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Executive Summary 
 

 The safe-flutter-test research project was intended to be one of 4 research programs to be 

carried out by the ASSURE consortium of US universities and the Faculty of Aerospace 

Engineering at Technion, supported by the US Federal Aviation Administration (FAA) and 

the Civil Aviation Authority of Israel (CAAI).  The final proposal of the current research 

was submitted to MOT/CAAI in August 2017, after conducting initial discussions with a 

test group at Ohio State University (OSU), a member of the ASSURE program.  The 

proposed plan included 4 parts: 

1. Method advancement: (a) further development of the PFM methodology, simulation 

tools and application models; (b) an additional 3D test to be performed at Technion; 

and (c) summary of the related wind-tunnel tests. (6 months) 

2. Flight test planning: Simulations to investigate the intended system performance 

with a generic UAV model and available shakers in collaboration with the 

ASSURE partner. (6 month) 

3. Flutter tests and data reduction to be performed mainly by the ASSURE partner. (6 

months) 

4. Impact on flutter test procedures regulations: exploration of ways to improve the 

flight-test procedures in terms of safety, duration and cost. (6 months) 

 

The first year of the proposed research (Items 1 and 2 above), has been performed 

successfully and exhibited very promising results.  However, since OSU participation has 

not been formally approved and financed yet by FAA, the data obtained from them was 

limited to conceptual design data the UAV wing. 

 

The second year of the program started with selecting a proper shaking device and its 

mounting location.  An existing shaker/accelerometer device of about 70 gr seems to be 

suitable for the task when located at a front location in the wing-tip store.  An additional 

device of about 200 gr, with a battery, driver circuit and reference accelerometer, may also 

be added at another location where it has small effect of critical flutter characteristics. 

When it became clear that OSU are not going to start their project soon, we changed our 

test-case model to be the Active Aeroelastic aircraft TestBed (A3TB) vehicle developed at 

Technion by Prof. Raveh as a student project.  This UAV is currently at its preliminary 

flight test stage and it was designed such that it supposed to meet flutters in it flight 

envelope. 
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The PFM flutter analysis method, on which the planned flutter tests of our project are 

based, was expanded to accommodate a sensitivity study for flutter characteristics vs. 

added mass magnitude and location.  Such sensitivity study with the A3TB vehicle showed 

that the original flutter velocity of about 24 m/s can be changed to about 34 m/s with 300gr 

mass added at the leading edge of the wing-tip sections.  Both velocities are inside the 

flight envelope, so this case may become an excellent experimental testcase for the safe 

flutter test methodology.   

 

The PFM method was further expanded to accommodate a simulation of experimental 

noise generated by air turbulence. It was shown that the combination of the aircraft 

response to intentional excitation by a shaker, at the point of added mass, with turbulence 

noise, may still provide adequate measurement signals for the extraction of flutter margins 

with which the test may proceed safely. 
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1 Introduction 
 

The main purpose of the safe flutter test project is to develop a procedure and means for 

conducting safer and more efficient UAV flutter flight tests, such as those required by the 

aviation regulations FAR 25.629 and USAR 629.  Ultimately, the research goal is to yield a 

major reduction of the associated risk, time duration and costs. Furthermore, it may lead to 

improved criteria and equipment to be used in UAV airworthiness certification programs.  

The research is based on the recently developed numerical Parametric Flutter Margin 

(PFM) method [1] that calculates flutter margins and LCO levels, based on frequency-

response functions calculated with stabilizing elements added to the structure or the control 

system.  

 

In its initial version, the PFM method is based on adding a single stabilizing parameter, 

such as a certain modal damping coefficient or a discrete mass, which increases the flutter 

stability margins.  This version facilitated very efficient massive sensitivity studies with 

respect to selected stabilizing parameters [2].  Furthermore, it facilitated safer flutter tests 

where flutter or nonlinear limit-cycle oscillation (LCO) boundaries of a certain 

configuration are positively identified while actually testing a more stable configuration. 

This idea was first presented at Israeli IACAS 2017 conference [3] and formed the basis for 

our preliminary proposal submitted to CAAI and the ASSURE consortium in January 2017.   

The first proof-of-concept wind-tunnel test with a 2D model was performed at TUDelft in 

April 2017 [4].  The Technion team directed the test plan, participated in the 5-day test and 

processed the test results. 

 

A 3D wind-tunnel test was performed at Technion, with an existing model that was slightly 

modified for the PFM test [5].  The results of the two wind-tunnel tests in Refs. [4, 5] were 

reviewed and investing, and the PFM method was adapted to the specific parameters of the 

intended flight tests in the first part of the 1st year.  The second part of the 1st-year research 

was intended to include preliminary design and analysis of a flight-test vehicle, and an 

initial plan for the ground and flight tests, to be done at OSU.  However, since the official 

collaboration started only in October 2020, the OSU part was limited to the conceptual 

geometrical design of the wing only. Technion’s part was shifted towards basic normal-

modes and flutter analyses, conceptual design of the flight-test devices and preliminary 

ideal test simulations.  
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The delay in starting the OSU part of the project caused changes in the plans for the 2nd year 

of the project.  While some exchange of ideas regarding the intended shakers continued, the 

main method development activities were modified to prepare advanced tools for the 

detailed-design and flight-test stages that are expected in the project-continuation plan.  A 

significant delay was caused by the Corona-virus crisis, which caused the end of the 2-year 

program to be postponed by more than 6 months, until end of March 2021, with no change 

in the funding. The simulation tools were applied in the 2nd year mainly to the Technion’s 

Active Aeroelastic Testbed (A3TB) UAV [6], in preparation for the flight tests expected in 

the autumn of 2021.  This research is applicable to all types of fixed-wing air vehicle. 
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2 PFM method advancement 

2.1 Generalized parametric flutter margin (PFM) method 

Linear ASE dynamic stability analysis techniques are aimed at finding the flight conditions 

that define the flutter boundary, at which there is a nontrivial solution to the homogeneous 

aeroelastic frequency-domain (FD) equation of motion,  

    ( ) ( ) 0LA i x i  =           (1) 

where  ( )Lx i  is the FD vector of modal displacements, linear control-system states and 

actuator states,  ( )A i  is the closed-loop linear system matrix that includes the structural 

inertial, viscous and stiffness effects, the aerodynamic effects and the control-system ones. 

While common flutter solutions are based on finding the conditions at which 

( ) (0.,0.)A i = , the Parametric Flutter Margin (PFM) method is based on FRFs with a 

stabilizing flutter parameter, pf, added to the ASE system.  Flutter margins are defined by 

the factored value of pf that would cause flutter if removed from the modified system.  At 

the flutter boundary, this factor would be 1.0. 

