA size, and contrast between the target UA and its 

background.  The detection task must also be completed in time to allow the pilot of the 

manned aircraft to avoid a mid-air collision with the UA.  The literature review identified 

the key variables associated with this task.  The review also found existing models used 

for other vision-related tasks such as object recognition against a cluttered background 

and airborne target detection for military or other passenger-carrying aircraft (Akerman 

& Kinzley, 1979; Andrews, 1991a; ATSB, 1991; Chisum, 1977; Greening, 1976; Howett, 

1983; Morris, 2005; Poe, 1974; Toet, 2010; Wulfeck et al., 1958). 

This study does not involve human subject testing and no data collection or 

experimentation involving human subjects occurred; therefore, the research for this study 

did not require Institutional Review Board (IRB) approval.  Data from previous studies 

and existing research reports provided the information on human visual search 

performance and human physiological constraints needed for this investigation. 

Research Approach 

The goal of the study was to determine the key physical attributes of small UAS 

aircraft and aircraft operations that limit the manned aircraft pilot’s ability to see a small 

UA in time to avoid colliding with it and to determine the probability of detecting the 

small UA in time to avoid a collision with it.  These goals were explored using specific 
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scenarios defined by aircraft speed, UA size, and different contrast values between the 

UA and its background.  The analytical model used in this study produced probability 

curves depicting the likelihood of UA detection in time to avoid a collision for each of 

the chosen scenarios. 

Figure 4 illustrates the overall approach to this research study.  The actual 

theoretical construct and mathematical model is detailed in the Design and Procedures 

section later in this chapter.  Chapter 1 addressed the first step of the overall approach by 

defining the problem, the scope, and the research questions for this study at a high level. 

 
 

 

Figure 4.  Research approach overview.  The overall research approach is summarized in 
this figure.  The blue block step represents the Monte Carlo simulation, and it is 
diagrammed in greater detail in Figure 5.  Adapted from “Stats: data and models,” by R. 
D. De Veaux, P. F. Vellleman, and D. E. Bock, 2012.  Copyright 2012 by Pearson 
Education, Inc. 
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The mathematical model, referenced in the blue box in Figure 4, uses a Monte 

Carlo approach to address uncertainty.  The details of the theory used to construct the 

mathematical components of the model are documented in the Design and Procedures 

section of this chapter.  The literature review in Chapter 2 provided several airborne 

target detection studies conducted over the past few decades as options for modeling 

small UA detection. 

Based on the work of Howett (1983), Andrews (1991a, 1991b), Poe (1974), 

Chisum (1977), and several others described by Greening (1976), there are multiple 

existing models capable of determining the ability of an observer to detect an airborne 

target.  This study integrates the limits of human visual performance as described by 

Howett (1983) with the probabilistic determination target detection algorithm used in the 

Andrews (1991a) model.  The study expands those models with a Monte Carlo simulation 

and adaptations for very small targets to produce a new model relevant to the detection of 

small UA.  The previous research work, cited above, used several common input 

variables for their models.  The common input variables relevant to this study are listed in 

Table 4.  They are also the variables described by Weaver (1981) as important for the 

visual target acquisition task.  Weaver identified “object density; and scale factor and 

display size (search area)” (p. 9) as additional influential inputs for one of the models in 

her paper; however, these inputs are addressed in a different manner by the Monte Carlo 

simulation model used in this study. 

The selection of scenarios for this study focused on departure and arrival 

operations by various types of manned aircraft.  This means the aircraft will be flying at 

airspeeds consistent with either a departure climb or an approach to an airport.  The study 
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conducted simulation runs with aircraft speeds ranging from 60 knots to 160 knots to 

provide output data for aircraft ranging from small sport aircraft to large airliners.  These 

operations were chosen because these are the types of lower altitude operations where 

manned aircraft seem to commonly encounter non-professionally-operated UA, 

according to the FAA’s UAS sightings reports (2017b).  The study acknowledges 

helicopter operations and inspection patrols may occur at low enough altitudes to 

encounter small UA even though these manned aircraft are not necessarily conducting an 

arrival or departure operation at the time of encounter. 
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Table 4 

Input and Output Variables for the Model  

Variable Variable Type Description 
Manned Aircraft 
Speed 

Input 
Controlled 

- Airspeed of the manned aircraft in 
nautical miles / hour (kts) 
 

UA Size Input 
Controlled 

- Size of the unmanned aircraft in terms 
of area (ft2) 
 

UA/Background 
Contrast 

Input 
Uncontrolled 

- Contrast between the Unmanned 
Aircraft and its background scenery (a 
normal distribution as described in the 
text) 
 

UA speed Input 
Uncontrolled 

- Airspeed of the Unmanned Aircraft 
(kts) (a Gaussian distribution) 
 

UA relative heading Input 
Uncontrolled 

- Heading of Unmanned Aircraft 
relative to the manned aircraft (a 
uniform distribution from 0 to 350) 
 

Visual Arc Size of UA 
at the minimum 
acceptable detection 
time 

Output - The visual arc size of the UA when it 
is at the minimum distance from the 
manned aircraft to allow time for the 
pilot to maneuver clear of a collision 
(arc minutes) 
 

Probability of visual 
detection in time to 
avoid a collision 

Output - The probability a pilot of a manned 
aircraft has the ability to visually 
detect and avoid a collision with a 
sUAS 

Note.  These are the variables used by the model for this study.  The model also generates a table 
containing the results for each of the Monte Carlo trials.  This output table contains the probability of UA 
detection given the input parameters to the model.  The Design and Procedures section of this chapter 
contains an in-depth discussion of these variables. 

 
 

The use of a Monte Carlo simuation is important for this study because of the 

uncertainty and variability in the following key input variables: UA airspeed, UA 

direction of movement, and contrast between the UA and it’s background at any given 

moment.  The UA speed and direction of movement variables affect the closure rate 
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between the manned and unmanned aircraft and therefore the time available to the pilot to 

detect the UA.  This simulation model is capable of illustrating the effect of uncertainty 

in the UAV movement by running the calculation many thousands of times to generate a 

composite representation of the range of detection probability outcomes given the 

uncertainty of the UAV movement and the contrast between the UA target and its 

background. 

The mathematical algorithms and concepts used for this simulation are well 

established in studies conducted over the past few decades.  The key to applying the 

simulation to the new application, of determining the probability of visually detecting 

small UA in time to avoid colliding with them, was selecting appropriate limits for 

human visual performance and identifying appropriate input variable distributions to 

represent the uncertainty and variability of the uncontrollable variables.  The data and the 

rationale for these limits and input distributions were derived from the previously 

accepted studies and industry standards, as described in Chapter 2.  The details of the 

selection rationale for the human performance limits and input distributions are 

documented in the Design and Procedures section of this chapter. 

Analysis of the results, including validation of the model against results of 

previous studies of human visual detection performance, was done by performing a 

descriptive statistical anlaysis of the output table generated by the model for all of the 

trials for a given scenario.  This output table contains the calculated probability of UA 

detection for each trial of the model.  Additionally, data from the various scenarios, 

defined by different UAV sizes and different manned aircraft approach speeds, were 

organized to render an easy-to-understand graph depicting the relationship between the 
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controllable variables and the resulting probability of detection.  Sensitivity analysis 

tested edge cases to determine if reasonable values of controllable variable inputs would 

produce an outcome where the small UAS target aircraft was likely to be visible greater 

than 50 percent of the time.  Detailed explanations of the findings are discussed in 

Chapters 4 and 5. 

Design and use of the model..  The previous pages described the overall design 

of the research process for this study.  This section details the design and use of the 

mathematical model.  Figure 5 illustrates the theoretical structure and components of the 

model.  The model uses Equation 6 to calculate the probability of UA detection for each 

trial.  The model uses the software product Analytica® by Lumina Decision Systems.  

The Analytica software allows the researcher to define a mathematical model using a 

flowchart-like graphical representation.   
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Figure 5.  Monte Carlo Simulation Model Flowchart.  Note: ઺ = 17,000, per Andrews 
(1991a), for the purpose of this study.  Adapted from”An introduction to management 
science: quantitative approaches to decision making,” by D. R. Anderson, D. J. Sweeney, 
T. A. Williams, J. D. Camm, and K. Martin, 2012.  Copyright 2012 by South-Western 
Cengage Learning. 
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Analytica allows the researcher to define distributions for use as input data, and it 

provides the processing environment for repeated trials of the model for Monte Carlo 

simulation analysis.  The software package also collects and organizes the output from 

each of the Monte Carlo trials to allow for statistical analysis and examination of the set 

of results for a given Monte Carlo simulation scenario. 

The simulation model depicted in Figure 5 relies upon two primary, controllable 

variables, as shown in Block 1.  The controllable input variables were set to values 

appropriate for each of the scenarios related to manned aircraft speed and UA size. 

The VMA variable, or manned aircraft speed, was set to a range of airspeed values 

representative of low altitude operating airspeeds.  These speeds include the departure 

and arrival airspeeds of small personal sport category aircraft to high performance 

personal aircraft to faster moving business jets through heavy airliners.  The upper range 

of approach airspeeds varies from 125 knots for a Boeing 707-320 to 158 knots for a 

Boeing 747-400F freighter aircraft, with the remainder of the Boeing fleet falling 

between these two airspeeds (Boeing Aircraft, 2016).  Light general aviation aircraft, 

such as the Cessna 172 Skyhawk typically operate at airspeeds ranging from 65 knots to 

100 knots during departure, approach, and other low altitude operations (ERAU, 2016).  

This study used scenario airspeeds between 60 knots to 160 knots to capture the range of 

airspeeds typical for different scenarios based on different types of aircraft. 

To determine the range of sizes for small UAS aircraft, a student in the North 

Shore Community College – Aviation Science program conducted an informal review of 

popular websites offering sUASs for sale.  The hired student reviewed the following web 
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sites: http://www.amazon.com and http://www.bestbuy.com.  The student also used 

manufacturer websites to confirm and check product specification information, recording 

the model, size, weight, and color data for these UA.  The student also looked for 

information on larger, professional small UA products to round out the list of UA sizes 

for use in this study.  The intent of this informally gathered information is not to 

represent the actual UA population operating in the United States.  The information only 

serves to provide informal support for the assumed sizes of common UA products used in 

this study.  Information from other independent sources such as PC Magazine (Fisher, 

2017) and Google.com (Google, 2017) provided a means for confirming the student’s 

data on products described as popular by some of the media. 

The model randomly selects an airspeed and a relative direction for the UA, as 

shown in Box 2 of Figure 5.  The UA track (DUA) relative to the manned aircraft and UA 

speed (VUA) were used to compute a closure rate (rdot) as follows: rdot = VMA - ( VUA × 

COS (DUA) ).  VMA is the controllable variable for the airspeed of the manned aircraft.  

DUA is a uniform distribution of discrete values ranging from zero degrees to 350 degrees, 

in 10-degree increments.  This distribution provides the model with randomly chosen 

heading values to account for the uncertainty about which direction the small UA target is 

heading relative to the manned aircraft.  The uniform distribution indicates the UA is 

equally likely to be traveling in any direction relative to the track of the manned aircraft. 

VUA is chosen randomly from a Guassian distribution with a mean of zero miles 

per hour and a standard deviation of 14 to provide values for the airspeed of the UA.  

Casual observation by the researcher of actual small UA operations and numerous videos 

from small UA suggest that most small UA operators tend to fly their aircraft at low 
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airspeeds.  Low airspeed operation is consistent with the common mission of gathering 

video data and with the need to keep visual surveillance and control of the UA.  While 

some UA are capable of operating up to 40 miles per hour or more, such operations 

appear to be rare.  The majority of operations seem to be hovering operations or slow 

speed movements within the zero to 14 mile per hour range.  Two standard deviations 

would cover operations within the zero to 28 mile per hour range, and three standard 

deviations allows for occasional operation up to the limit of 42 miles per hour, though 

such operating speeds seem to be rare in practice. 

The closure rate is important for the next step (see Box 3)—calculating the 

minimum range (r2) for UA detection by the human pilot.  This minimum range is the 

closest the two aircraft can get before the pilot must see and take action to avoid a 

collision.  As described later in the Data Sources–Determination of Minimum Distance to 

Avoid a Collision section of this chapter, the pilot must have 12.5 seconds of time to see 

the small UA and react so a collision can be avoided (FAA, 2016c).  If the pilot does not 

detect the UA until the aircraft is closer than r2, there may not be enough time to 

maneuver clear of a collision.  The model calculates the minimum range (r2) by 

normalizing the closure rate (rdot) to units of feet per second and multiplying it by 12.5 

seconds.  While the visual angle size at r2 is not required for calculations related to the 

probability of detection model, knowing the r2 value will enable the calculation of the 

visual angle size of the target 12.5 seconds before the collision point.  Knowledge of the 

visual angle size of the target at the latest possible detection point provides useful 

information for the outcome analysis in Chapter 4. 
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The model also requires the determination of the maximum possible detection 

range in order to compute the amount of time the pilot will have to search for the UA.  

