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Executive Summary

The integration of Unmanned Aircraft Systems (UAS) into operational scenarios for first responders,
particularly in rural or low population density areas, represents a significant advancement in rapid response
and assessment capabilities. However, the effectiveness of these systems relies on robust Command and
Control (C2) communications and reliable Global Positioning System (GPS) signals, which are crucial for
operational safety and precise navigation. This project undertakes a comprehensive approach to document
C2 communications (using the 4" Generation Long-Term Evolution communication system) and GPS
navigation for UAS, focusing on three key areas: cellular coverage mapping, GPS signal quality assessment,
and a review of the existing localization techniques in GPS denied environments.

1. Cellular Coverage Mapping:

The project's first objective is the development of a comprehensive map displaying cellular coverage from
the four major service providers (Verizon, AT&T, US Cellular, and T-Mobile) across the 50 states of the
USA, starting from ground level up to 4001t in receiver altitude. A modified version of the open-source RF
Signal Propagation, Loss, and Terrain (SPLAT!) analysis tool was utilized, enhanced with multi-threading
capabilities and high-resolution terrain data for accurate simulation. These simulations are meticulously
compared against the FCC's 4G LTE coverage map, which serves as a benchmark, to ensure precision. By
calibrating simulation parameters based on this comparison—adjusting the antenna height, ERP value,
operating frequency, signal threshold, etc.—the project produces a detailed coverage map that helps
operators identify regions with adequate service to maintain uninterrupted command and control
capabilities for effective UAS deployment.

2. GPS Signal Quality Mapping:

The second component of the project involves creating a dynamically updating map of GPS signal quality
across all 50 states. This map is particularly vital for navigation and precise positioning of UAS, especially
in environments where GPS signals may be obstructed or weakened by geographical features. The GPS
coverage map is generated using the latest satellite data (updated hourly) and accounts for terrain-induced
signal blockage, providing a realistic overview of signal availability. This dynamic tool assists operators in
real-time to adapt flight plans and operations according to the varying strengths of GPS signals across
different regions.

3. Review of Alternative Location Technologies:

Recognizing the limitations of GPS in certain scenarios, the third focus of the project is a literature review
on alternative technologies that can provide precise location information where GPS signals are inadequate.
This review covers a range of emerging and established technologies, such as terrestrial-based technologies
like LIDAR, and Al-based methods. The aim is to explore and evaluate these alternatives to supplement or
replace GPS in scenarios where it fails to meet operational needs.

In summary, the research aims to fortify the foundational communication and navigational infrastructures
required for effective deployment of UAS by first responders in challenging environments. By mapping
cellular and GPS coverage and reviewing potential alternative technologies, the project supports safer, more
reliable, and efficient UAS operations, thereby enhancing the capabilities of first responders in critical
scenarios.
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Introduction

Command, Control, and Navigation are critical functions for any Unmanned Aircraft System (UAS). These
tasks become even more critical for first responders that operate in rural regions, or regions with low
population density. Such scenarios can be significantly enabled by an accurate understanding of the coverage
for command and control as well as the strength of Global Positioning System (GPS) signals in regions of
prospective UAS flight. To assure reliable flight planning, particularly in rural areas of the country, this
project combined three tasks: (1) develop a map to display cellular coverage for the major providers, (2)
develop a dynamically changing map of GPS signal quality, and (3) perform a literature review of techniques
that may be used to provide precision location information in regions with insufficient GPS signal strength.

4G LTE Coverage

Complex Factors Influencing Signal Propagation in UAS Communication Systems

In determining coverage for communication systems, especially for UAS, a range of environmental and
technical factors can significantly impact signal effectiveness. While standard models typically focus on
quantifiable elements like signal strength and terrain, other critical factors such as foliage, multipath
interference, and the impact of building materials also play substantial roles, yet they are often not
accounted for in primary analyses.

Foliage, for instance, contributes to signal attenuation through absorption and scattering of radio waves,
especially in frequencies used by Long-Term Evolution (LTE) and other cellular communications. The
density, type, and water content of vegetation can all influence signal reduction and coverage area.
Similarly, multipath interference, arising from signal reflections from various surfaces like buildings and
mountains, can lead to signal fading or connectivity loss, particularly in urban or complex topographic
settings. Moreover, the construction materials of urban buildings can either absorb or reflect Radio
Frequency (RF) signals, impacting signal propagation. Dense materials like concrete or brick can notably
weaken RF signals, affecting coverage inside buildings and in their proximity.

These factors are omitted from the primary analyses in this work because of the complexity and variability
they introduce into signal propagation models. Incorporation of elements like foliage density or specific
building materials requires detailed, site-specific information that is difficult to obtain. Additionally, the
dynamic nature of these factors, like seasonal changes in vegetation or urban development altering the
existing environment, adds to the modeling challenge. Consequently, standard models usually prioritize
more stable and measurable factors like terrain and signal strength, aiming for a balance between accuracy
and practical applicability in coverage assessments.