   

The PFM method was first presented in [1] in its single-input-single-output (SISO) version, 

in which the selected pf must be such that its effects can be removed by a SISO control 

feedback.  In this report, we first deal with the more general multi-input-multi-output 

(MIMO) PFM version [2].  The combination of flutter onset velocity Vf, the associated 

flutter frequency f  and the respective flutter mode  ( )f fx i  that solves Eq. (1) 

characterizes the flutter boundary. The only constraint on pf is that it must be defined such 

that its effect on the FD equation of motion can be expressed by 

    

    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

fA i P B i C i x i B i u i

y i C i x i

     

  

 + = 

=     (2)
 

where the input and output vectors are of the same size.  It may be observed that the point 

(V,) at which there is an input vector  ( )fu i  that yields the output  ( )fy i  that 

satisfies  

   ( ) ( ) /f f fy i u i P =      (3) 

must be a flutter onset point, (Vf, f).  One may deduce this statement from the fact that 

Eqs. (3) and (2) yield Eq. (1).   The solution  ( )fx i  of Eq. (2) forms in this case a 
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nontrivial solution to Eq. (1), which is the flutter mode.  Eqs. (2) and (3), with the real-

valued fP  in Eq. (3) replaced by ( )1/ i  , yield the eigenvalue problem 

    ( ) ( ) ( ) ( )T i u i i u i    =
    

 (4)
 

where        
1

( ) ( ) ( ) ( ) ( ) ( )fT i C i A i P B i C i B i     
−

 = +  .   

 

The numerical process for finding a flutter onset point is: 

1. Define ranges of V and , and their increments. 

2. For each velocity, solve Eq. (4) for the eigenvalues ( )i i  . 

3. Plot the magnitude ( )iG    and phase ( )i   of ( )*i fi p  .    

4. Interpolate for ( )i pcoG    where pco  is the phase-cross-over frequency at which 

( ) 0i pco  = .  The system is stable when all ( ) 1.0i pcoG   . 

5. Plot the gain ( )i pcoG    and the frequency pco  vs. V. 

6. Interpolate for Vf , at which ( ) 1.0i pcoG  =  and extract f pco = .   

7. Solve for the flutter mode  ( )fx i  of Eq. (11) at (Vf, f).    

   

Flutter margins can be defined in two ways.  The first one is by the gain ( )i pcoG  , in [dB],  

( )20log ( ) [ ]i pcoPFM G dB= −      (5) 

that becomes 0dB when ( ) 1.0i pcoG  = . The second way is by the increment fP  that 

would bring the system to the flutter boundary 

( )
max

1/f f pcoP P   = −       (6) 

 

Unlike Equation (5), Eq. (6) can be applied with 0fP = , which implies that the eigenvalue 

analyses associated with different design parameters may be based on the same 

decomposition of the system matrix inversion  ( )A i .   This may be very helpful in design 

optimization with structural and control variables.  

 

As discussed below, the simplified SISO version of the PFM method may be more efficient 

in flutter and LCO analyses, various sensitivity studies and flutter tests.  The MIMO 

approach, however, may be of greater value in sensitivity analysis with respect to actual 

design variables.  Reference [2] presents a flutter perturbation study with respect to a factor 
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fP  that multiplies the mass matrix of a refuelling pod mounted near the GTA wing’s tip.  A 

single MIMO-PFM analysis is shown in [2] to provide the variations in the flutter 

characteristics for several flutter mechanisms over a selected velocity range.  The results 

are show in [2] to be practically identical to those obtained from numerous 

MSC/NASTRAN flutter runs. 

 

Another application of the MIMO-PFM method in [2] is for calculating classic “V-g plots” 

of the variations of aeroelastic frequency and damping vs. velocity, which may be very 

instrumental in certification documents and in comparing PFM results with classic ones.        

This is done by defining Pf as a structural damping coefficient.  With the modal 

displacements in  ( )x i  used as “sensors”, and the distribution matrices in Eq. (2) being 

[Bf(i)]=[I] and [Cf(i)]=i[Khh],  ( )A i  is supplemented with an extra modal damping 

matrix ipf[Khh].   The resulting Pf of Eq. (6) is the damping coefficient g needed to be 

added to the nominal system for making it neutrally stable, which agrees with the classic V-

g-plot concept. Figure 1 compares the MIMO-PFM results with those obtained with the 

commonly used p-k method. The same flutter point (at g=0) is obtained in both methods 

and the curve variations are similar. There are slight differences between the damping 

curves because the added g-related damping term in NASTRAN’s p-k application [7] 

involves the aerodynamic matrix as well.  

 

 

Figure 1: V-g plots computed by MIMO-PFM (solid) and p-k (dashed), taken from [2] 
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2.2 Linear SISO-PFM method 

When the flutter parameter is limited to those that can be expresses by SISO feedback 

loops, the incremental  ( ) ( )fP B i C i       matrix in Eq. (2) is now of rank1.  This 

facilitates a solution that is based on SISO dynamic response functions without resorting to 

eigenvalue analysis. Another important application of the SISO-PFM scheme is in 

performing safe flutter tests, as discussed in the following chapters.     

 

The input and output vectors in Eq. (2) become scalars in the SISO-PFM formulation,  

   

 

( ) ( ) ( ) ( )

( ) ( ) ( )

v f f f v f f

f f v

A i B P C i x i B u i

y i C i x i

   

  

 + = 

 =  

   (7) 

Where ( )vA i    is the original system matrix with all its actual control loops closed, when 

applicable.  It is easy to see that if the open control loop in Eq. (7) is closed by the SISO 

gain fP , such that 

 ( ) ( )f f fu i P y i =
      (8) 

we get the homogeneous equation  

   ( ) ( ) 0v vA i x i   = 
    

 (9) 

that yields a non-trivial solution at the flutter boundary when ( ) 0vA i = .  This implies 

that the interpolated velocity-frequency pair, for which Eq. (8) is satisfied, forms the flutter 

velocity Vf and the flutter frequency f. 

 

The selected fP , and the associated single output and single input parameters of Eq. (7), 

yield frequency response functions to sinusoidal inputs of amplitude ( ) 1.0fu i = .  The 

FRFs may presented as Bode plots by their gain and phase variations with frequency 

( )( ) 20log ( ) [ ]; ( ) ( ) [deg]f f f fG P y i dB P y i   =  =    (10) 

The original PFM method [1] used these gain and phase expressions as a basis for 

calculating flutter gain margins. The Bode plots are generated for selected points along a 

line in the flight envelop.  The points can be of various air velocities at constant altitude, 

and various altitudes along a constant Mach line.  In a search for non-match flutter 

conditions at constant altitude and Mach number, the phase function at each flight velocity 

is used for finding the associated phase-crossover frequencies co  at which 

( ) 360o

co n =  . The gains at these frequencies form the parametric flutter margins 
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( )pcoPFM G = − .  The velocity and phase-crossover frequency for which PFM=0dB are Vf 

and f .  The associated solution of Eq. (2) is the flutter mode  ( )fx i . 

 

The Dynresp framework provides for using a selected ASE response parameter, yf , which 

can be defined as a frequency-dependent linear combination of the system states and 

control inputs, as a “sensor”.   When the selected Pf  is an actual control gain, the stability 

analysis in Dynresp provides the standard Nyquist SISO control gain and phase margins 

[8], with aeroelastic effects of course.  