The maximum possible detection range depends on the size of the UA and the distance 

between the UA and the observer because they determine the apparent size of the UA to 

the observer.  The further away the target is, the smaller it appears to be.  If the object 

appears to be so small that it renders an image of less than one arc minute on the eye’s 

retina, it may be too small to see.  Therefore, the maximum range is the distance at which 

the target UA renders one arc minute of image size on the retina.  The apparent size of 

the UA, for distant detection purposes, is also dependent upon the contrast between the 

target and its background.  A contrast value of less than 1.00 further reduces the apparent 

size of the target object.  Box 4 illustrates the calculation of the apparent size of the UA 

target. 

Andrews (1984) states that the detectability of small, distant objects, ranging from 

one to 10 arc minutes of image size, is a function of the product of the target area and the 

target’s contrast against its background.  Therefore, a reduction in contrast requires an 

increase in target area to produce the same level of target detectability.  In this study, the 

area of the target is a controlled input value; however, the target area will effectively be 

smaller if the contrast of the target is poor.  Based on Andrews (1984), the contrast-

adjusted target size (ACA) becomes ACA = CA × A, where A is the target size in terms of 

its physical profile area, and CA is the apparent contrast of the target against its 

background. 

The model randomly selects CA from a normal distribution of contrast values 

based on the range of potential values described by Poe (1974) to account for contrast 
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uncertainty.  Poe states the luminance of both the aircraft and its background change 

constantly as it moves because of changes in both light sources and background 

reflectivity.  While Poe described the challenge of selecting a single contrast value for 

use in detection models, Poe’s study states, “common levels of aircraft intrinsic contrasts 

are between 0.05 and 0.75” (p. 11).  The model will choose values from a normal 

distribution shaped such that 0.05 and 0.75 constitute a 95% confidence level.  The 

normal distribution is constrained to ensure the chosen contrast value cannot be less than 

zero; however, verification testing, as described in Chapter 4, confirmed the distribution 

provides values that appear to match Poe’s assertion about the typical range of contrast 

values.  Given the many combinations of background textures and small UA target 

colors, the expected apparent contrast will generally fall between the two limits of Poe’s 

contrast range, with a bell-shaped distribution. 

Box 5 depicts the calculation of the maximum possible range (r1) for target 

detection using the contrast-adjusted target size (ACA).  This maximum range is 

constrained by the 1.0 arc minute limit for human vision acuity.  If the object renders a 

smaller image than this on the retina, the human eye will not be able to resolve it from its 

surroundings (Hirsch & Curcio, 1989; Howett, 1983; Jones, Freitag, & Collyer, 1974).  

Andrews (1991a) states laboratory tests show the typical limit of detection for a high 

contrast, circular object is 1.0 arc minutes in target size.  Flight tests have shown pilots 

often do not detect objects below 2.0 arc minutes of visual angle size.  The exact small 

size of this limit specification is not critical according to Andrews because “very little of 

the total opportunity to acquire [the target] accumulates when the target aircraft is near 

the resolution limit” (p. 43). 
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The maximum possible range (r1) is the distance at which the rendered target 

image becomes so small that it equals 1.0 arc minutes of visual angle.  If the distance 

increases any further, the object becomes too small for the human eye to resolve.  The 

model calculates this maximum possible distance as r1 = ACA / 1.0 arc minute.  The actual 

formula, derived from Andrews (1991a), is shown in Equation 7. 

 

r1 = (1.1284 * SQRT(ACA)) / ((1/60) * (2*S) / 360) (7) 

where: 

ACA = contrast-adjusted area of target’s horizontal profile 

1.1284 = constant to convert steradian units to a linear unit as explained below 

 

Since the simulation model computes probabilities based on steradian or solid 

angles, using radian-based units, it is necessary to perform a units conversion to match 

the angular units in both the numerator and the denominator of the r1 calculation.  The 

denominator is 1.0 minutes of arc, which means its angular unit is degree-based.  Since 

1.0 arc minutes is 1/60th of a degree, and since degrees can be converted to radians by 

multiplying them by (2S/360), the denominator of the r1 calculation is (1/60) * (2S/360), 

yielding the radian equivalent of 1.0 arc minutes. 

The numerator is a solid angle measured in steradians, or squared-radians, by 

Andrews.  A solid angle is analogous to a cone with the measurement of interest being 

the area of the circle at the wide-end of the cone.  To convert the solid area to a linear 

measurement from a squared measurement of area, the square root of the dimension is 

taken.  Since conceptually the angle is conical, in addition to the square root of the area, it 
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is necessary to take the square root of the constant associated with the area of a circle.  

The area of the circle is S times the square of the radius of the circle.  The radius is equal 

to the diameter (the linear measurement of the target) d, divided by two.  This results in 

the area of the circle A = S(d/2)2.  Alternatively, A/S = d2/4.  Multiplying both sides of 

the equation by four yields (4/S)A = d2.  Taking the square root of both sides of the 

equation results in SQRT(4/S) ൈ SQRT(A) = d, the linear measurement needed to 

compute the r1 distance.  The r1 distance is d divided by one arc minute in radians.  The 

square root of (4/S) = 1.1284, as used in Equation 7. 

Box 6 contains the probability calculation equation from Andrews (1991a).  All of 

the information needed to calculate a probability of detection exists at this step of the 

model execution.  This calculation uses the simplified integration result described earlier 

in the literature review.  The calculation in Box 6 is dependent upon several assumptions 

described below. 

One assumption is the aircraft are not accelerating during the search period 

beginning at r1 and ending at r2.  Given the small subtended sizes created by small UA 

and the airspeeds at which most manned aircraft operate, the difference between r1 and r2 

is likely to be small enough to constrain the search period to well under 30 seconds.  

Given the short search time, the assumption is reasonable.  The assumption is also a 

limitation of the study. 

The constant ઺ used in the equation in Box 6 will be 17,000 steradian-seconds as 

determined by Andrews (1991a) to be appropriate for situations where the pilots have no 

alert about UA traffic and they are scanning for traffic normally, with a low workload 

level.  Andrews describes B as the pilot-search-effectiveness constant whose value was 
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determined by flight test studies conducted by Andrews in earlier research (Andrews, 

1991b). 

The final assumption needed for the equation in Box 6 is atmospheric visibility is 

generally good.  The equation used in Box 6 assumes the atmospheric visibility is good 

enough so it does not reduce the apparent contrast CA by occluding reflected light from 

the vicinity of the target from reaching the observer.  Andrews (1991b) states that if the 

visual range is two to three times the range at which visual acquisition is to occur, then 

atmospheric scattering has a minimal effect on visual detection.  Since early calculations 

have shown that visual acquisition of small targets, such as the small UA in this study, 

will need to occur at distances between 2,000 and 5,000 feet, flight conditions must 

generally be three statute miles or better for the Andrews (1991a) equation used in this 

model.  The Sources of Data section of this chapter describes the weather repository this 

study used to confirm visibilities are generally far better than three miles based on 

weather observations from fifteen airports around the country.  Though the assumption of 

good atmospheric visibility cannot be generalized to the entire population of airports 

around the country, the data shows it is a reasonable assumption for the purposes of this 

study. 

The output of Box 6 is a probability of detection number.  The Analytica software 

will store the probability number from the current trial calculation for subsequent analysis 

using descriptive statistics.  The Analytica software will then run another trial, repeating 

the steps from Box 2 through Box 6 to gather a set of probability outcomes based on 

different, randomly selected values for the uncontrollable variables for each trial. 
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Box 7 represents the concluding steps taken once the Monte Carlo process 

completes the specified number of trials.  In this final set of actions, Analytica processes 

and Microsoft Excel spreadsheets analyze the output data, generated by the simulation 

model, with descriptive statistics and graphing methods to convey the probability of UAS 

detection given one or more scenarios. 

Figure 6 shows the graphical definition of the data and calculations used by 

Analytica.  The magenta-colored squares represent the controllable input variables to the 

model.  The green-colored ovals depict the uncontrollable input variables defined as 

distributions.  These input variables supply randomly selected values to the model in 

accordance with the defined distribution assigned to the particular variable depicted.  The 

light blue, rounded rectangular boxes depict calculation nodes where inputs are processed 

to produce some intermediate result required by the model.  The yellow, rounded 

rectangles represent the output variables which the Analytica software gathers and saves 

for further statistical analysis and graphing at the conclusion of the simulation. 
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Figure 6.  Conceptual layout of the mathematical model.  The overall concept is defined 
by this graphical representation of the adaptation of the Andrews (1991a) model.  This is 
the actual structural definition used for the Analytica® analysis software from Lumina 
Decision Systems. 
 
 

Apparatus and materials.  The Monte Carlo simulation engine used software 

from Lumina Decision Systems called Analytica.  This study used Analytica Educational 

Professional release 4.6.1.30.  This software allows analysts to model uncertainty and 

variability in the input variables and to collect the resulting outputs in a form conducive 

to statistical or comparative analysis.  With Analytica, the researcher graphically designs 

the simulation model.  Figure 4 shows the actual Analytica model for the mathematical 

process used in this study.  This study also used Microsoft Excel 2013 to process the 

visibility data and to analyze the data used to test the reliability of the Analytica model. 
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Sources of the Data 

The data for this model were obtained from well-known, public sources, previous 

research studies, or calculations based on previously reviewed models, as described in the 

literature review.  This study did not involve any human subject interaction or 

experimentation.  The key conceptual inputs are listed earlier in this chapter as the input 

variables to the design of the model.  The following sections provide a more detailed 

description of the key constants and external data sources used in this study. 

Determination of minimum visual angle.  Based on Howett’s (1983) work for 

the National Bureau of Standards, the minimum visual angle threshold of 1.0 arc minute 

is the smallest size of detail that humans with normal 20/20 vision can detect and 

recognize.  While Howett acknowledges that some individuals have 20/10 vision or better 

and can theoretically see detail at visual angles as low as 0.5 arc minutes, such 

individuals are rare.  The National Bureau of Standards guidance for determining letter 

sizing on signs uses research that finds less than two percent of the overall population 

have vision correctable to 20/10 or better (Howett, 1983).  Hirsch and Curcio (1989) also 

corroborate the 1.0 arc minute finding with physiological analysis of the human retina 

and human subject testing.  Hirsh and Curcio found the spacing of cone cells in the retina 

to theoretically be capable of resolving visual angles below one arc minute in a small 

segment of the population.  However, in human subject testing they found the use of cone 

cell spacing tends to overestimate the level of detail humans can resolve.  Hirsch and 

Curcio found actual visual acuity levels are less capable than the theoretical resolution 

suggested by cone cell density measurements. 
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Understanding the limit of human vision in terms of small object detection and 

recognition is an essential prerequisite to defining the Monte Carlo model.  Since the 

intent of this research is to address the pilot population in general, and since the visual 

acuity threshold used by the National Bureau of Standards (Howett, 1983) is 1.0 arc 

minutes of visual angle for people with 20/20 vision, this study also used the 1.0 arc 

minute constant as the minimum image size that can be seen by the human eye.  It is 

consistent with all of the human visual performance models encountered during the 

literature review.  Andrews (1991a) also used 1.0 arc minutes as the minimum sized 

image visible to the human eye. 

Determination of minimum distance needed to avoid a collision.  The 

minimum distance (r2) needed to avoid a collision is dependent upon the closure rate 

between the manned aircraft and the UA.  This distance is determined by the minimum 

time before a collision occurs at which the manned aircraft pilot must be able to detect 

the UA visually in order to have time to react and alter the trajectory of the manned 

aircraft.  If the pilot has not seen the target UA by the minimum time-before-collision 

point, there will not be enough time to maneuver clear of the UA collision point with 

certainty. 

The amount of time required for a manned aircraft pilot to detect and avoid a 

collision with another aircraft is 12.5 seconds (FAA, 2016c).  Table 5 depicts the 

breakdown of events consuming the 12.5-second requirement.  The 12.5 second see-and-

react time depicted in Table 5 does not include search time for an aircraft.  The time 

period begins once the search process has resulted in visual detection.  Search times vary 
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by the complexity of the visual search field, the contrast of the target, and the lighting 

conditions in the search area.  