In addition to these factors, the Doppler effect is another consideration. This phenomenon, observed when
there is relative motion between the transmitter and the receiver, results in a change in the frequency of the
received signal compared to the transmitted one.

When a UAS moves towards a transmitter, a positive Doppler shift is observed, meaning the observed
frequency is higher than the transmitted frequency. Conversely, when moving away from the transmitter,
the observed frequency decreases (negative Doppler shift). This shift can significantly impact
communication system performance.
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To see how fast a UAS would need to fly to experience a 1% shift in the carrier frequency, the Doppler
effect formula for electromagnetic waves can be used:

e ()

ctv

Where:

f': is the observed frequency.

e f:is the transmitted frequency (carrier frequency).

e c:is the speed of light.

e v: is the velocity of the receiver relative to the source (the speed of the UAS).

For a 1% shift, f' would be either 1.01f or 0.99f, depending on whether the UAS is moving towards or away
from the transmitter. Considering a carrier frequency of 2GHz, to experience a 1% increase in the carrier
frequency due to the Doppler effect, a UAS would need to fly at an extremely high speed of approximately
3,030,303 m/s, or 10,909,090 km/h towards the source of the signal. This speed is extraordinarily high and
far beyond the capabilities of any current UAS or aircraft. Such a Doppler shift is not feasible for UAS
operations. This calculation highlights the fact that while the Doppler effect is a critical consideration in
high-speed scenarios, such as in satellite communications or deep-space probes, its impact on UAS is
negligible at typical operational speeds and is neglected for this analysis.

Comparative Analysis of Throughput Requirements in Manual and Automatic Unmanned
Aircraft Modes

Upon a comparative analysis of Table 1 and Table 2, which present the estimated non-payload throughput
requirements for a single Unmanned Aircraft (UA) in both manual and automatic modes, several insights
emerge regarding communication demands during various flight phases.

In manual mode, as depicted in Table 1, the throughput requirements are notably higher across all
communication links. This is particularly evident during the descent/landing phase, where the maximum
throughput reaches 3,322 bytes/sec (or, 26,576 bits/sec). This peak value represents the worst-case scenario
for throughput, demanding substantial data transmission to maintain control, navigation, and coordination.
The heightened requirement is attributed to the pilot's need for increased data to manually manage the UA,
coupled with the critical nature of the descent phase which necessitates heightened communication for
safety and navigational precision.

On the other hand, Table 2 outlines a different profile for automatic mode operations. Here, the demand on
the Command and Control (C2) link is significantly reduced, reflecting the UA's autonomous capabilities
which require less intervention from the ground pilot. The most demanding phase in automatic mode shows
a total throughput of 2,077 bytes/sec (or 16,616 bits/sec), substantially lower than its manual equivalent,
emphasizing the efficiency of autonomous systems in reducing bandwidth requirements.

In essence, this analysis highlights the importance of communication systems capable of supporting the
high data throughput required for manual UA operations, particularly during critical flight phases. The
disparity between manual and automatic modes highlights the impact of autonomous systems on
communication needs. Ensuring that communication systems are equipped to handle these peak demands
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is crucial for the operational integrity and safety of UA flights, with the worst-case scenario of 3,322
bytes/sec (or 26,576 bits/sec) in manual mode serving as a standard for system performance requirements.

Table 1: Estimated Non-Payload Throughput Requirements (bytes/sec) of a Single Unmanned Aircraft in Manual
Mode. Data from [1].

C2 Link - Aircraft ATC Total
Flicht Phase Forward VS. Aircraft | Control Voice Target Throushput
& / Return | Air/Gnd. | Control ar Rela Data b tesg/si
RF Link Navaids y y
Forward | C2 Link 115 188 600 N/A 903
Departure and Link | A/GLink | 297 465 1144 | N/A 1906
Arrival (Takeoft/ -
. Return C2 Link 405 265 600 600 1870
Climbout) )
Link A/G Link 957 460 1144 695 3256
Forward | C2 Link N/A 199 600 N/A 799
Transit/Extended Link A/G Link N/A 385 1144 N/A 1529
Operations Return C2 Link N/A 329 600 600 1529
Link A/G Link N/A 544 1144 695 2383
Forward | C2 Link 390 276 600 N/A 1266
Departure and Link | A/GLink [ 946 476 1144 | N/A 2566
Arrival (Descent/ -
] Return C2 Link 420 312 600 600 1932
Landing) )
Link A/G Link 973 510 1144 695 3322

Table 2: Estimated Non-Payload Throughput Requirements (bytes/sec) of a Single Unmanned Aircraft Operating in
Automatic Mode. Data from [1].