 

An alternative flutter margin, which may be more useful in flutter tests, is defined as the 

incremental flutter parameter fP  that, if added to the nominal system, would bring it to 

the verge of flutter.   This definition implies  

( ) ( ) / ( ) 1 ( ) / ( )f f f co f co f f f co f coP P y u P P u y   −  =   = −  (11) 

where ( )f cou   is not necessarily (1., 0.), to accommodate arbitrary input amplitude and 

phase in the test.    

 

An example of added flutter parameter fP  that can be practically used in the planned flutter 

flight tests is a concentrated mass located at a “good” place that increases the flutter 

velocity. It is assumed here that the mass effect of flutter is significant only in one 

direction, i.e. normal to the lifting surface.  An excitation uf force is applied applied at this 

location and a co-located acceleration measurement yf is taken, both in the effective 

direction. The PFM method is applied with these parameters, at selected flight velocities, to 

find 
co  and calculate the increment fP of Eq. (11).  This increment is now the added 

mass m  that would cause flutter at the selected flight velocity.  At flight conditions where  

fm P  , the tested configuration is stable.  However, the removal of fP m−   would make 

it unstable.  In this way, by testing a stable configuration, we can positively map the 

unstable regions of other configurations. 
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2.3 PFM Wind-Tunnel Flutter Tests  
 

The applicability of the PFM method for performing safe-flutter tests was demonstrated in 

two wind-tunnel tests performed in preparation for the current project. The first one [4] was 

performed on a 2D-proof-of-concept airfoil, where a simple wing section mounted on 

heave and pitch springs was tested (see Fig. 2). Motion stoppers allowed direct 

measurement of the flutter onset conditions by increasing the air velocity until flutter was 

observed. These conditions were then found by PFM, where a mass forward the elastic axis 

stabilized the system, and FRFs were generated by hammer hits. A load cell and an 

accelerometer added to the mass were used for measuring the excitation force uf(t) and 

mass acceleration yf(t). Using Fast Fourier Transform (FFT) the time signals were 

transformed to FD, and Bode plots of Eq. (10) were generated with the stabilizing mass as 

Pf. 

 

Figure 2: First wind-tunnel PFM-flutter test set up taken from [4]. 

The flutter-onset conditions obtained by the direct-flutter approach were Vf=22.7m/s and 

f=5.08Hz. Figure 3 shows three Bode plots obtained at 22m/s, 23m/s and 24.2m/s. It is 

clear that flutter is identified near 23m/s at about pco=5.1Hz, very close to the actual 

flutter conditions.  
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Figure 3:  PFM Bode plots [4]. 

The second PFM-flutter test used a more realistic 3D aeroelastic wind-tunnel model 

experiencing bending-torsion flutter [5]. The flexible clamped wing model is shown in Fig. 

4. The test is like the one in Ref. [4] in the sense that a mass located at the wing tip forward 

the elastic axis was used for stabilizing the system. The major differences between the tests 

(besides the model) is the excitation force and measurement equipment: while in Ref. [4] 

the force and acceleration at the mass location were measured, in Ref. [5] they were 

estimated from sensors at other locations.  

 

Figure 4: Elastic wing mounted in the wind tunnel, and location of the mass and accelerometers; taken 

from [5]. 
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The flutter-onset conditions obtained by performing risky direct flutter test were 39.8m/s 

and 13.2Hz. Figure 5 shows typical Bode plots of Eq. (10), and a moving average filter for 

smoothing the experimental data, for three different velocities, 38.2, 39.4 and 40.4m/s. The 

span of the moving average filter is five. These velocities are shown because, as indicated 

by the cross-over frequencies, pco, and the related FM values, the first curve (blue) 

indicates a positive flutter margin for the nominal system, the second one (red) indicates an 

almost zero margin, and the third one (black) exhibits a negative margin. Each curve has 

more than one phase-cross-over frequency in the frequency range of [3,20]Hz, but only the 

ones with lower FM need to be considered for calculating the flutter conditions. In spite of 

the scattered results due to the aerodynamic noise, it is clear that the system is stable at 

38.2m/s and unstable at 40.4m/s. It can be observed that, while the moving average filter 

smooths the Bode plots, the cross-over points are not significantly affected. 

 

Figure 5:  Experimental Bode plots for V=38.2, 39.4 and 40.4m/s [5]. 
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3. Conceptual design and flutter analysis of OSU vehicle 

3.1 Conceptual design 
 

The design concepts were discussed in a preliminary meeting held with Prof. Jim Gregory 

and Dr. Matt McCreenk of Ohio State University (OSU) at Technion, December 2018, at 

the SciTech conference in January 2020 and in Zoom meetings since.  OSU has a UAV 

with single electric engine to which they are going to replace the wing with a 3.3m-span 

flexible one.  It is planned to be a straight wing with two uniform spars on which 3D-

printed segments, wrapped by a transparent skin will be mounted.  The rest of the aircraft 

assumed rigid at this point.   

 

A general view of the planned test vehicle is given in Figure 6.  Each wing will be 

constructed with 8 segments.  There will be two types of segments shown in Figure 7.  Six 

of the segments will be without ailerons and 2 (No. 6 and 7 from the root) with ailerons. 

The two aileron segments will be interconnected and driven by a single actuator.  The tip 

pod will be designed to carry dummy masses that will cause the nominal flutter velocity to 

be in the flight envelop.  Shakers placed in a forward point of each tip pod will move the 

flutter velocity up and provide the excitation needed for identifying the nominal flutter 

velocity using the PFM method. 

 

Figure 6:  General view of the test vehicle 

  

Figure 7:  Two types of segments: without (left) and with (right) aileron. 
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Parasolid CAD files for the two types of wing sections were obtained from OSU.  The one 

with the aileron (Wing_Profile_RP_Aileron.x_t) is shown in Fig. 8.  The chord length is 

0.33m and the segment span is 0.2057m.  The local segment coordinate system is rotated 

about the X axis with respect to the main one of the finite-element model  (FEM) below.  A 

similar file was created for a segment without aileron (Wing_Profile_RP.x_t).  

 
Figure 8:  Parasolid CAD file of a wing section with aileron 

 

3.2  Detailed finite element model 
 

The Femap code was first used for constructing a detailed model that follows the CAD 

drawings while representing the actual structural parts by NASTRAN’s finite elements.  A 

general view of the detailed model is shown in Fig. 9.  It is based on more than 10,000 grid 

points that yield more than 60,000 DOF.   The tip pod is represented by a rigid beam along 

its center line.  Three different material properties are used:  Utlem 9085 for the CAD 

structure, OraCover Light for the wing cover and Aluminum for the two wing spars.  The 

element properties are given in Table 1.  The cross sections of the NASTRAN elements 

that represent the ribs, spars and leading-edge segments are given in Tables 2 to 4.   

 

Figure 9:  Detailed finite-element model 
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• ULTEM 9085: For the wing body  

 
• OraCover Light: For the wing skin  

 
• Aluminum : for the wing spars.  