 
 

Table 5 

Aircraft Identification and Reaction Time  

Event Time 
(seconds) 

Cumulative 
Time 
(seconds) 

See object 0.1 0.1 
Recognize aircraft 1.0 1.1 
Recognize collision course 5.0 6.1 
Decide on action 4.0 10.1 
Muscular reaction 0.4 10.5 
Aircraft lag time 2.0 12.5 

Note.  This chart depicts the cumulative minimum time needed to see and react to a collision hazard in 
order to avoid the actual collision.  This chart is adapted from the Australian Transport Safety Bureau, 
1991, who based their conclusions on FAA Advisory Circular 90-48-C.  The original data were derived 
from military research studies. 

 
 

While a number of other factors also affect visual search times, this model takes a 

best-case approach in an attempt to find the best possible target detection performance.  

This study used the best-case approach because preliminary calculations of target 

detectability suggested targets would typically be very small and potentially difficult to 

see.  Since this study focused on determining the limits of human visual performance for 

visual detection of small UA, it was important not to mask the limits with extraneous 

variable inputs unrelated to human vision performance. 

Meteorological data.  The clarity of the atmosphere affects a pilot’s ability to see 

and detect airborne objects.  When the visibility is poor, such as in foggy or misty 

conditions, less of the reflected light from a target object reaches the eye.  The 



78 

 

atmospheric dispersion and absorption of transmitted light energy creates a cumulative 

loss of light from the target, and less light energy actually reaches the pilot’s eyes.  This 

makes it more difficult for the pilot to see the target (Lee & Shang, 2016).  One variant of 

Andrews’ model used meteorological visibility to calculate the reduction of the apparent 

contrast of the target against its background (Andrews, 1991a).  However, Andrews 

(1991b) also states if the atmospheric visibility is more than two or three times the 

distance between the observer and the target, then the atmospheric visibility will have a 

minimal effect on the ability of the observer to detect the target. 

This study obtained atmospheric visibility data for the three-year period from 

2014 through 2016, using archived data from automated weather observation sensors 

located at major airports to demonstrate that, at several locations around the country, 

visibility is generally many times greater than the typical small UAV detection distance 

of less than one mile (based on preliminary calculations).  As long as the visibility is 

generally three miles or greater, per Andrews (1991b), atmospheric visibility can be 

removed from the algorithm.  The study gathered visibility data for airports located in 15 

different cities around the country.  The National Weather Service operates and maintains 

the visibility sensors at these airports, and Iowa State University archives these data for 

public access.  Data for this study came from the Iowa State University archives at 

http://mesonet.agron.iastate.edu/request/download.phtml. 

The reason for acquiring and analyzing these data was to ensure the assumption 

about atmospheric visibility, generally being much greater than three miles, is true at 

least at several major airports around the country.  Statistical analysis of hourly visibility 

reports from 2014 through 2016, from 15 airports around the country, verified the belief 
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that visibility generally exceeds three miles at these airports (see Table 6).  The data from 

these airports, over the last three years, shows visibility was six miles or better, 90% or 

more of the time, far exceeding the required three miles to justify the use of simplified 

formulas related to the effects of atmospheric visibility on apparent target contrast. 

 

Table 6 

Atmospheric Visibility Data from Selected Airports  

Airport Usable 
Observations 

Missing
Data 

Mean 
Visibility 

Std 
Dev 

=> 6 
Miles 

KATL– Atlanta 100,693 1 9.43 1.88 94% 
KBOS– Boston 67,958 6 9.07 2.40 90% 
KCLT– Charlotte 99,461 75 9.53 1.68 95% 
KDAB– Daytona Beach 99,691 162 9.32 1.89 94% 
KDEN– Denver 101,098 35 9.44 2.00 94% 
KDFW– Dallas/Fort Worth 100,149 13 9.55 1.63 95% 
KEWR– Newark 98,883 22 9.39 1.86 94% 
KIAD– Washington/Dulles 99,841 7 9.28 2.05 93% 
KJFK– New York/Kennedy 91,406 6,960 9.35 1.95 93% 
KLAX– Los Angeles 99,028 53 8.97 2.11 92% 
KMIA– Miami 99,326 12 9.73 1.21 98% 
KORD– Chicago/O’Hare 101,813 19 9.04 2.29 90% 
KSEA– Seattle 76,010 1 9.37 1.96 94% 
KSFO– San Francisco 97,616 28 9.71 1.18 97% 
KSTL– St. Louis 70,347 6 9.08 2.15 90% 

Note.  This chart depicts the number of observations, number of missing data cases, mean visibility, 
standard deviation, and the percentage of observations where the visibility was six miles or greater for each 
of the selected airports from around the country.  The data collection period was January 1, 2014 through 
December 31, 2016.  KJFK experienced a sensor outage from August 4, 2016 to September 7, 2016.  The 
Iowa State University Environmental Mesonet web site supplied the observations report data.  The data are 
accessible at http://mesonet.agron.iastate.edu/request/download.phtml 

 
 

Model reliability.  To ensure the model produced consistent results over repeated 

simulations, the study analyzed the results from repetitive executions, with different 

random number generator seed values, to ensure consistency from each of the sets of 

simulation trials.  ANOVA testing confirmed there were no significant differences 
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between the outputs of the reliability tests.  A detailed description of the results from 

these tests is contained in Chapter 4. 

Model validity.  Two separate activity threads were used to test the validity of the 

model for this study.  One thread ensured the mathematical computations produced the 

expected results.  The other thread compared the probability outputs of the model to 

known human performance limits and other validated models from previous studies to 

check for convergent validity. 

To ensure the integrity of the mathematical computations used in the model, all of 

the input distributions and computations were unit tested prior to executing the model for 

results analysis.  This was done by statistically examining the distribution data generated 

by each distribution input node, to ensure the random number generators produced a set 

of data values that conformed to the specified input distribution profile.  The Analytica 

software allows inspection of the internal computation and variable node outputs, so 

checking the distributions of the uncontrollable input variables was straightforward.  

Each computation and each variable node in the model was examined and verified 

manually to ensure it produced the expected result when executed.  Nodes producing a 

distribution of randomly generated numbers were run in simulation mode to allow 

examination of both the random numbers generated and the overall distribution profile.  

The results of these testing procedures are detailed in Chapter 4. 

The second thread of validity confirmation analysis compared the findings of this 

model with known limits of human visual acuity and the findings of other similar visual 

target detection studies.  The challenge with establishing a formal comparision of results 

between this study and other studies is very little work has been done to determine the 
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probability of human visual detection of small UA in time to avoid a collision hazard.  

Existing similar studies do not directly address the research questions in this study.  For 

example, Loffi et al. (2016) studied the rate of UA visual detection by human pilots but 

not necessarily the rate of detection constrained by the requirement to avoid a collision 

with the UA.  Many of the sightings in the Loffi study occurred too late to allow the pilot 

time to avoid a collision.  The Loffi et al. study also informed the pilots to look for a 

sUAS while flying their prescribed routes, so the pilots were in an elevated state of 

alertness.  Other studies with published results used targets much larger than an sUAS 

thereby changing some of the unique challenges associated with sUAS detection.  

Despite these challenges, it was possible to ensure the output of this sUAS study did not 

contradict results from other studies in an inexplicable manner. 

Background clutter.  This study did not directly model the effect of background 

clutter on the probabily of visual detection.  The effect of background clutter is complex 

and dependent on a wide variety of variables beyond the scope of this study.  To 

appropriately model background clutter, the model would need scenario and site specific 

measurements and analysis of the background.  Based on data from Toet (2010) in his 

studies involving a variety of specific, natural background scenes, search times increased 

as the number and similarity of background features, comparable to the target’s features, 

increased.  In a study involving 62 participant viewers searching for objects in 44 natural 

scenes of varying complexity, mean search times varied from 2.2 to 29.8 seconds. 

This study cannot directly use the background scenes or numeric findings from 

Toet’s studies because Toet’s data apply to specific scenes with specific features.  Actual 

backgrounds encountered by pilots are likely to have very different kinds of features, 
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shapes, and contrasts.  The scenes will also change with variations in seasonal, weather, 

and illumination conditions. 

Treatment of the Data 

The simulation model placed its output data in an array where it could analyze 

them with basic descriptive statistics.  Additionally, Microsoft Excel provided a platform 

for additional analysis of the data.  The model developed for this study produced a set of 

probability curves illustrating the likelihood of visual detection of the sUAS target, in 

time to allow the pilot to take evasive action, given different values of the controllable 

inputs.  The study ran the simulation using multiple combinations of controllable input 

values to identify the sensitivity of the results to specific inputs to the model.  

Additionally, the dissertation renders the results in multiple graphical forms to show how 

the probability of detection relates to the scenarios used to select the controllable input 

values for the study. 
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CHAPTER IV 

RESULTS 

 

A Monte Carlo simulation model, as described in Chapter 3, generated the visual 

detection probability data for this study.  This chapter describes the results in three 

sections.  The first section documents the data collected for verification testing of the 

model, as described by Anderson et al. (2015).  The second section contains data 

depicting the reliability test results for the model.  The third section describes the output 

of the model in both statistical and graphical formats. 

Verification Testing 

The simulation performed for this study was accomplished using Analytica 64-bit 

Educational Professional software Release 4.6.1.30—a tool by Lumina Decision 

Systems.  In order to confirm the proper entry of the model’s algorithms into the 

simulation software, the content of each node of the model depicted in Figure 6 was 

examined for proper formulation consistent with its computational objective.  The 

computational objectives and formulas are depicted in Figure 5. 

Input nodes supplying distribution data were statistically and graphically 

examined to verify the resulting output conformed to the specified distribution profile.  

The output of each computational node of the model, depicted by light blue rounded 

rectangles in Figure 6, was verified by comparing the node’s output to the results of 

manual calculations using the input values from the predecessor nodes.  There are three 

inputs to the model supplied as random numbers drawn from a specific distribution.  

These inputs are UAV Apparent Contrast, UAV Airspeed, and UAV relative heading.  
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The output of each of these distributions is examined below from a simulation run with 

32,000 trials. 

The UAV Apparent Contrast distribution input node generated a range of random 

values with a probabilty density conforming to a normal distribution.  The distribution 

was truncated to ensure no contrast values below zero were possible.  The resulting 

output produced the following distribution of values (see Figure 7). 

 

 

Figure 7. Probability density distribution of target contrast values.  This input distribution 
provides random target contrast values where most of the values fall between 0.05 and 
0.75 per Poe (1974).  The distribution is truncated so no value below zero can be 
produced.  As shown in this figure, the truncation does not visibly distort the normal 
distribution curve. 
 
 

The UAV airspeed distribution input node generated a range of random values 

with a probabilty density conforming to a normal distribution with a mean of zero knots 

and a standard deviation of 14 knots.  The distribution output was converted to an 

absolute value to produce a range of positive velocities from zero to around 45 knots 

based on a casual sampling of specifications for popular sUAS products.  A table of the 
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specifications for these products is contained in Appendix A.  The UAV airspeed 

generated by this distribution function represents the uncontrollable airspeed of the UAV 

target.  It is different from the controllable airspeed of the manned aircraft which serves 

as the observation platform from which the human pilot must detect the UAV. 

The resulting output produced the following distribution of values ranging from 

zero knots to 54 knots with a mean value of 11.17 knots and a standard deviation of 8.44 

knots.  The probability distribution curve for these values is shown in Figure 8.   

 

 

Figure 8. Probability density distribution of UAV airspeed values.  This input distribution 
provides random UAV airspeed values ranging from zero up to around 45 knots using the 
positive half of a normal distribution.  Only positive values are used.  No value below 
zero can be produced. 
 
 

The UAV Relative Heading distribution input node generated a range of random 

values with a uniform probabilty density producing a range of integer values from 0 to 

359.  The resulting output produced by the uniform distribution of values is shown in 

Figure 9. 
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Figure 9. Probability density distribution of relative UAV heading values.  This input 
distribution provides random UAV heading values from zero to 359 degrees relative to 
the observer pilot’s aircraft. 
 
 

Verification of the model’s output for each of the computation nodes, depicted in 

Figure 6, is described next.  For each node, a table depicts the input values, captured by 

the model during a test run, the output value, and the manually calculated output value.  

The model’s output value is compared to the manually calculated value to verify the 

integrity of the model’s calculations.  This ensures no programming error occurred during 

the construction of the model using the Analytica tool.  The verification is performed on 

the input values generated for three different trials of the Monte Carlo simulation. 

The first node tested is the Closure Rate node where the closure rate between the 

UAV target and the manned aircraft with the pilot/observer resides.  Table 7 depicts the 

input values and the calculated results from this node.  Except for a slight rounding error 

in Trial 2, the output values calculated by Analytica match the manual calculation of the 

output given the input values used for the verification testing. 
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Table 7 

Closure Rate Calculation Node Verification Results  

Verification 
Trial Number 

Manned 
Aircraft 
Speed  
(knots) 

UAV 
Airspeed 
(knots) 

UAV 
Relative 
Heading 

Model 
Output 
Value 

Manual 
Calculation

Value 

1 100 34.30 29 0.01944 0.01944 
2 100 6.43 140 0.02914 0.02915 
3 100 17.88 248 0.02964 0.02964 

Note.  The model output values and the manual calculation values match, verifying the model’s calculations 
produced the expected output value.  The output value for the Closure Rate Calculation node represents 
nautical miles per second. 

 
 

The Minimum Range node in the model computes the minimum distance, in 

nautical miles, for detection of the UAV target by the pilot observer.  The minimum 

range represents the distance at which only 12.5 seconds of time remain for the human 

pilot to take action to avoid a collision with the UAV.  Table 8 depicts the input values 

and the calculated results from this node.  Except for a slight rounding error in Trial 1, 

the output values calculated by Analytica match the manual calculation of the output 

given the input values used for the verification testing. 

 

Table 8 

Minimum Range Node Verification Results  

Verification 
Trial Number 

Closure Rate
(NM/sec) 

Model 
Output 
Value 

Manual 
Calculation 

Value 
1 0.01944 0.2431 0.2430 
2 0.02914 0.3643 0.3643 
3 0.02964 0.3705 0.3705 

Note.  The model output values and the manual calculation values match, verifying the model’s calculations 
produced the expected output value.  The output value for the Minimum Range Calculation node represents 
distance in nautical miles. 
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The Contrast-Adjusted UAV size node computes the apparent size of the UAV 

target adjusted for the contrast of the target against its background.  Table 9 depicts the 

input values and the calculated results from this node.  The output values calculated by 

Analytica match the manually calculated output values. 

 

Table 9 

Contrast-Adjusted UAV Size Node Verification Results  

Verification 
Trial Number 

UAV 
Size 

(square feet)

UAV 
Contrast 

Model 
Output 
Value 

Manual 
Calculation 

Value 
1 1 0.6548 1.774 x 10-8 1.774 x 10-8 
2 1 0.4643 1.258 x 10-8 1.258 x 10-8 
3 1 0.4040 1.094 x 10-8 1.094 x 10-8 

Note.  The model output values and the manual calculation values match, verifying the model’s calculations 
produced the expected output value.  The output value for the Contrast-Adjusted UAV Size Calculation 
node represents the UAV size in square nautical miles. 

 
 

The Maximum Range node computes the maximum possible range at which the 

UAV target can theorectically be seen.  The search time for the probability of detection 

algorithm cannot begin until it is theoretically possible to see the UAV.  The UAV, when 

it is further away from the observer than this maximum range, renders less than one arc 

minute of size on the retina and is therefore too small to be visible.  Table 10 depicts the 

input values and the calculated results from this node.  The output values calculated by 

Analytica match the manually calculated output values. 
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Table 10 

Maximum Range Node Verification Results  

Verification 
Trial Number 

Contrast-Adjusted 
UAV Size (NM2) 

Model 
Output 
Value 

Manual 
Calculation 

Value 
1 1.774 x 10-8 0.5166 0.5167 
2 1.258 x 10-8 0.4350 0.4351 
3 1.094 x 10-8 0.4058 0.4057 

Note.  The model output values and the manual calculation values match, verifying the model’s calculations 
produced the expected output value.  There is a difference of 1/10,000 of a nautical mile due to a rounding 
error.  The output value for the Maximum Range Calculation node represents the maximum possible 
sighting distance in nautical miles.  Beyond this distance, the target UAV will become too small for a 
human eye to see. 

 
 

The Probabilty of Sighting node uses the values computed by the other nodes in 

the model as shown in Equation 6.  Table 11 depicts the input values and the calculated 

results from this node.  The output values calculated by Analytica match the manual 

calculation of the outputs given the input values used for the verification testing. 

 

Table 11 

Probability of Sighting Node Verification Results  

Trial 
 

Closure 
Rate 

Adjusted 
UAV 
Size 

Minimum
Range 

Maximum
Range 

Model 
Output 
Value 

Manual 
Calculation

Value 
1 0.01944 1.774 x 10-8 0.2431 0.5166 3.3% 3.3% 
2 0.02914 1.258 x 10-8 0.3643 0.4350 0.3% 0.3% 
3 0.02964 1.094 x 10-8 0.3705 0.4058 0.1% 0.1% 

Note.  The model output values and the manual calculation values match, verifying the model’s calculations 
produced the expected output value.  The output value for the Probability of Sighting Calculation node 
represents the probability of seeing the small UAV, within the minimum and maximum range boundaries, 
expressed as a percentage value. 
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Reliability Testing 

The data used for this study are produced by a Monte Carlo simulation model 

using randomly selected numbers from various distributions to account for uncertainty 

related to several input variables.  The random number generation method used for this 

model used a median Latin hypercube sampling method to minimize noise in the random 

number distributions (Lumina Decision Systems, 2015).  Testing was performed with 

various numbers of trial runs and various random number generator seed values to ensure 

consistent results despite the changing random number generator control parameters. 

Mean probability is the key output for this model.  The mean probability output 

represents the probability of detection averaged over all 32,000 trials of the simulation 

model. 

To ensure the number of trials was adequate for consistent results from the 

simulation, testing of the model used various numbers of trial iterations ranging from 100 

trials up to 32,000 trials.  While the output results varied, with noticeable aberrations in 

the graphs of the results data when fewer than 250 trials occurred, the results were nearly 

identical from test to test with more than 250 trials for a given test.  The drawback of 

running more trials is the added computing time required (Lumina Decision Systems, 

2015), though the computing time for this model was less than 2 seconds for a 32,000 

trial test.  Therefore, this study used 32,000 trials to compute the results documented in 

this dissertation. 

To test the model reliability, the study compared the output from four different 

runs of the model—each using a different sample of random numbers for the 

uncontrolled input variables.  In each case, 32,000 trials were executed, and the UAV 
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target area was set to 1.0 square feet to represent common, larger-sized retail UAV 

targets.  Four arbitrarily selected random number generator seed values were chosen to 

ensure the generation of a different sequence of random numbers (see Table 12).  In 

Analytica, the seed value determines the starting position in Analytica’s random number 

generation function.  Starting the random number generation sequence using different 

seed values forced Analytica to produce a different sample of random numbers for use in 

the simulation.  The use of different samples of random numbers tests the model to see if 

it produces consistent results regardless of the starting point, or seed value, used in the 

generation of random numbers. 

The model generated random numbers using the L’Ecuyer method, chosen 

because of the method’s ability to function well with over 100,000,000 samples, 

according to the Analytica user’s manual.  The drawback of using this method is it is 

slower than the other methods available within Analytica (Lumina Decision Systems, 

2015).  With 32,000 trials completed in under 2 seconds for this study’s model, 

processing speed was not an issue, however. 

Table 12 depicts the results of the reliability testing when different samples of 

random numbers drove the model’s uncontrollable input variables.  Table 12 shows the 

results clustered by airspeed.  For each airspeed, four different seed values generated four 

different samples of random numbers.  The model ran 32,000 trials, producing 32,000 

results for each of the four different samples of random numbers.  Table 12 also shows 

the mean and standard deviation for each of these runs. 

Since no significant differences appeared among the four different sets of results, 

the results are considered statistically reliable.  This study used ANOVA to test for 
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differences across the four groups (Hoyt, 1941).  Table 12 shows the ANOVA F-statistic 

and P-value for each of the four sets of results.   

Assumptions for ANOVA were tested.  The large sample size of the data fulfills 

the normality assumption.  Levene’s testing verified the satisfaction of the homogeneity 

assumption.  A non-significant Levene’s statistic test (p>0.05) indicates the homogeneity 

of variance among the test groups.  Levene’s testing identified the lack of homogeneity of 

variance for the 160-knot scenario; therefore, reliability testing for the 160-knot scenario 

data used Welch’s ANOVA because Welch’s ANOVA does not require homogeneity of 

variance.  Levene’s testing on the remainder of the airspeed scenarios produced results 

confirming homogeneity of variance; therefore, standard ANOVA testing is appropriate 

for all but the 160-knot scenario. 

As shown in Table 12, the P-values for all cases are greater than 0.05 indicating 

there are no significant differences among the four samples; therefore, the model results 

are statistically reliable.  
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Table 12 

Comparison of Results with Different Random Number Seed Values  

Manned Aircraft 
Speed and Seed Value 

Mean Standard 
Deviation 

ANOVA 
F 

ANOVA 
P-value 

60 – Seed=422 3.00 2.67 0.5887 0.62 
60 – Seed=2017 3.03 2.81   
60 – Seed=8888 3.01 2.78   
60 – Seed=13579 3.02 2.76   
     
80 - Seed=422 1.09 0.96 0.3847 0.76 
80 - Seed=2017 1.10 0.99   
80 - Seed=8888 1.09 0.96   
80 - Seed=13579 1.09 0.97   
     
100 - Seed=422 0.37 0.43 0.3734 0.77 
100 - Seed=2017 0.38 0.44   
100 - Seed=8888 0.37 0.43   
100 - Seed=13579 0.38 0.43   
     
120 - Seed=422 0.10 0.18 0.3484 0.79 
120 - Seed=2017 0.10 0.19   
120 - Seed=8888 0.10 0.18   
120 - Seed=13579 0.10 0.18   
     
140 - Seed=422 0.01 0.06 0.3838 0.76 
140 - Seed=2017 0.02 0.06   
140 - Seed=8888 0.01 0.06   
140 - Seed=13579 0.01 0.06   
     
160 - Seed=422 0.00 0.01 0.911W 0.435W 
160 - Seed=2017 0.00 0.01   
160 - Seed=8888 0.00 0.01   
160 - Seed=13579 0.00 0.01   

Note.  This table shows the results of the model for a 1.0 square foot target at each manned aircraft airspeed 
from 60 knots to 160 knots in 20 knot increments.  Each airspeed appears four times, once for each result 
produced by four different random number seed values as shown in the table.  The F-statistic and P-value 
shown, from ANOVA processing of the four means for each group of airspeeds, indicate there is no 
significant difference between the means.  Therefore, the model is reliable.  The ANOVA results from the 
160 knot scenario are marked with a ‘W’ to indicate these results were produced by Welch’s ANOVA. 
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Descriptive Statistics of the Results 

The scenarios used to generate input values for the simulation model all used a list 

of manned aircraft flight speeds ranging from 60 knots to 160 knots in 20 knot 

increments; therefore, six different airspeeds are utilized in each scenario representing 

aircraft from small sport-category aircraft to large transport-category aircraft operating at 

approach or departure-appropriate airspeeds.  Each test scenario ran the model through 

32,000 trials to generate the output dataset.  The Analytica software tool computed each 

trial case with all six airspeeds, capturing the output from each of the airspeeds in a 

separate results matrix for each airspeed.  This allowed the model to compute probability 

results for each of the airspeeds using the same random UAS airspeed, UAS heading, and 

UAS contrast values for a given simulation trial. 

The probability data produced by the simulation model are shown in the following 

tables and graphs.  A table and a graph were produced for each of the following sUAS 

sizes as measured in square feet for the sUAS’s horizontal profile (see Table 13).  Unlike 

fixed wing aircraft, when viewed from the same altitude as the target sUAS, the viewable 

area does not change radically.  The horizontal profile areas depicted in Table 14 are 

estimated values based on measurements and specifications for popular sUAS products.  

The products used to develop these estimated sizes are listed in Appendix A.  They were 

assembled as a convenience sample from retail outlet and product manufacturer websites 

by a student in the Northshore Community College Aviation Science program.  The 

information was initially gathered in March of 2017 and was verified in April of 2017 by 

checking additional online-accessible sources.  Since these data are intended to provide a 

conceptual approximation of the types of products available and the range of sizes 
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associated with these types of products, excessive validation of the input was not 

required. 