 
Table 1:  Material properties 
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Table 2: Cross sections of forward and rear Ribs represented by BAR elements 

 

 
 

Table 3: Cross sections of ailerod-support BAR elements and leading-edge ROD elements 

 

 
 

Table 4: Nylon spars and columns around main aluminum spars 
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3.2  Compact finite element model 
 

The Femap-generated detailed model was used for constructing a compact model of 330 

grid points to be used in the preliminary design studies.  A general view of the reduced sets 

of grid points and interconnecting elements is shown in Figure 10.  The elements have the 

cross-section properties shown in Section 3.2 above.  The compact model does not have 

ailerons at this stage.  NASTRAN’s weight generator, indicating the model total mass 

properties, is given in Table 5, showing the total weight of 2.35Kg. 

 

 

Figure 10: General view of the compact finite-element model 

 

 

 
 

Table 5: Mass table of the compact model 
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3.3 Natural frequencies and normal modes 

 

The results of NASTRAN’s normal modes analysis, with the natural frequencies and the 

generalized mass and stiffness properties, are given in Table 6.  The mode shapes 

associated with the first 6 frequencies are shown in Figure 11.  

  

 
 

Table 6: Natural frequencies from normal-mode analysis 
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1. 1st wing bending 

 
 

2. 1st wing torsion 

 
 

3. Fore & aft wing bending 

 
 

4. 2nd  wing bending 

 
 

5. 2nd wing torsion 

 
 

6. 2nd fore & aft wing bending 

 
 Figure 11: Mode shapes, 1-6, in the structural grid 
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3.4 Conventional flutter analysis 

The ZAERO aeroelastic code was used for constructing the panel model for the wing 

shown in Figure 12.  The modal deflections of the previous section are projected to the 

aerodynamic model using the Infinite-Plate Spline (IPS) technique, based on the upper 

surface structural displacements.  The projected shapes of the first 4 modes are shown in 

Figure 13, demonstrating that the Spline projection is performed properly.    

 

Figure 12: ZAERO aerodynamic model 

 

1st wing bending    1st wing torsion 

 

 

1st fore & aft bending    2nd wing bending 

 

    

 

Figure 13: Normal modes in the aerodynamic grid 
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The conventional flutter analysis was performed using the g method of ZAERO using the 

first 10 modes of Table 6, with zero structural damping.  The significant aeroelastic 

interaction between the modes in the planned flight envelope is of the first 4 modes, up to 

40 Hz.  The variations of the aeroelastic frequency and damping coefficients with velocity 

are shown in Figure 14.  The flutter velocity, Vf, is at the first interpolated point where a 

damping branch crosses the zero line. The flutter frequency, f, is that of the corresponding 

branch in the frequency plot at Vf.  In our case, Vf, = 31.0 m/s and f = 9.2 Hz, as indicated 

by the red circles in Figure 14.  The flutter mode, {xf}, is the normalized solution of Eq. (1) 

with V=Vf  and =f.   

 

Figure 14: Variations of frequency and damping coefficient vs. velocity, the nominal model 

 

 

 

3.5 Flutter margin analysis 

The PFM method for flutter analysis is applied using the Dynresp code such that it forms 

that basis to the planned flutter flight tests.  The flutter parameter, Pf, is selected to be a 

mass term of 0.1Kg in the Z (vertical) direction, located at the tip-section, leading-edge 

grid point (386).  The added mass is applied in Dynresp by a SISO zero-order control 

system  that reads the selected acceleration, y, multiplies it by Pf, and closed the loop by 

u=Pf y to create the system matrix in Eq. (2).  These input and output are also kept open for 

calculating the PFM response of Eq. (2).   The Dynresp input file for the PFM analysis that 

calculated the resulting Bode plots, PFM plots and flutter characteristics, is given in Table 

7. 
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SOURCE  ZAERO 

AERDATA aerofiles.dat     Aero matrices 

STRMOD  struct.dat     Structural matrices 

CSDATA  moti_basic_v5-001.f06    NASTRAN output 

ENDINMAT 

 

TITLE   Assure Flutter 

$--1---><--2---><--3---><--4---><--5---><--6---><--7---><--8---><--9---><--10-->  

$ FIX = ALT, MARGIN TYPE = FLUTTER  

SUBCASE 1 

TIMESET 1        

STABLE  1 

DAMPING 100 

AEROSET 10   

FCS     1 

SMODES  4      4 modes only 

OUTRES          FORMAT                                                  + 

+                       FORMAT 

          

BEGIN BULK 

$--1---><--2---><--3---><--4---><--5---><--6---><--7---><--8---><--9---><--10--> 

MARGIN  1       FLUTTER 1       ALT     14                              VELS1 Const. alt. 

VELS1   10.     15.     20.     25.     27.     29.     31.     33.     VELS2 

VELS2   35.     37.     39.     41.     43.     45.     Velocities 

AERO    10      40.     1.225   L       7 

MKAEROZ 7       0.85    0.328961                                        REDF1 

REDF1   .0      0.01    0.02    0.03    0.04    0.045   0.05    0.055   + 

+       0.06    0.062   0.065   0.07    0.075   0.08    0.085   0.09    +  reduced 

+       0.1     0.12    0.125   0.13    0.14    0.15    0.2     0.25    +  frequencies 

+       0.3     0.4     0.5     0.6     0.7     0.8     0.9     1.0     + 

+       1.5      

TIMEF1  1       200     0.5     0.05          Frequency steps 

TABDMP  100                                                             + 

+       0.00    0.00    0.99    0.00    1.00    0.00    50.0    0.00      Struct. damping 

 

$ MARGIN "FCS" mass at Grid 368 

$--1---><--2---><--3---><--4---><--5---><--6---><--7---><--8---><--9---><--10--> 

ASECONT 1               110             300  

SENSET  110     11   

ASESNSR 11      2       368     3 

GAINSET 300     31  

ASEGAIN 31      11      1       24      1        .0 

CFORCE  24      368     3       1.0 

  

$ Assigning added mass as Flutter parameter 

GAINSET 1       310  

ASEGAIN 310     11      1       24      1         0.1  

 

ENDDATA 

 

Table 7: Dynresp input file for PFM analysis 

 
 

The Bode plots of gain and phase of the FD acceleration response to unit-amplitude (1N) 

force applied to the Z direction at the added mass location,  vs. frequency, at various 

velocities, are shown in Figure 15.  The phase vs. frequency plots in Fig. 15 are used for 

extracting the phase-cross-over frequencies for which the flutter gain margins are extracted.  

The resulting flutter margins (PFM) and phase-cross-over frequencies (WPCO) are plotted 

vs. velocity in Fig. 16.  The PFM=0dB point indicates the flutter velocity, with the added 

mass removed, and WPCO at this velocity is the flutter frequency.  The solution of Eq. (2) 

with V=Vf  and =f is the flutter mode {xf(if)}.  A comparison between the flutter 

velocities, frequencies and modes obtained by the ZAERO and Dynresp analyses is given 

in Table 8, showing practically identical results.  
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Figure 15: Bode plots of acceleration response to unit-amplitude force at the added mass.  

 

 

Figure 16: PFM plots: flutter margins and cross-over frequencies vs. velocity.  

 ZAERO DYNRESP 

 
31.0342 31.030 

 9.2108 9.1927 

 

1.0 0 1.0 0 

-0.2748 0.2562 -0.27203 0.25295 

-0.1352 0.1166 -0.13392 0.11520 

-0.01409 0.01072 -0.01399 0.01065 
 

Table 8: Flutter characteristics obtained by ZAERO and Dynresp. 
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4. Active Aeroelastic Aircraft Testbed (A3TB) 

4.1 Genral 

The A3TB student project model [9] was used in the 2nd year of the project as a test case 

for the development and application of the methodology for performing safe flutter tests 

using the PFM approach.  A general view of the vehicle and main dimensions are given in 

Figures 17 and 18.  This is a low-cost, experimental, flexible UAV, designed for aeroelastic 

research and technology demonstration. It is assembled from a fuselage, twelve 3D-printed 

wing segments and two main spars, one along each wing. General specifications are given 

in Table 8a. The UAV has eight trailing-edge control surfaces along the wings and it has an 

electric engine.   

   

 

 

Figure 17: General view of the A3TB vehicle 

 

 

Figure 18: A3TB geometry 
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Specifications: Value 

Weight 11 Kg. 

Sweep angle  

Washout torsion angle  

Wing span 3048 mm 

Aspect Ratio 8.4 

Chord length 295 mm 

Table 8a: A3TB specifications 

 

4.2 The structural model 

A finite-element model was constructed for the right side of the vehicle, with either 

symmetric or anti-symmetric boundary conditions applied to the grid points in the plane of 

symmetry.  A general view of the MSC/NASTRAN finite-element model of the right side 

of the vehicle, is shown in Figure 19.  The structural model was built in Siemens FEMAP 

finite-element editing software. The model is built from several types of simple elements 

such as: beams, bars, plates, and mass. The model materials are ULTEM 9085 plastic, 

Oracover light, T300 carbon fiber.  

 

 

   

 

Figure 19: Half-span structural model of A3TB and model properties 
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4.3 The aerodynamic model 

An aerodynamic panel model, shown in Figure 20, was constructed using the ZONA6 

module in ZAERO. The model is based on lifting surface panels that represent the wing 

with its four flaps that serve as both elevators and ailerons, and body panels that represent 

the fuselage. The aeroelastic analysis requires displacement and force transformations 

between the structural and aerodynamic models.  These transformations are based on 

Spline techniques: Infinite-Plate Spline for the lifting surfaces and Beam-Spline technique 

for the fuselage.  Modal displacements at structural grid points were exported for this 

purpose from Nastran's modal analysis to the aeroelastic analysis by the ZAERO code.  The 

grid points used for Spline are marked in Figure .  

 

Figure 20: Two views of the aerodynamic model 

 

 

Figure 21: The grid points used for Spline 
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4.4 Normal modes 

Normal modes were calculated for two mass configurations, the nominal one described 

above, and a modified one with a concentrated mass of 200 gram added at the forward 

point of the wing-tip section.  The second configuration will be used later to validate the 

PFM sensitivity analysis.  The resulting fundamental frequencies and mode descriptions are 

given in Table 9.  The respective symmetric and anti-symmetric mode shapes of the 

nominal configuration are shown in the aerodynamic grid in Figures 21 and 22. It may be 

noticed that the 1st symmetric mode reflects reflect (a) significant coupling between 

bending and torsion due to the rear CG of the outboard sections compared to the main spar; 

and (b) the small pitch moment of inertia of the fuselage compared to conventional air 

vehicles.  These couplings have significant effects of the flutter mechanisms described in 

Section 4.5. 

 

 

Mode 

Number 

 Symmetric 

Nominal 

  

Symmetric 

+200gr 

 
 

Description 

Anti-

symmetric 

Nominal 

 

Anti-

symmetric 

+200gr 

 

Description 

1 0.00 0.00 Rigid body 0.00 0.00 Rigid body 

2 0.00 0.00 Rigid body 0.00 0.00 Rigid body 

3 0.00 0.00 Rigid body 0.00 0.00 Rigid body 

4 6.80 6.67 1st bending 9.16 7.92 1st torsion 

5 9.85 8.55 F&A bending 17.76 17.16 1st bending 

6 11.32 9.20 1st torsion 21.86 21.10 F&A bending 

7 19.12 19.11 2nd bending 26.24 25.68 2nd bending 

8 29.83 28.71 2nd torsion 28.95 25.97 2nd torsion 

Table 9: A3TB fundamental natural frequencies  



 31 

 

6.80 Hz., 1st bending     9.85 Hz., F&A bending 

 
11.32 Hz. 1st torsion      19.12 Hz., 2nd bending 

 
 

Figure 21 Symmetric normal modes 4-8 

 

 

        19.16 Hz., 1st torsion            17.76 Hz., 1st bending 

 
                     21.86 Hz., F&A bending         26.24 Hz., 2nd bending 

 
 

Figure 22: Anti-symmetric normal modes 4-8 
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4.5 Flutter analysis using ZAERO 

Open-loop flutter analyses was performed using the g-method option of the ZAERO 

software package, assuming 2% structural damping with the 8 modes of Table 8 considered 

in each case.  The symmetric and anti-symmetric V-g plots of the nominal configuration 

are given in Figures 23 and 24 respectively. The respective V-g plots of the “+200gr” 

configuration are shown in Figures 25 and 26.  The resulting flutter characteristics are 

summarized in Table 9a. 

 

Configuration 
Boundary 

conditions  

Flutter 

velocity (m/s) 

Flutter frequency 

(Hz.) 

Flutter mechanism Figure 

Nominal  
Sym 24.48 8.49 Wing torsion-bending 23 

Anti 26.27 6.36 Wing torsion-roll 24 

+200 gr 
Sym 25.90  7.21 Wing torsion-bending 25 

Anti 32.10  5.56 Wing torsion-roll 26 

Table 9a: A3TB Flutter characteristics 

 

It can be observed that the lowest flutter velocity in both configurations is symmetric.  

While the symmetric flutter mechanism is of a classic torsion-bending interaction, the anti-

symmetric one is of the interaction of wing torsion and rigid-body roll, a mechanism that is 

often called “body-freedom flutter”.  In both mechanisms, the added mass increases the 

flutter velocity, as forward-located masses often do.   

 

It may also be noticed that the critical torsion-bending mechanism in Figure 23 turns in 

Figure 25 into a more moderate “hump-mode” flutter, namely with the damping branch 

crossing the zero line back to the stable zone.  However, the flutter velocity increase is only 

6% even though the 200-gram mass increase is quite significant with respect to the ~5Kg 

half-aircraft weight.  A more thorough sensitivity study is conducted in the next section.  
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Figure 23: A3TB nominal symmetric flutter results 

   
Figure 24: A3TB nominal anti-symmetric flutter results 

   

Figure 25: A3TB with 200-gram wingtip mass symmetric flutter results 

   

Figure 26: A3TB with 200-gram added mass anti-symmetric flutter results 
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4.6 Flutter sensitivity to varying mass using Dynresp 

Flutter sensitivity analysis was performed, using the Dynresp code, to identify the best size 

and location for the added mass in PFM flutter tests.  As a first step, the +200gr dynamic 

model of Section 4.4, with the added 200 grams at the forward point of the wing-tip section 

(GRID 29880), served as a baseline model. This point is marked at No. 1 in the structural 

grid plot in Figure 27.   