 

Table 13 

Area of Small UAS Side View Profile  

General sUAS Size Class Size 
(square feet) 

Very Small sUAS 0.2 
Common Hobby sUAS 0.7 
Commercial Video UAS 1.0 
Professional Video UAS 1.5 
Larger Video UAS 3.5 
Very Large sUAS platform 10.8 

Note.  These size values are not statistically derived values.  They represent the viewable surface area of 
actual sUAS products based on measurements from common products listed in Appendix A.  The products 
described in Appendix A represent a small convenience sample of sUAS quadcopter products found at 
popular retail outlets. 

 
 

The Monte Carlo simulation model was repeatedly run for each of the UA profile 

sizes shown in Table 13.  The following sets of tables and figures depicts the output from 

each of the model runs.  The results shown in each of the following tables and graphs 

represents the mean probability of a human pilot visually detecting a small UA in time to 

be able to manuever clear of a collision with it, if needed.  The numbers shown are the 

probability in terms of percentage.  Therefore, 0.10% means a probability of 0.0010 in 

decimal fraction form. 

Table 14 and Figure 10 show the probability results from the model for a very 

small UAV rendering only 0.2 square feet of visible, horizontal profile.  A pilot flying an 

aircraft similar to a light sport aircraft or a Piper Cub, flying slowly at 60 knots, will only 

have a 0.10% chance of spotting the very small UA in time to avoid colliding with it.  At 
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speeds faster than 60 knots, the pilot won’t be able to see the small UA in time to steer 

clear of a collision with it, if a collision is going to occur.  While it is remotely possible 

that the UA may be flying away from the slow moving manned aircraft at a high rate of 

speed, thereby giving the pilot an extended opportunity to spot and avoid colliding with 

it, such a scenario is unlikely.  The scenario above explains why there was an instance 

where the model predicted an 86% chance of detection at 60 knots; however, the mean of 

the values for chance of detection is only 0.10%. 

 

Table 14 

Probability of Sighting a 0.2 Square Foot sUAS  

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60  80 100 120 140 160 
Mean 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 
Standard Deviation 0.63 0.05 0.01 0.00 0.00 0.00 
Minimum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Maximum 86.42% 5.52% 0.87% 0.00% 0.00% 0.00% 

Note.  This chart depicts the mean percentage and standard deviation of detection probability as computed 
by the Monte Carlo simulation model when executed with 32,000 trials.  

  
 

Figure 10 presents this same information graphically.  While it appears there is a 

much greater chance of seeing this very small UA if the manned aircraft pilot is only 

flying at 60 knots, the probability number is only 0.10% so the probability of detection is 

virtually zero, even at 60 knots. 
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Figure 10. Probability of detection curve: 0.2  square foot target.  The probability of 
detection, in time to avoid a collision, mapped against the manned aircraft speed.  
Probability values are shown in terms of percentage.  The vertical axis shows a range of 
0.01 percent to 0.10 percent or 0.0001 to 0.0010 in decimal fraction form. 
 
 

Table 15 depicts the mean, standard deviation, minimum, and maximum of the 

values for the probability of detection when the UA has a visible profile of 0.7 square 

feet.  This profile size approximates the visible profile of common hobby sUAS vehicles 

such as the DJI Phantom 3.  At a slow, 60 knot airspeed, possible with a Piper Cub or 

light sport aircraft, there is a 1.78% chance the manned aircraft human pilot will see the 

sUAS in time to avoid colliding with it.  At higher manned aircraft speeds, common for 

small general aviation, the likelihood of visual detection in time to avoid a collision drops 

to less than 1.0% and is 0.0% at airliner operating airspeeds.  Figure 11 depicts this same 

information graphically for small, hobby-sized sUAS with visible profiles of 0.7 square 

feet. 



98 

 

Table 15 

Probability of Sighting a 0.7 Square Foot sUAS  

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60  80 100 120 140 160 
Mean 1.78% 0.51% 0.11% 0.01% 0.00% 0.00% 
Standard Deviation 2.00 0.62 0.22 0.06 0.01 0.00 
Minimum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Maximum 99.93% 22.71% 6.14% 2.22% 0.84% 0.24% 

Note.  This chart depicts the mean percentage and standard deviation of detection probability as computed 
by the Monte Carlo simulation model when executed with 32,000 trials.  

  
 

 

Figure 11. Probability of detection curve: 0.7 square foot target.  The probability of 
detection, in time to avoid a collision, mapped against the manned aircraft speed. 
 
 

Table 16 and Figure 12 show the probability of detection statistics for slightly 

larger, commercial-grade sUAS with a visible profile of 1.0 square feet.  At this size, the 

mean value for probability of detection is higher, though it is still only 3.03% for pilots 

on a slow, manned aircraft flying at 60 knots.  For pilots flying in manned aircraft at 

airliner airspeeds of 140 knots or greater, the probability of detection is nearly 0.0%. 
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Table 16 

Probability of Sighting a 1.0 Square Foot sUAS  

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60  80 100 120 140 160 
Mean 3.03% 1.10% 0.38% 0.10% 0.02% 0.00% 
Standard Deviation 2.81 0.99 0.44 0.19 0.06 0.01 
Minimum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Maximum 100.00% 31.87% 9.46% 3.75% 1.66% 0.73% 

Note.  This chart depicts the mean percentage and standard deviation of detection probability as computed 
by the Monte Carlo simulation model when executed with 32,000 trials.  

  
 

 

Figure 12. Probability of detection curve: 1.0 square foot target.  The probability of 
detection, in time to avoid a collision, mapped against the manned aircraft speed. 
 
 

Some professional sUAS camera platforms are larger and render more visible 

target area for detection by the human, manned aircraft pilot.  These larger sUAS range 

from 1.5 square feet up to 10.8 square feet of visible profile area.  Table 17 and Figure 13 

illustrate there is a larger mean value for the probability of detection numbers generated 

by the Monte Carlo model.  However, at 1.5 square feet, the mean probability of 

detection ranges from 5.20% when the manned aircraft is flying at 60 knots, to 0.03% 
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when the manned aircraft is flying at 160 knots.  These numbers are far below 50%; 

therefore, the human pilot is unlikely to see the target sUAS most of the time.  The 

maximum value computed during the 32,000 trials of the model was 100% at 60 knots of 

airspeed for the manned aircraft; however; high probability of detection numbers were 

rarely produced as indicated by the mean of 5.20% and the standard deviation of 4.09.   

 

Table 17 

Probability of Sighting a 1.5 Square Foot sUAS  

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60  80 100 120 140 160 
Mean 5.20% 2.18% 0.97% 0.41% 0.14% 0.03% 
Standard Deviation 4.09 1.59 0.78 0.42 0.21 0.09 
Minimum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Maximum 100.00% 45.01% 14.91% 6.38% 3.12% 1.61% 

Note.  This chart depicts the mean percentage and standard deviation of detection probability as computed 
by the Monte Carlo simulation model when executed with 32,000 trials.  

  
 

 

Figure 13. Probability of detection curve: 1.5 square foot target.  The probability of 
detection, in time to avoid a collision, mapped against the manned aircraft speed. 
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Larger sUAS targets, with 3.5 square feet of visible profile area, resulted in a 

mean probability of detection of 13.8% when the manned aircraft is flying at 60 knots.  

Table 18 and Figure 14 show the probability of detection drops to 6.85% when the 

manned aircraft operates at 80 knots, and the probability of detection is only 1.29% at 

140 knots.  The larger-sized sUAS with 3.5 square feet of visible profile represents sUAS 

products such as commercial videography platforms in the $12,000 to $24,000 range. 

Despite their comparatively large size, and the corresponding higher probability 

of visual detection, the mean visual detection probability is well below 50% at slow 

airspeeds and close to zero percent at airliner approach speeds.  In a few isolated trials 

during the 32,000 iterations of the Monte Carlo simulation, the model identified cases 

where the probability of detection for these larger sUAS was likely if the manned aircraft 

airspeed was low.  Table 18 depicts this for the maximum value of the 60-knot scenario.  

Those trial results were rare, however, as shown by the mean and standard deviation. 
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Table 18 

Probability of Sighting a 3.5 Square Foot sUAS  

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60  80 100 120 140 160 
Mean 13.80% 6.85% 3.76% 2.18% 1.29% 0.76% 
Standard Deviation 8.24 3.84 2.10 1.29 0.85 0.58 
Minimum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Maximum 100.00% 77.13% 34.39% 16.86% 9.30% 5.55% 

Note.  This chart depicts the mean percentage and standard deviation of detection probability as computed 
by the Monte Carlo simulation model when executed with 32,000 trials.  

  
 

 

Figure 14. Probability of detection curve: 3.5 square foot target.  The probability of 
detection, in time to avoid a collision, mapped against the manned aircraft speed. 
 
 

For very large sUAS aircraft with a visible profile of 10.8 square feet, the 

probability of detection in time to avoid a collision is much greater.  Table 19 and Figure 

15 show the large visible profile produces model results with mean probabilities of 

detection over 39% at 60-knots, 23.15% at 80 knots, and 4.7% at 160 knots.  Though 

these mean percentages are noticeably larger than the mean probabilities of detection for 

smaller hobby-sized sUAS, they are still all less than 50%.   
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Table 19 

Probability of Sighting a 10.8 Square Foot sUAS  

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60  80 100 120 140 160 
Mean 39.10% 23.15% 14.52% 9.60% 6.62% 4.70% 
Standard Deviation 15.72 9.92 6.31 4.24 3.00 2.21 
Minimum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Maximum 100.00% 99.14% 75.65% 47.67% 30.29% 20.11% 

Note.  This chart depicts the mean percentage and standard deviation of detection probability as computed 
by the Monte Carlo simulation model when executed with 32,000 trials.  

  
 

 

Figure 15. Probability of detection curve: 10.8 square foot target.  The probability of 
detection, in time to avoid a collision, mapped against the manned aircraft speed. 
 
 

In addition to the low probability of visual detection previously illustrated by the 

results in Figures 10 through 15, this study showed small UA render very small image 

sizes on the human eye.  These UA targets, when viewed from the minimum distance (r2), 

a distance which allows a pilot to have time to react and turn the aircraft away from a 

collision with the small UA, render image sizes near or below the 1.0 arc minute limit for 
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human visual acuity.  Figure 16 shows the image size of a target UA, at r2, for different 

UA sizes as seen from manned aircraft flying at airspeeds ranging from 60 knots to 160 

knots.  The human eye cannot generally resolve images below 1.0 arc minutes in size 

(Hirsch and Curcio, 1989; Howett, 1983) and objects rendering images below 12.0 arc 

minutes may be difficult to recognize (ATSB, 1991). 

 

 

Figure 16. Average arc size of image at latest possible detection time.  This graph shows 
the arc size of the target UA image rendered at the human eye at r2—the minimum target 
detection range allowing the manned aircraft pilot time to see and avoid a target UA. 
 
 

Since the collision avoidance maneuver requires a minimum of 12.5 seconds, the 

pilot must detect the small UA 12.5 seconds or more before the two aircraft would 

collide.  The r2 distance between the two aircraft, 12.5 seconds before they collide, varies 

from approximately 316 feet to 4,325 feet depending on the rate of closure between the 

two aircraft.  The mean r2 values in this study ranged from 1,266 feet for aircraft flying at 

60 knots to 3,375 feet for aircraft flying at 160 knots. 
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High Contrast Testing 

Typical contrast levels for airborne aircraft targets range from 0.05 to 0.75 for 

daylight target detection (Poe, 1974).  This study treats the contrast of the target UAS 

against its background as an uncontrollable variable and therefore randomly selects a 

contrast value for each trial from a normally distributed range of values ranging from 

0.05 to 0.75 with a mode of 0.40. 

For exploratory purposes, an alternative version of the model used contrast values 

fixed at very high values of 0.8 and 1.0 to determine how much detection improvement 

the alternative model would produce if the UA contrast were consistently and unusually 

high.  While the scenario of a consistent, unusually high contrast is unrealistic, this test 

provides insight regarding the effect of contrast on the visibility of the sUAS aircraft.  

Table 20 and Figure 17 depict the results from the high contrast testing of a medium-

sized sUAS with a visible profile of 1.0 square feet. 

 

Table 20 

Probability of Sighting a 1.0 Square Foot sUAS, Contrast = 0.8   

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60 80 100 120 140 160 
Mean 7.34% 3.26% 1.58% 0.76% 0.31% 0.07%
Standard Deviation 4.15 1.40 0.61 0.31 0.17 0.09 
Minimum 0.94% 0.42% 0.12% 0.00% 0.00% 0.00%
Maximum 91.18% 25.84% 9.18% 4.05% 1.96% 0.96%

Note.  This chart depicts the mean percentage and standard deviation of detection probability as computed 
by the Monte Carlo simulation model when executed with 32,000 trials.  
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Figure 17. Probability of detection curve: 1.0 square foot target, contrast= 0.8.  
 
 

An additional run of the high contrast test, with a very high fixed contrast value of 

1.00, resulted in increases in the mean probability of detection as shown in Table 21 and 

Figure 18.  The mean probability of detection values increased between 30 percent at 60-

knots airspeed for the manned aircraft, to 271 percent at 160-knots airspeed. 

 

Table 21 

Probability of Sighting a 1.0 Square Foot sUAS, Contrast = 1.0   

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60  80 100 120 140 160 
Mean 9.54% 4.43% 2.27% 1.20% 0.61% 0.26% 
Standard Deviation 4.99 1.77 0.79 0.41 0.23 0.14 
Minimum 1.44% 0.75% 0.34% 0.10% 0.00% 0.00% 
Maximum 95.32% 31.83% 11.86% 5.44% 2.77% 1.47% 

Note.  This chart depicts the mean percentage and standard deviation of detection probability as computed 
by the Monte Carlo simulation model when executed with 32,000 trials.  
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Figure 18. Probability of detection curve: 1.0 square foot target, contrast= 1.0.  
 
 

While the percentage increase in the mean probability of detection values seems 

large, the actual probability of detection figures remained low.  At 60-knots, the mean 

probability of detection rose from 7.34 percent to 9.54 percent—still far below 50 

percent.  At 160-knots, the mean probability of detection rose from 0.07 percent to 0.26 

percent.  In both cases, at 160-knots, the probability of detection is under one percent. 

High contrast testing was limited to values of 0.8 and 1.0.  While it is possible to 

create higher levels of contrast, it requires very intense lighting—greater than 100,000 

candelas for higher contrast values in full daylight.  Most existing aircraft strobe lights 

produce only 100 to 400 candelas of light (ATSB, 1991). 

Results Summary 

The results of this study illustrate the mean probability of seeing a small UA in 

time to avoid colliding with it ranges from 39 percent to 0.0 percent based on the visible 

profile area of the target aircraft and the airspeed of the manned aircraft.  For smaller-

sized UA with a visible profile area of 0.7 to 1.0 square feet, the mean probability of 
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timely detection varies from 3.0 percent to 0.0 percent depending on the airspeed of the 

manned aircraft.  The target UA image size rendered at the human observer’s eye, when 

the manned aircraft is as close to the UA as possible while still allowing time for evasive 

action, ranges from 3.00 arc minutes to less than 0.01 arc minutes at the human eye. 

Exploratory testing of relatively large-sized small UAS vehicles (near the 55-

pound regulatory weight limit) showed the mean probability of detection ranging from 39 

percent to five percent depending on closure rates.  Consistent, very high contrast testing 

resulted in mean probability of detection values ranging from 9.5 to 0.0 percent for sUAS 

with a 1.0 square foot visible profile area.  The mean probability of detection was less 

than 50 percent for all of the practical scenarios tested during this study. 

  



109 

 

CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

This chapter discusses the results described in Chapter IV and addresses the 

research questions from Chapter I.  The chapter describes the data produced by the 

simulation model developed for this study, discusses the analysis of the data, and states 

the study’s conclusions.  The chapter also discusses the limitations of the study and 

provides recommendations for future research. 

The purpose of this study was to determine the key variables related to the ability 

of a manned aircraft pilot to visually detect a small UA with adequate time to manuever 

clear of a collision.  The study focused on the variables related to the limits of human 

visual performance since the visual detection of small UA demands visual performance 

levels close to those physical limits. 

The study derived the probability of visual detection of small UA aircraft targets, 

at a great enough distance to allow a manned aircraft pilot to avoid colliding with the 

target, from a Monte Carlo simulation model designed for this study.  This study 

extended concepts, from those used in older models developed by Andrews (1991a), 

Howett (1983), and Poe (1974), to create a simulation model capable of answering the 

study’s research questions concerning small UAS aircraft targets.  A Monte Carlo 

simulation allowed for the treatment of uncontrollable uncertainties, relevant to real-

world operating conditions a manned aircraft pilot would face during an encounter with a 

small UA.  These uncertainties included varying target UA contrast values due to 

changing lighting and background conditions, unknown UA airspeed, and unknown UA 

course direction.  The model created for this study also produced visual arc size output 
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data to provide information on the arc size of the image rendered in the human eye when 

the target is 12.5 seconds away from a collsion impact.  This arc size data provides 

further insight into the physical issues related to a human pilot in a manned aircraft 

seeing a small UAV in time to avoid colliding with it.  Data found during the literature 

review provided the information needed to choose constants related to the physiological 

constraints of human vision and to verify the assumptions used in the incorporation of 

concepts from Andrews’ (1991a) model, which was designed for full-sized aircraft target 

detection. 

Discussion 

In order to gather useful data about the probability of visual detection for small 

UA, it was necessary to define multiple, scenario-driven values for the input variables 

used by the research model.  Since this study focused on exploring the limits of human 

visual performance in the context of seeing small UAS aircraft, the intent of the chosen 

scenarios was to represent typical operations as opposed to scenarios in which visual 

detection would be unusually challenging.  The scenarios used for this study all assumed 

daylight and high-visibility weather conditions.  The scenarios also involved aircraft 

generally departing from or approaching an airport or performing other lower altitude 

operations.  The manned aircraft could range from light sport-category aircraft to airliner-

sized aircraft, and the unmanned aircraft could range from recreational hobby sUAS 

vehicles to large, commercial filming platforms near the upper end of the sUAS weight 

limit of under 55 pounds. 

Combining the graphs in Figures 10 through 15 results in the composite graph 

shown in Figure 19.  Very small sUAS aircraft are unlikely to be visible in time to avoid 
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a collision.  This is true at any of the airspeeds used in this study’s scenarios.  The mean 

probability of sighting a sUAS aircraft drops quickly as the sUAS vehicle becomes 

smaller and as the manned aircraft speed increases.  In all cases, the mean probability of 

detection is less than 50% suggesting, more often than not, manned aircraft pilots will not 

see a small UA in time to avoid colliding with it. 

 

 

Figure 19. Composite probability of detection graph.  This graph combines information 
from Figures 10 through 15 in Chapter 4.  Very large sUAS aircraft have up to a 39 
percent probability of timely detection.  Smaller hobby and photo-mission UAs are 
detectable less than 10 percent of the time and are virtually undetectable at higher 
manned aircraft speeds. 
 

 

Focused discussion on findings related to the size of the UA, the manned aircraft 

speed, search time constraints, and contrast follow.  Findings related to these variables 

provide strong insight regarding the relationship between the variables and the 

probability of visual detection. 

sUAS size.  The visible profile of the sUAS aircraft has a direct influence on the 

ability of the human pilot, in a manned aircraft, to see the sUAS vehicle in time to avoid 
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colliding with it.  The mean probability of detecting a very small UA (0.2 square feet of 

visual profile) is 0.10 percent when the human pilot is flying at 60 knots and 0.00 percent 

for all faster airspeeds (as shown in Chapter 4, Table 14).  Investigation of the internal 

model variables shows the cause for this low likelihood of visual detection is the 

minimum acceptable search time for detection.  The pilot’s search time is constrained 

between the point at which the image of the UA first becomes big enough to see from a 

distance, to the point at which there are only 12.5 seconds left to see and avoid the UA.  

If the distance needed to avoid a collision with the sUAS vehicle is greater than the 

distance at which the sUAS vehicle first becomes visible, there is no time for the pilot to 

search for the UA target.  In other words, by the time the object is close enough to render 

at least 1.0 arc minute of image size on the retina, it is already too close to avoid. 

Increasing the size of the UA makes it more visible.  Table 15 and Table 16 in 

Chapter 4 show that larger-sized small UA, such the DJI Phantom 3 or the Yuneec 

Typhoon H, have a better chance of being seen.  These common types of sUAS aircraft 

present visual profiles ranging between 0.7 to 1.0 square feet when they are candidate 

targets for a collision.  The model results show these UA have between a 1.78 percent to 

a 3.03 percent chance of being seen when the manned aircraft is flying at 60 knots.  The 

same tables show the mean probability of detection drops below 1.00 percent at manned 

aircraft speeds of 100 knots. 

Very large-sized, small UA, encroaching on the upper allowable weight limit for 

sUAS aircraft, can have a 39.10 percent chance of being detected if the manned aircraft is 

only flying at 60 knots.  At 160 knots, the mean probability of detection drops to 4.70 

percent.  Increasing the size of the UA’s visible profile increases the probability of visual 
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detection but not enough to achieve reliable or even frequent detection.  Even the large 

sUAS aircraft, near the maximum allowable weight limit of less than 55 pounds, only has 

a 39.10 percent to 4.70 percent chance of being seen.  Exploratory testing of the model 

revealed the visible profile of the target UA would need to approach 100 square feet to be 

reliably spotted in time to avoid a collision at low to medium airspeeds (see Table 22).  

Such an UA would need to present a horizontal profile similar to a Piper PA28 when 

viewed from the side.  This is unrealistic because the weight of the UA would likely 

exceed the less than 55 pound regulatory constraint for sUAS aircraft.  It would also be 

cost-prohibitive for most recreational and low-cost commercial operators. 

 

Table 22 

Probability of Sighting a 100 Square Foot sUAS  

 Airspeed of the Manned Aircraft (in Knots)  

Statistic 60  80 100 120 140 160 
Mean 96.81% 89.84% 79.03% 67.04% 55.90% 46.38% 
Standard Deviation 7.43 11.64 14.42 15.16 14.49 13.18 
Minimum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Maximum 100.0% 100.0% 100.0% 99.82% 97.83% 92.19% 

Note.  This chart depicts the mean percentage and standard deviation of detection probability computed for 
an unrealistically large sUAS aircraft presenting at 100 square foot visible profile.  

 
 

Manned aircraft airspeed.  Figures 10 through 18 in Chapter 4 all illustrate the 

effect the speed of the manned aircraft has on the probablity of detection.  As the speed of 

the manned aircraft increases, the minimum range from which the target UA must be 

spotted in order to leave enough time to avoid a collision also increases.  The increased 

minimum range has two effects.  It causes the rendered image size of the UA to be 

smaller on the retina, in many cases challenging the one arc minute resolution limit of the 
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human eye (as shown in Figure 16 in Chapter 4), and when combined with the increased 

closure rate between the aircraft, it shortens the amount of time available for the search 

activity (as shown in Figure 20).  These both reduce the probabilty of sighting the small 

UA in time to avoid colliding with it.  While slowing the manned aircraft’s airspeed may 

be an option for some general aviation aircraft, for business jets, larger cabin-class 

airplanes, and airliners, flying at slow speeds of 80 knots or less is not an option.  

Search time.  Search time is not one of the explicit input variables for the model 

used for this study.  However, allowable search time has an impact on the human pilot’s 

probability of detecting a small UA from a manned aircraft.  The search time starts once 

the manned aircraft has closed in on the small UA enough so that it becomes theoretically 

visible.  The UA becomes theoretically visible when it renders an image of at least 1.0 arc 

minutes of size on the retina.  The allowable search time ends 12.5 seconds before 

collision so the human pilot has enough time to sense and react to manuever the manned 

aircraft away from a collision.  Figure 20 depicts the relative differences in available 

search time, in seconds, given a specific sUAS visible profile size (or cross section) and 

given manned aircraft airspeed. 
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Figure 20. Available search time.  For a given airspeed, ranging from 60 to 160 knots, the 
search time available to the manned aircraft’s pilot ranges from a maximum of 147 
seconds to a low of 0.0 seconds, assuming excellent target contrast.  The search time is 
reduced if the target contrast is reduced. 
 
 

The available search time for a 0.2 square foot UA is small—ranging from 9.3 

seconds to 0.0 seconds at high airspeeds where the UA does not become visible until the 

12.5-second collision-avoidance maneuvering deadline has already passed.  Since it is not 

possible for the pilot or the UAS operator to change the available search time, the 

purpose of this section is only to illustrate the short time the human pilot has for the task 

of detecting small UA, especially when flying faster aircraft. 

sUAS contrast.  The effect of contrast on the probability of detection model is 

that it modifies the apparent size of the UA visible profile.  In other words, if the visible 

profile area of the target UA is 1.0 square feet and the contrast ratio is 0.5, then the 

apparent size of the UA becomes 0.5 x 1.0 = 0.5 square feet.  When the contrast is 0.5, 

the size of the UA would need to double in order for it to be just as visible as the UA 
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would be given a high contrast of 1.0 with its background (Andrews, 1991b).  Poe (1974) 

says the contrast of an airborne target is subject to “substantial variation” (p. 11) over the 

course of its flight.  Poe further states that contrast values of 0.05 to 0.75 are common.  