 

Figure 27:  Structural grid points with added mass locations 

 

To prepare the symmetric modal and the unsteady aerodynamic data needed for the 

Dynresp run, the symmetric 200gr ZAERO run was repeated with OUTPUT4 cards of 

Table 10 added to export the generalized mass, stiffness and aero matrices, MHH, KHH 

and the 31 QHH(ik) matrices, to the MTR folder.   

$--1---><--2---><--3---><--4---><--5---><--6---><--7---><--8---><--9---><--10--> 

OUTPUT4 QHHS0101MTR/QHHS0101.DAT       

OUTPUT4 QHHS0102MTR/QHHS0102.DAT       

OUTPUT4 QHHS0103MTR/QHHS0103.DAT       

OUTPUT4 QHHS0104MTR/QHHS0104.DAT       

OUTPUT4 QHHS0105MTR/QHHS0105.DAT       

OUTPUT4 QHHS0106MTR/QHHS0106.DAT       

OUTPUT4 QHHS0107MTR/QHHS0107.DAT       

OUTPUT4 QHHS0108MTR/QHHS0108.DAT       

OUTPUT4 QHHS0109MTR/QHHS0109.DAT       

OUTPUT4 QHHS0110MTR/QHHS0110.DAT       

OUTPUT4 QHHS0111MTR/QHHS0111.DAT       

OUTPUT4 QHHS0112MTR/QHHS0112.DAT       

OUTPUT4 QHHS0113MTR/QHHS0113.DAT       

OUTPUT4 QHHS0114MTR/QHHS0114.DAT       

OUTPUT4 QHHS0115MTR/QHHS0115.DAT       

OUTPUT4 QHHS0116MTR/QHHS0116.DAT 

OUTPUT4 QHHS0117MTR/QHHS0117.DAT 

OUTPUT4 QHHS0118MTR/QHHS0118.DAT       

OUTPUT4 QHHS0119MTR/QHHS0119.DAT       

OUTPUT4 QHHS0120MTR/QHHS0120.DAT       

OUTPUT4 QHHS0121MTR/QHHS0121.DAT       

OUTPUT4 QHHS0122MTR/QHHS0122.DAT       

OUTPUT4 QHHS0123MTR/QHHS0123.DAT 

OUTPUT4 QHHS0124MTR/QHHS0124.DAT 

OUTPUT4 QHHS0125MTR/QHHS0125.DAT       

OUTPUT4 QHHS0126MTR/QHHS0126.DAT       

OUTPUT4 QHHS0127MTR/QHHS0127.DAT       

OUTPUT4 QHHS0128MTR/QHHS0128.DAT       

OUTPUT4 QHHS0129MTR/QHHS0129.DAT       
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OUTPUT4 QHHS0130MTR/QHHS0130.DAT 

OUTPUT4 QHHS0131MTR/QHHS0131.DAT 

 

OUTPUT4 SMHH    MTR/SMHH.DAT 

OUTPUT4 SKHH    MTR/SKHH.DAT 

Table 10:  Generalized aero and structural matrices for Dynresp flutter analysis. 

 

The list of Table 10 was also written in the respective aerocards.dat and 

struct.dat files for use by Dynresp. The A3TB_V4_chopped_fin_sym_ 

200gm.f06 NASTRAN file with the modal displacements of the structural sensor points 

was also generated for use by Dynresp.  The Dynresp .inp file for flutter analysis is given in 

Table 11.  The ZAERO- and NASTRAN-generated data served as inputs to the Dinresp 

flutter run.  The ASEGAIN 31 card implies that the flutter parameter Pf is in our case and 

additional mass of 0.2Kg at Point 1, with which Eq. (7) is solved for the frequency 

response function (FRF), yf(i), of the local acceleration to the applied local unit force, 

uf(i)=(1.,0.), both in the Z direction. 

 

SOURCE  ZAERO 

AERDATA aerocards.dat 

STRMOD  struct.dat     Input data files 
CSDATA  A3TB_V4_chopped_fin_sym_200gm.f06   
ENDINMAT 

TITLE   A3TB Pf=200gr at wing tip fwd 

$--1---><--2---><--3---><--4---><--5---><--6---><--7---><--8---><--9---><--10-->   

SUBCASE 1 

TIMESET 1      refers to TIMEF1 card 

STABLE  1     refers to MARGIN card 

DAMPING 20     refers to TABDMP card 

AEROSET 1          refers to AERO card 

FCS     1     refers to ASECONT card 
OUTRES                                                                  + 

+                       FORMAT   requests .f118 output file 
 

BEGIN BULK 

  

MARGIN  1       FLUTTER 100     ALT     23                              +FIX0 

+FIX0   5.0     10.0    15.0    20.0    21.0    21.5    22.0    22.5    +FIX1 

+FIX1   23.0    23.5    24.2    24.5    25.0    25.5    26.0    27.5    +FIX2 

+FIX2   29.0    30.0    31.0    32.0    33.0    34.0    35.0    

       

$--1---><--2---><--3---><--4---><--5---><--6---><--7---><--8---><--9---><--10--> 

AERO    1       30.     1.225   L       1000 

MKAEROZ 1000    0.15    0.3                                             +MK1 

+MK1    0.005   0.01    0.02    0.03    0.04    0.05    0.06    0.08    +MK2 

+MK2    0.1     0.11    0.12    0.13    0.14    0.15    0.16    0.17    +MK3 

+MK3    0.18    0.2     0.3     0.4     0.5     0.6     0.7     0.8     +MK4 

+MK4    1.0     1.5     2.0     2.5     3.0     5.0 

  

TIMEF1  1       200     3.0     0.05 

$--1---><--2---><--3---><--4---><--5---><--6---><--7---><--8---><--9---><--10--> 

$ “control system” that defines acceleration sensor, gain (added mass) and  

$ feedback force. 

ASECONT 1               180             910      

SENSET  180     101      

ASESNSR 101     2       29880   3 

GAINSET 910     30 

ASEGAIN 30      101     1       300     1       0.0 

$ selected gain that defines the Pf parameter (additional 200grams).  This gain  

$ is not included in the control feedback. 

GAINSET 100     31         referred by MARGIN card      

ASEGAIN 31      101     1       300     1       0.2  referred by GAINSET 100 card      

CFORCE  300     29880   3       1.0    referred by ASEGAIN cards      
ENDDATA 

Table 11:  Dynresp input file for flutter analysis. 
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The FRFs yf(V;i) were calculated in Dynresp for selected air velocities between 24 and 

35m/s. Cross-over frequencies, 
co , at which ( )( ) 360o

fy i n =  =  , and the 

corresponding gains yf(co), which are positive real numbers, were used for calculating 

fP  of Eq. (11), were calculated for each velocity.  In our case,  fP  is the mass increment 

m  needed to cause the current velocity to become a flutter-boundary point Vf. Every 

velocity may yield several cross-over frequencies that correspond to different m values 

associated with different flutter mechanisms.   