As shown in Figure 7, this study used contrast values ranging from 0.05 to 0.75 selected 

from a normally distributed population at random.  The mean for this population was 

0.40, and the standard deviation was 0.13.  Each of the 32,000 trial runs for each scenario 

drew a random number for the contrast ratio from this population to simulate the 

uncertainty and the varied nature of target versus background contrast. 

As an exploratory test to see how much the mean probability of detection would 

improve if the target contrast were improved, testing was repeated with the UA target 

contrast value set as a constant value: 1.00 for a small UA with a 1.0 square foot visible 

profile.  Locking the contrast ratio at 1.00 for a consistently high contrast target improved 

the mean probability of detection by 30 percent at 60-knots and by 271 percent at 160-

knots.  However, the improved probability of detection was still only 9.54 percent at 60-

knots and 0.26 percent at 160-knots.  Though the high contrast test resulted in a large 271 

percent improvement in the probability of detection for manned aircraft flying at 160 

knots, the improvement did not make a practical difference since the probability of 

detection remained well under one percent.  Even with a consistent, high contrast value 

for the UA target against its background, manned aircraft pilots are unlikely to spot the 

small UA in time to avoid colliding with it. 

If it were possible to create an extraordinary contrast ratio of 100.0 for the small 

UA target against its background, a small UA with a 1.0 square foot profile would 

become much more visible.  This extreme contrast would be 100 times greater than the 
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high contrast test described in the previous paragraph.  Extreme contrast modeling, at a 

contrast ratio of 100.0, revealed the mean probability of detection rises well above 50 

percent to nearly 100 percent for aircraft operating at slower airspeeds (see Figure 21).  

An augmented contrast of this magnitude would give the UA an inherent level of 

visibility similar to a full-sized Piper PA28 aircraft with an excellent contrast of 1.0. 

 

 

Figure 21. Extreme contrast test – contrast = 100.  When the contrast ratio is increased to 
an extreme value of 100.0, the probability of detection for a small UA with 1.0 square 
feet of visible profile rises to nearly 100 percent at slower manned aircraft airspeeds and 
is above 80 percent at 160 knot airspeeds. 
 
 

To achieve a contrast ratio of 100.0 against a fair weather, daytime sky, the small 

UA would need to emit 101,000 foot-lamberts of luminance.  This finding is similar to 

anti-collision light findings published by the Australian Transportation Safety Bureau 

(ATSB, 1991).  Chisum (1977) recommended adding light sources capable of emitting 

200,00 to 300,000 foot lamberts to produce a solar-like glare to make small targets more 

visible in full daylight conditions on a clear day.  The ATSB states most existing aircraft 
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strobe lights only produce a small fraction of the light intensity required to create 

detection in daylight conditions (ATSB, 1991). 

Conclusions 

This study explored the relationship of five key variables on the probability of a 

human pilot in a manned aircraft, visually detecting a small UA in time to avoid colliding 

with it, using a Monte Carlo simulation model.  Two of the five variables, UA visible 

profile size and unmanned aircraft speed, are controllable inputs to the model.  The other 

three variables, UA airspeed, UA relative heading, and UA contrast relative to its 

background, are uncontrollable values, which the Monte Carlo simulation model selected 

at random from pre-defined populations of possible values. 

Figure 19 illustrates the overall conclusion that human pilots are unlikely to spot a 

small UA in time to avoid colliding with it.  At slower airspeeds, the mean probability of 

detection is higher, though the probability of detection is far below 50 percent.  At faster 

airspeeds, the probability of detection is zero for faster moving manned aircraft.  The 

conclusions for each of the three research questions follow next. 

Research Question 1: What key variables in the Andrews probability of detection 

model, related to the physical features of a small UAS or the manner in which 

pilots operate their manned aircraft, limit a manned aircraft pilot’s ability to see a 

small UAV in time to avoid colliding with it? 

The key variables limiting the pilot’s ability to see a small UAV in time to avoid 

colliding with it are the visible profile area or size of the UAV and the speed at which the 

manned aircraft moves.  The speed at which the manned aircraft moves determines the 

minimum distance from which the pilot must be able to spot the small UA.  The literature 
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is consistent about the use of 1.0 arc minutes, as the minimum size of a visual feature one 

should expect a person with normal 20/20 vision to see (Andrews, 1991a; Hirsch and 

Curcio, 1989; Howett, 1984).  Given the speeds at which typical general aviation and 

commercial airliner aircraft move, pilots must be able to spot small UA from thousands 

of feet away.  Viewing a small UA with a visual profile of one or two square feet, or less, 

from thousands of feet away renders a tiny image on the human retina close to the 1.0 arc 

minute resolution limit.  Other variables, such as contrast, atmospheric visibility, and 

perspective angle contribute to the overall solution but are less influential due to the 

distance between the UA and the observer.  The distance between the UA and the 

observer is too short to allow atmospheric visibility to be influential in fair weather 

conditions, and the distance is too great for the observation perspective to be other than 

horizontal (or head-on).  Changing the contrast affects the apparent size of the image but 

the image is still very small given the required viewing distance of multiple thousands of 

feet.  This study has demonstrated the adjustment of variable inputs to the model helps 

small UA be more visible but not enough to be detectable most of the time. 

Research Question 2: Given different scenarios determined by the controllable 

input variables, what is the probability a manned aircraft pilot will see a small 

UAV, in time to avoid colliding with it? 

The probability of a manned aircraft pilot visually detecting a small UA in time to 

avoid colliding with it is very low as shown in Figure 19.  Even when the small UA is 

physically very large, at the upper end of the allowable weight limit for small UA, the 

probability of detection is well under 50 percent at slow airspeeds.  For the more common 

hobby and lower-cost commercial UA, ranging in visible profile area size from 0.7 to 1.0 
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square feet, the probability of visual detection in time to avoid a collision is under four 

percent down to zero percent when the manned aircraft is moving at airliner approach 

airspeeds above 120 knots. 

Research Question 3: What simulation model parameters, if changed, would 

improve the manned aircraft pilot’s ability to see and avoid a small UAV? 

Exploratory testing, as described in Chapter 4, resulted in improvement in the 

manned aircraft pilot’s ability to see and avoid small UAs when the contrast ratio of the 

small UA target versus its background was consistently higher.  Exploratory testing, 

described in the discussion section of this chapter, determined the use of extreme contrast 

values, made possible by very intense lighting, could make the probability of detection 

for small 1.0 square foot UA aircraft rise well above the 80 percent level.  However, the 

technology for producing and powering such an intense emission of light is not generally 

available in a form suitable for small UA weighing only one to eight pounds.  Increasing 

the visible profile area of the small UA also helped raise the probability of detection.  

However, the change was not enough to make the probability of detection rise above 50 

percent at the faster manned aircraft airspeeds.  The exploratory testing found no other 

options for improvement. 

Methodology and data.  This study demonstrated a useful approach for the 

extension of Andrews’ (1991a) Air-to-Air Visual Acquisition model in the presence of 

varying input value due to uncertainty.  The use of a Monte Carlo simulation enabled the 

model to function and to produce realistic results despite the range of possible values for 

UA airspeed, relative heading, and changing UA target contrast against its background 
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due to the variety of possible illumination levels from both the sky and reflected light 

from the ground. 

There were additional variables the model could have incorporated into its 

calculations.  Given the tiny sizes of the target images rendered on the retina, most of 

those other variables became secondary or irrelevant.  These included color of the target, 

clarity of the atmosphere, and orientation of the UA in terms of the visual profile it 

presented to the observer.  The visual profile would be more significant for fixed wing 

sUAS aircraft, and this will be discussed in the recommendations section.  However, the 

methodology and the model developed for this study will work well for the study of fixed 

wing aircraft. 

The methodolgy and the model developed for this study can be applied to a 

variety of future visual search research studies since it is flexible, easily adaptable, and 

capable of handling uncertainty in its input values.  If the nature of search task is altered, 

however, human subject testing will be required to determine the correct value of ઺, the 

search effectiveness constant, for use in the new application. 

Validity.  The results from this model were found to be consistent with the results 

described by other studies on the probability of visual detection for airborne targets.  

Greening (1976) examined multiple models for the prediction of visual target acquisition 

where the background contained more ground features than sky features.  Based on 

Greening’s findings relating target subtense, or visual angle image size, mapped to the 

probability of detection, all of the results produced by this study should render a finding 

of less than 50 percent probability of detection.  Greening compared several visual 

detection models which all came to the same conclusion. 
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Chisum’s (1977) nomographs suggest visual detection of a 1.0 square foot target 

should be possible at distances ranging from 1,200 feet to approximately 2,400 feet.  

While Chisum used a different type of chart to convey the results of her analysis of 

airborne target visibility, the distance numbers are comparable—though Chisum’s 

predictions are even less favorable for target detection of small airborne objects. 

Poe’s (1974) studies of visual detection of aircraft by ground observers had higher 

rates of detection.  However, the targets in Poe’s studies were full-sized manned aircraft 

instead of small UAs, and the observers reported augmentation of their search efforts by 

use of smoke trails and noise signatures.  Therefore, Poe’s results are not directly 

comparable. 

The low probability of detection is also consistent with Howett’s (1983) 

recommendations for the minimum size of lettering on signs for readability.  In all cases, 

the visual arc size of the UA at the minimum range point (the point at which visual 

detection must have occurred in order for the pilot to have time to avoid a collision) 

ranges from 0.3 arc minutes to 6.5 arc minutes for the very large UA (10.8 square feet) in 

the 60-knot airspeed scenario, as shown in Figure 16 in Chapter 4.  Given the 1.0 square 

foot UA size, the visual arc size at the minimum range point varies from 0.7 to 2.0 arc 

minutes rendering a poor target for recognition. 

The generally consistent alignment of this study’s results to results from other 

studies identified in the literature suggests the model is valid.  Loffi, Wallace, Jacob, and 

Dunlap (2016) concluded the general aviation pilots in their study could have time to 

avoid a larger-sized Anaconda fixed-wing UAV when searching from a Cessna Skyhawk 

flying at 100 knots; however, the general aviation pilots were unlikely to have time to 
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avoid a collision with the smaller, quad-copter UAV used in their study.  Since the pilots 

in the Loffi et al. study were aware there would be a UAV encounter in their path of 

flight, they were pre-alerted.  Even with the larger Anaconda UA used in the Loffi et al. 

(2016) study, the available reaction time was 15.42 seconds (p. 23) which provides the 

pilot with less than three seconds of time before the 12.5 second reaction time limit, 

described by the FAA (FAA, 2016c), is reached.  Though statistical comparisons of 

model results are not possible because of the different structure of the output data and the 

different sizes of the targets used in the other studies, no inconsistencies were found 

between this study’s results and the results of other studies found in the literature. 

Practical implications.  This study has contributed practical, data-driven 

knowledge to the question of small UA visibility and the degree to which the human 

pilots in manned aircraft can be expected to visually detect and avoid small UA in flight.  

This is the first study to specifically relate small UA visibility to the physical limits of the 

human eye using a mathematical modeling tool that addresses the multitude of potential 

contrast values between the small UA and its background as they operate in different 

regions under different weather and lighting conditions.  This study indicates pilots of 

manned aircraft are unlikely to see a small UA in time to avoid a collision.  Though pilots 

have described the task of visually detecting small UA as difficult (Loffi, et al., 2016), 

the explanation of why the visual detection task is so difficult has not been described in-

depth.  This study demonstrates why it is important for small UAS aircraft to have the 

intelligence and ability to detect and avoid manned aircraft—because manned aircraft 

pilots are unable to see and avoid the small UAS aircraft. 
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This study also explored the extreme conditions required to make small UA 

targets visually detectable in time to avoid a collision, most of the time.  Though the 

results of this study’s exploratory testing found the requirements to make small UA 

reliably visible to the human pilot’s eyes impractical, the model can help future 

researchers with other questions related to small UA visual detection and visibility.  

Additionally, since advancement in electronic technology will produce ADS-B and other 

technologies with lower, more practical payload and power demands, the industry focus 

should be on the deployment of those types of solutions as soon as possible. 

Theoretical implications.  This study has also built upon previously proven air-

to-air target acquisition models to create a new, useful model for small airborne target 

detection, in cases where researchers seek to understand the probability of visual 

detection, when uncertainty exists for one or more input values.  The study connects 

previously conducted physiological research on the human eye with mathematical 

calculations of the target image size, from the observer’s vantage point, to explain how 

the visual detection of small UA pushes the limits of human visual acuity.  The study 

demonstrates the utility of using a Monte Carlo simulation as an approach for handling 

uncertainty in the values of important input parameters and provides researchers with a 

means of describing the range of possible outcomes.  Describing the potential outcomes 

in this manner allows the study to provide useful answers while simultaneously 

acknowledging the results of specific, actual sUAS encounters may occasionally be 

different due to the uncertainties involved. 

Additionally, the study provides more specific insight regarding the effect of 

contrast, aircraft size, and visibility-enhancing features related to the visual detection of 
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very small aircraft targets.  Many of the considerations that apply to large aircraft to 

enhance their visual detectability, don’t apply well to sUAS aircraft because the image 

rendered on the eye’s retina is so small.  While color, contrast, and increases in size 

generally make a difference for larger aircraft, when searching for sUAS aircraft at a 

distance great enough to maneuver clear of a collision, even large improvements in 

contrast, distinctive coloration, and increased aircraft visual profile sizes result in visual 

detection probabilities that remain very small because the image size is so small to begin 

with.  The study emphasizes the unique visual detection dynamics related to small targets 

that remain near the threshold of human visual acuity throughout the search time interval.  

Unlike manned aircraft, these sUAS aircraft target images rarely grow large enough to be 

seen in time to allow pilots to avoid colliding with them. 

Limitations.  The Monte Carlo simulation model developed for this study draws 

upon concepts from the Andrews (1991a) aircraft visual acquisition model and adds 

extensions to create a new model appropriate for small UAS aircraft detection and 

uncertainty in multiple input variable values.  The model uses Andrews’ ઺ constant to 

account for many of the human factors considerations related to pilot search 

effectiveness.  ઺ൌ17,000 was determined experimentally by Andrews (1991a) for un-

alerted, normal search and low workload.  The assumptions tied to the ઺ value of 17,000, 

as described by Andrews (1991a), apply well to the scenarios in this study.  Though the 

results of the model are consistent with the results inferred by other models for visual 

object recognition, the accuracy of the model used for this study is dependent upon the 

quality of Andrews’ research in determining the value of ઺.	
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This study also modeled contrast uncertainty between the sUAS target and its 

background, using a normal distribution of values for the range of contrast values 

described by Poe (1974).  Poe described the difficulty of determining target contrast 

values for use in models such as this.  Poe states concerns about the effect of contrast on 

the detection of airborne targets.  This study found even high contrast target values still 

produced low probabilities of detection; however, additional data regarding actual 

contrast values would add value to the model’s predictions for future studies related to 

improving the visibility of small UA. 

In addition to the study’s limited access to actual contrast data, this study did not 

explicitly model the effects of background clutter and target confusion related to 

background features with similar shape and contrast attributes as the target.  Background 

clutter and feature similarity create confusion and increased search time requirements 

(Toet, 2010).  Though the model does not specifically address the effects of background 

clutter and feature similarity, future incorporation of these attributes into the model will 

only reduce the probability of target detection further. 

Recommendations 

The results of this study demonstrate it is unlikely a pilot of a manned aircraft will 

consistently see and have time to avoid colliding with a small UA.  Therefore, regulators 

and educators should inform pilots of manned aircraft about the limitations of their ability 

to visually detect small UA in time to avoid colliding with them.  If a manned aircraft 

pilot sees a small UA, the pilot should immediately report the presence of the UA to an 

air traffic control facility so other pilots can be warned and law enforcement officials can 

be dispatched to take action. 
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Since manned aircraft pilots cannot be expected to see and avoid small UAS 

aircraft, regulators and manufacturers must give more attention and greater urgency to the 

deployment of technology-based solutions to keep small UAS aircraft away from manned 

aircraft.  Given the increasing rate of small UA sales and the simultaneous, albeit slower, 

increase in the rate of UAS target sightings, there is likely a growing collision hazard 

forming as long as new sUAS products do not have the technology needed to ensure they 

will remain clear of manned aircraft.  Additionally, consideration should be given to 

technologies on sUAS products that enable warning information to be made available to 

manned aircraft pilots in a manner similar to existing traffic information service, ADS-B, 

or traffic collision avoidance systems. 

Educational programs are essential for sUAS operators, and the educational 

programs in place today appear to be effective, to some degree, based on the fact that the 

number of reported UAS sightings per month is rising less rapidly than the number of 

sUAS aircraft sold.  However, the number of UAS sighting reports continues to rise 

(FAA, 2017b; Volpe, 2017).  Therefore, education alone does not appear to be a complete 

solution to the sUAS aircraft collision hazard. 

This study revealed aircraft with larger visible profile areas are easier to visually 

detect.  Loffi, et al. (2016) conducted visual detection testing with a fixed-wing 

Anaconda UAS and found it was both easier to see and it was visually detected in time to 

avoid a collision.  Though the Loffi et al. study pre-alerted the manned aircraft pilots to 

the presence of small UA operating in the vicinity, giving the pilots in the study an 

unusual advantage in the visual detection task, the results of their study confirmed the 

concept that larger sUAS aircraft are easier to visually detect than smaller sUAS aircraft.  
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This suggests there may be safety advantages available if sUAS aircraft are designed to 

present larger visual profiles to increase their visibility from larger distances.  This could 

be accomplished through the addition of side panels to increase the visual profile area of 

the aircraft.  Such panels might not be aerodynamically reasonable or sound.  

Alternatively, a smoke discharge system could make the small UA more visible, though 

such a system may not be reasonable from a payload perspective.  Chisum (1977) 

suggested the addition of mirror-like reflectors to reflect sunlight off of the target UA 

might increase the contrast of the vehicle to make it more visible from large distances. 

Future research opportunities.  Chapter 1 of this disseration describes a number 

of limitations and delimitations for this study.  This section of Chapter 5 describes 

opportunities for future research to further explore both the capabilities of the model and 

the options for improving the accuracy of the model’s predictions. 

The model uses an important constant referred to as ઺ to represent the search 

effectiveness of the manned aircraft pilot(s).  Andrews (1991a) determined several values 

for ઺ based on data gathered from actual flight tests.  While the results of this study 

appear to be consistent with the results of other visual detection studies, additional 

confidence could be obtained through flight testing with human pilots, in a controlled 

data gathering experiment designed to validate or refine the ઺ constant for the model. 

Additional testing could be conducted to refine the range of contrast values used 

for the apparent contrast distribution in the Monte Carlo model.  The normal distribution 

of contrast values used in the model for this study provides contrast values within the 

range described by Poe (1974).  However, the use of photometric sensors and data 

gathered from flight testing experiments would potentially provide a more accurate 
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model.  Photometric testing of fixed wing vs. multi-rotor sUAS aircraft would also 

provide useful information on the detectability of small fixed wing UAVs.  When this 

comparative testing is conducted, an additional uncontrolled variable should be added to 

account for the uncertainty of the fixed wing UAV’s attitude since its attitude will alter 

its visible profile area or apparent size.  It should be noted that high contrast testing of the 

model failed to improve sUAS visibility enough to result in a different conclusion from 

what is stated in this chapter.  

The use of photometric data gathering to more accurately define the apparent 

contrast distribution used by the Monte Carlo simulation, could also gather the data 

needed to enable repurposing of the model to predict sUAS visibility from the ground by 

a UAS observer or operator.  It is recommended that consideration be given to the use of 

this model as a means to forecast the probability of visual tracking of sUAS aircraft by 

the UAS operator and/or observer on the ground. 

The final recommendation of this study is to explore the use of more sophisticated 

algorithms or methods for assessing the effect of background clutter, and target confusion 

due to similarly shaped objects in the background, on search effectiveness and search 

time.  There are existing studies on the effects of background clutter and target confusion; 

however, none of the studies could be directly applied to the model in this study without 

extensive human subject testing and the collection of wide variety of background scenes, 

due to a wide range of possibilities applicable to the detection of small UA from an 

airplane.  The availability of such data would enable the model to be more precise and 

accurate in its predictions. 
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APPENDIX A 
 

Common Small UAS Products and Specifications 

 

Convenience Sample of Popular UAV Products for Consumers Last Updated:   4/29/2017 
Source Mfg Model Primary 

Color 
Size (in inches) Weight 

(lbs) 
Max 
Speed 

Notes 

        Width Height Depth     
DJI Website 
/ Amazon 

DJI Phantom 3 
Standard 

WHITE 15 8.2 14 2.7 36 MPH Aircraft can be 
personalized with 
small colored stripes 

DJI Website 
/ Amazon 

DJI Phantom 3 
Advanced 

WHITE 18 8 13 2.8 36 MPH Aircraft can be 
personalized with 
small colored stripes  

DJI Website 
/ Amazon 

DJI Phantom 3 
Professional 

WHITE 18 8 13 2.8 36 MPH Aircraft can be 
personalized with 
small colored stripes  

DJI Website 
/ Amazon 

DJI Phantom 3 
4K 

WHITE 18 8 13 2.8 36 MPH Optional gold stickers 
available  

DJI Website 
/ Amazon 

DJI Phantom 4 WHITE 15 8 12.7 3 44 MPH No stickers, body is 
completely white 

DJI Website 
/ Amazon 

DJI Phantom 4 
Pro 

WHITE 14.5 8 14 3.1 45 MPH No stickers, body is 
completely white 

DJI Website 
/ Amazon 

DJI Mavic Pro DARK 
GREY 

11.4 7.1 9.4 1.62 40 MPH Has small gold stripes 
painted on aircraft, no 
sticker options 
available  
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Convenience Sample of Popular UAV Products for Consumers Last Updated:   4/29/2017 
Source Mfg Model Primary 

Color 
Size (in inches) Weight 

(lbs) 
Max 
Speed 

Notes 

        Width Height Depth     
Amazon Parrot Bebop BLACK* 13.2 3.8 14.4 0.88 31 MPH Choice of red or blue 

with black 
Amazon / 
Parrot 
Website 

Parrot Bebop 2 WHITE / 
BLACK 

12.9 3.5 12.9 1.1 37 MPH 

Amazon / 
Parrot 
Website 

Parrot Disco WHITE / 
BLACK 

45.2 4.7 22.8 1.65 50 MPH Dimensions are 
correct - not a 
quadcopter drone, it 
has two long wings 

Amazon Parrot AR Drone 
2.0 

BLACK 23 5 23 0.9 25 MPH 

Best Buy / 
YUNEEC 

YUNEEC Typhoon 4K BLACK 16.5 8.3 16.5 2.4 18 MPH 

YUNEEC 
Website  

YUNEEC Breeze WHITE 7.7 2.5 7.7 0.85 11.2 MPH 

YUNEEC 
Website  

YUNEEC Typhoon H BLACK 20.5 12.2 18.2 4.3 43.5 MPH 

YUNEEC 
Website  

YUNEEC Tornado 
H920 

BLACK 31.4 18.1 36.2 11 25 MPH Hexacopter 

Best Buy / 
Autel  

Autel 
Robotics 

X-Star 
Premium 

MULTIPLE* 6.8 8 5.1 3.13 35 MPH Options of white or 
orange 

Best Buy EHANG Ghostdrone 
2.0 VR 

MULTIPLE* 7.9 3.5 13.8 2.54 37 MPH Options of white, 
black, or orange 

DJI Website 
/ Amazon 

DJI Inspire 1 WHITE / 
BLACK 

16.5 2.8 18.9 6.74 49 MPH Weight can vary with 
cameras  
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Convenience Sample of Popular UAV Products for Consumers Last Updated:   4/29/2017 
Source Mfg Model Primary 

Color 
Size (in inches) Weight 

(lbs) 
Max 
Speed 

Notes 

        Width Height Depth     
DJI Website 
/ Amazon 

DJI Inspire 2 BLACK / 
SILVER 

18 12 21 7.25 58 MPH MTOW - 8.82 lbs. 

xFold 
Website  

xFold Spy x8 BLACK 15.9 15 17.4 3.4 33.5 MPH Drone is $3,499 

xFold 
Website 

xFold Travel x12 BLACK 31 38 22.6 10.3 Unavailable Drone is $12,999 

xFold 
Website  

xFold Cinema x12  BLACK 34 39.2 27 24.9 Unavailable Drone is $23,999 

xFold 
Website 

xFold Dragon x12 BLACK 53.7 28.3 62 42.5 Unavailable Drone is $31,599 
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