 

The variations of  fm P =   and cof =  with air velocity, corresponding to all the 

velocity point at which one or more phase-cross-over frequency points exist, are shown in 

Figures 28 and 29 for symmetric and antisymmetric flutter respectively.  Since the baseline 

NASTRAN model in this case is with +200gr, the corresponding flutter velocities are those 

at which a m  branch crosses the zero line. These velocities, and the corresponding flutter 

frequencies are compared to the ZAERO results in the “+200 gr” lines of Table 12, 

demonstrating practically identical results.   

 

    

Figure 28: A3TB Dynresp symmetric flutter V-Delta and V-f plots, starting with +200gr. 

       

Figure 29: A3TB Dynresp anti-symmetric flutter V-Delta and V-f plots, starting with +200gr. 
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  ZAERO Dynresp (SISO) 

Case Symmetry 
Flutter velocity 

(m/s) 

Flutter frequency 

(Hz.) 

Flutter velocity 

(m/s) 

Flutter frequency 

(Hz.) 

Nominal  Sym 24.48 8.49 25.02 (24.46) 8.41(8.49) 

+200 gr   25.90  7.21  25.84 7.21 

Nominal  A-Sym 26.27 6.36 26.22 (26.25) 6.37 (6.38) 

+200 gr  32.10  5.56  32.03 5.57 

Table12: Flutter velocities and frequencies in ZAERO and Dynresp 

 

The plots in Figures 28 and 29 also reveal the flutter sensitivity to variations in m , this 

time starting from the “+200 gr” configuration.  The flutter velocities and frequencies expected, for 

example, for the nominal structure are those at which a m  branch crosses the -0.2 line.  

The resulting symmetric flutter characteristics are fV =25.02 m/s, f =8.41 Hz.  As shown 

in the “Nominal” lines of Table 12, these results are not as accurate as the +200gr ones, but 

we need to realize that: (a) the two sets of nominal results are calculated with different 

modes; and (b) the used SISO-PFM method allows the removal of mass in one direction 

only (obviously, we removed the mass in the Z direction).  

 

Rerun of Dynresp with the nominal modes imported from NASTRAN (without the 200 gr) 

and with Kg resulted in practically identical results to ZAERO.  The m  and 

frequency plots are given in Figures 30 and 31.  The results are similar to those of Figures 

28 and 29, shifted 0.2Kg up due to the wingtip mass difference between the two 

configurations.  The flutter results are given in parenthesis in the “Nominal” lines of Table 

12.  Despite the slight difference of the symmetric results, sensitivity analyses performed in 

a single run, with one set of NASTRAN modes, are considered adequately accurate for 

design purposes.  Figure 30 reveals, for example, that an addition of more than 250 grams 

at Point 1 increases the flutter velocity from 24 to more than 33m/s with the flutter 

frequency reduced to about 5Hz.  With less than 80 grams the flutter velocity is reduced, 

and with 80 to 250 grams the flutter velocity is increased up to 29m/s. 
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Figure 30: Case1 symmetric flutter V-Delta and V-f plots 

     

Figure 31: Case1 anti-symmetric flutter V-Delta and V-f plots 

  

 

4.6 Optimal shaker location 

The optimal shaker location for safe flutter tests depends on its effectivity (per mass) in 

increasing the flutter velocity and in the resulting local vibration level.  There are of course 

other practical considerations such as geometric limitations, accessibility and shaker 

availability that we ignore at this stage.   

 

To demonstrate a search for optimal location, we repeated the sensitivity analysis of 

Figures 30 and 31 for six other locations marked as 2 to 7 in Figure 27, naming the 

sensitivity cases as Case 1 to Case 7.   The resulting symmetric and antisymmetric m vs. V 

plots are first converted, for convenience into Vf  vs. m plots, considering the positive 

mass increments only.  The resulting flutter sensitivity plots for Cases 1 and 2 are given in 

Figure 32.    
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  Case 1      Case 2 

 

Figure 32: Flutter velocity vs. added mass, Cases 1 and 2 

 

The results of interest in Figure 32, for highest mass effectivity, are of the smallest flutter 

velocity at each m.  The assembly of these points in Cases 1 through 7 is shown in Figure 

33.  It can be deduced that the most effective added mass locations, for obtaining highest 

minimal flutter velocity, are Points 1 and 7.  Point 7 (middle of the tip-section chord) is 

most effective for total shaker weight of up to 0.22 Kg, and Point 1 (leading edge of tip 

section) is most effective with a higher shaker wight.  The mass at Point 7 reduces the 

flutter velocity by simply reducing the bending frequency without changing the torsion one.  

The mass at Point 1 reduces both frequencies, but also changes the bending-torsion 

coupling in a manner that is very effective with high added mass values. 

   

 

Figure 33: Lowest flutter velocity vs. added mass, Cases 1 through 7 
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4.7 Validation of case 1 results with output responses (.f58) 

 

The FD output response  to an unit input is provided in the .f58 output file for each 

subcase of the STABLE analysis type. The output is measured here at the accelerometer 

attached to point 29880 and the input is a 1N sinusoidal excitation to the mass of 0.4 Kg 

located at the same point 29880. Since the output is for unit input, the gain and phase of the 

frequency response can be obtained as, 

      (12) 

The phase-cross-over frequency is the frequency at which phase becomes zero. Thus, 

( )arg ( ) 0f coy  = . The corresponding real-valued frequency response, ( )f coy  , can be 

used to obtain the incremental m= Pf to obtain flutter at the current velocity point.  Here, 

we are repeating our earlier analysis in section 4.5. So, we expect to get the same results. 

The comparison of the and cross-over frequencies at various velocities in the symmetric 

case are shown in Figures 34. The results match exactly those of Figure 30, but now we 

have some extra points, with m>0.4, that were not obtained in Figure 30.  These points 

correspond to ( ) 0f coy    range that is not considered in the flutter boundary search of 

Dynresp.  It may be noticed that there is some irregularity in the m plot, when m crosses 

the 0.4 line, because the system matrix in Eq. (7) is singular at this point.  Still, the results 

indicate that good results may be obtained near this singularity.  These comparisons serve 

as a validation of the Matlab analysis tool used in the flutter margin calculations of the 

following section. 

 

        

Figure 34: Case 1 symmetric, comparison of m and phase-cross-over frequencies 
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4.8 Flutter margins with atmospheric turbulence noise  

Here, we intend to perform a stability analysis in presence of atmospheric turbulence by 

analyzing the accelerometer responses of the wing with a shaker of fixed mass attached to 

it. This analysis is expected to provide results analogous to a flight test performed in 

presence of atmospheric turbulence. This is done in three steps. First the output responses 

of a wing with the fixed shaker mass attached is obtained in clear air conditions. Then, a 

continuous gust excitation is applied to it resembling the atmospheric turbulence. Finally, 

assuming that the system is linear, the output responses of to the structure in clear air is 

added to that obtained due to the gust excitation. This is analyzed for the phase cross-over 

frequencies and the m values. 

 

The analysis is performed like Section 4.7 but with a 300 grams mass ( ) instead of 

 in the earlier case, to simulate an actual flight with 300 grams added, which has 

been shown to be sufficient in the Section 4.5. m and 
co  vs. air velocity are shown in 

Figure 35. These results are very similar to those presented in Figure 34 for . This is 

expected since there are no structural or aerodynamic changes in the two cases, except that 

the singularity of Eq. (7) is now at about 33m/s, when m crosses the 0.3 line.  

   

Figure 35: m and phase-cross-over frequencies for Pf=0.3 Kg 

 

The effects of air turbulence are investigated below at V=30m/s, which is now a stable 

point. The gains and phases of the response due to a unit input are also shown in Figure 36. 

The gain plot indicates two aeroelastic frequencies at about 6 and 7 Hz., that relate to the 

coupled bending and torsion modes that get closer with increased velocity.  The phase plot 

indicates two cross-over frequencies at 6.85 Hz. and 9.66 Hz. The gains at these values 

( ( )f coy  ) are 17.47 m/s^2 and 2.05 m/s^2, respectively.  These points correspond to the 
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m and f points at V=30m/s in Figure 35, with the one at 6.85 Hz. reflecting the critical 

flutter margin.     

    

Figure 36: Gain and phase of the response due to a unit sinusoidal input, V=30m/s, no noise 

 

Before adding turbulence noise to the excitation response of Figure36, the response of the 

system to an input signal of von-Karman’s PSD with an upward induced gust velocity of 5 

ft/s was obtained using Dynresp. This is probably larger than a calm test day, but the linear 

output response can be normalized later.  The absolute response and phase of the output 

response is with frequency is shown in Figure 37. It can be observed that the structural 

response peaks are like the ones on Figure 36.  The high response at low frequencies is due 

to the atmospheric turbulence characteristics.  The total disorder of the phase plot in Figure 

37 is due to the random phase associated with the gust excitation signals in Dynresp. 

      

Figure 37: Gain and phase of the response due to 5 ft/s gust input 

 

In order to analyze the system stability in presence of atmospheric turbulence, the system 

responses, , due to the von-Karman PSD input, Figure 37, were scaled down by a 

normalization factor N and added to the system response, , due to the unit sinusoidal 

input in Figure 36. Thus, the modified system response,  can be written as,  

ym= ys+Nyg        (13)  
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A normalization factor N=0.1 was selected here, which is expected to resemble the 

turbulence on a calm day. The gain and phase of  are shown in Figure 38, for a frequency 

range of 3-12.8 Hz. From the gain plot one can still see the two fundamental aeroelastic 

frequencies. From the phase plot, one cross-over is observed at 6.86 Hz., which is 

practically identical to the ideal one in Figure 35.  The second phase cross-over of the 

modified system response is difficult to detect because of several fluctuations near zero 

phase around 10 Hz. However, this is not the critical flutter mechanism we need to follow 

in flight tests.  The m value extracted from Figure 38 at 
co =6.68 Hz. is about 0.24 Kg, 

which is very close to the positive m value at V=30m/s in Figure 35. 

 

It may be concluded that, even though the gust excitation added significant fluctuation to 

the system, the main flutter margins could still be extracted with an adequate accuracy.  

This of course is yet to be verified in flight tests. 

 

       

Figure 38: Gain and phase of the modified system response, 0.3Kg, with noise 
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5. Preliminary shaker selection  
 

The preliminary voice-coil shaker of Figure 39, which may be adequate for the frequency 

range of 5-15Hz with resulting force of ~2,5N, was selected by OSU based on our 

preliminary specifications.  The overall height is ~2.75”, and 1” in diameter: 

http://www.moticont.com/HVCM-025-038-003-02.htm.  The moving mass is 98g and the 

coil is 35g, including an accelerometer in each part, for the total weight of 133g. The 

design currently has 1 accelerometer on the moving mass, and one on the boom attached to 

the wing.   

 
Figure  39: Voice-coil shaker 

 

A driver and closed-loop controller to provide excitation, resulting in the theoretical 

response curves for the moving mass at 12 Hz shown in Figure 40, was designed.  By 

changing the position and frequency commands, a constant resultant force which is 

independent of excitation frequency (constant power spectra) can be designed. The housing 

was designed to support the shaker and allow us to reposition it along the chord of the 

wing.  The assembly in the tip pod is depicted in Figure 41. 

 
Figure  40: Acceleration and position response to 12 Hz excitation 

 

http://www.moticont.com/HVCM-025-038-003-02.htm
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Figure  41: Preliminary shaker location in the tip tip pod 

 

 

 

6. Flight-test conceptual plan 

 

The logics of the planned flutter flight tests will follow those of the PFM flutter analysis in 

the previous section.  Voice-coil shakers will be symmetrically installed at forward 

locations in the wing-tip pod, near Point 1 in Figure 27.  The masses of the shakers itself 

will serve as the flutter parameter Pf.  The effects of the added masses and the excitation 

forces to the other directions are assumed to be negligible.  The added mass at forward 

location increases the flutter velocity, such that the flights up to the nominal flutter 

velocity, and beyond, will be safe.  If we will find that the nominal flutter velocity is not in 

the available velocity range, we will reduce it by adding masses at rear locations of the tip 

pods.   

 

The tip-pod shakers is being designed to provide adequate sinusoidal excitation levels in 

the range of 5 to 12 Hz.  Accelerometers will be installed to extract the excitation forces 

and the resulting accelerations in the Z direction. The shakers will be synchronized to 

produce either symmetric or anti-symmetric excitations. Alternatively, addition and 

subtraction of the tip signals will provide the respective symmetric and anti-symmetric 

signals, allowing separate respective PFM investigations.  The possibility of using one 

shaker only,  which may reduce the test cost and/or increase safety, will also be 

investigated. 
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The flight tests will be conducted by performeing straight and level constant-velocity 

exercises with sinusoidal excitation sweeps.  Fast Fourier Taransforms (FFT) of the filtered 

signals will facilitate the extcaction of the refequency-response plots, as in Fig. 15 above, 

and the resulting PFM plots, as in Fig. 16.  Crossing the PFM=0dB point will indicate that 

we crossed the flutter onset velocity of the nominal vehicle (without the shaker masses).  

Alternatively, FRF plots as in Figure 36 will be generated and m and frequency plots will 

be extracted as in Figure 35. 

 

The test can be stopped at this point, after recording the deformation sensors located over 

the aircraft (combinations of fiber optics and accelerometers) for extracting the flutter mode 

shapes.  Obviously, the Bode and PFM plots will not be as smooth as in Figs. 15 and 16, 

but noisier such as in Figure 38.  Signal processing for facilitating adequate evaluation of 

the flutter characteristics, keeping high safety levels, will be a major challenge.  

 

 

7. Conclusions 
 

1. The results of the proof-of-concept wind-tunnel tests were found to be very 

encouraging, forming sound baseline procedure for the current research. 

2. The PFM method formulation was adapted to experimental application and has been 

demonstrated to yield a promising test procedure that will positively identify 

approached flutter conditions in a safe manner.  

3. The main experimental device yet to be demonstrated in actual PFM test is an on-board 

shaker to be installed such that it increases the flutter velocity and used to identify the 

nominal flutter conditions, as demonstrated in the ideal test simulation, and the one 

contaminated by air turbulence, as presented in this report.   
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