C2 Link . Aircraft ATC Total
Flicht Ph Forward VS. Aircraft | Control Voi Target Th hout
'g ase / Return | Air/Gnd. | Control aF Rle:e Data br::sg/siu
RF Link Navaids y y
Forward | C2 Link N/A 79 600 N/A 679
Departure and Link | A/GLink [ N/A 121 1144 | N/A 1256
Arrival (Takeoft/ -
. Return C2 Link 27 265 600 600 1492
Climbout) )
Link A/G Link 64 460 1144 695 2363
Forward | C2 Link N/A 47 600 N/A 647
Transit/Extended Link A/G Link N/A 86 1144 N/A 1230
Operations Return C2 Link N/A 85 600 600 1285
Link A/G Link N/A 130 1144 695 1969
Forward | C2 Link 81 88 600 N/A 769
Departure and Link | A/GLink | 416 132 1144 | N/A 1692
Arrival (Descent/ -
Landing) Return C2 Link 42 112 600 600 1354
Link A/G Link 80 158 1144 695 2011
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FCC Coverage Map

In the context of C2 communications for UAS, the correlation between LTE network coverage and the
required data transmission rates is critical. The effectiveness of C2 communication relies heavily on
consistent and reliable LTE coverage, underscored by the adoption of standard benchmarks such as 5 Mbps
for uplink and 1 Mbps for downlink speeds. The data in Table 1 and Table 2 suggests that the required C2
throughput must exceed 3,322 bytes/second in order to support all activities of the UAS. In order to achieve
reliable connection to the LTE network and to achieve sufficient throughput to effectively control a UAS,
an additional margin is required. For this reason, the published benchmark of 5 Mbps for the uplink and 1
Mbps for the downlink is used throughout the document. The 5 Mbps uplink speed provides sufficient
margin to transmit control signals and data from the UAS to the ground station, facilitating real-time
operational control. Similarly, the 1 Mbps downlink speed provides ample throughput to receive operational
commands and navigational data.

In this context, the Federal Communications Commission (FCC) Coverage map [2] shown in Figure 1,
released on May 15, 2021, becomes a key resource. This map presents Fourth Generation (4G) LTE mobile
broadband coverage across the United States and features separate layers for broadband and voice coverage
from the nation's four largest mobile carriers: AT&T Mobility, T-Mobile, US Cellular, and Verizon
Wireless. The data shown on this map, voluntarily submitted by these major carriers, provides the public
with detailed information on mobile service coverage, as part of the broader Broadband Data Collection
program. The criteria associated with this map, such as a 90% cell edge probability and 50% cell loading
factor, with a maximum resolution of 100 meters for both voice and data coverage, aim to depict areas
where users can expect minimum download speeds of 5 Mbps and upload speeds of 1 Mbps.

Utilizing the FCC Coverage map as a benchmark in this work allows for a comparative analysis to aid in
evaluating the accuracy and reliability of data collection and the effectiveness of the technologies tested.
By assuming a receiver position at ground level, the maps provide insights into the real-world applicability
of LTE networks in supporting the requisite data rates for effective C2 communications in UAS operations.
This analysis provides UAS operators with regions in which network connectivity satisfactorily meets the
communication demands of each mission to ensure safe and efficient UAS deployments.

s

. Q“| Layers Q=

_;sm ATE&T Mobility LTE
» o 7
ata

ATET Mobiliy LTE
Voice

» T-Mobile LTE Data
T-Mobile LTE Voice

» UScellular LTE Data
UScellular LTE Voice  wes

» Verizon LTE Data

Verizon LTE Voice

e xico

Figure 1: FCC map for 4G LTE coverage [2] as of May 15, 2021 (AT&T Mobility, T-Mobile, US Cellular,
Verizon).
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Available Data Sources

1.1.1 The Homeland Infrastructure Foundation-Level Data (HIFLD)

The Homeland Infrastructure Foundation-Level Data (HI[FLD) dataset [3] contains cellular tower locations
as recorded by the FCC. This dataset is intended for use in Geographic Information Systems (GIS) for
general planning, analysis, and research. The database contains a total of 2,4047 cellular locations. This
number includes the four main operators (Verizon, AT&T, US Cellular, and T-Mobile) in addition to other

independent providers.
Calgary

Vancoyver
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Figure 2: The Homeland Infrastructure Foundation-Level Data (all providers) from [3].

1.1.2  OpenCelliD

OpenCelliD [4] contains data that is primarily derived from smartphone users who use mobile applications
such as OpenCelliD or OpenCelliD Client, and from commercial tracking devices such as black boxes.
Additionally, corporations contribute through wholesale data donations. This collected data is then

Figure 3: OpenCelliD [4] Example of Antenna
Coordinates.
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integrated into the OpenCellID API database. However, this dataset was excluded from use in this work
because of its limited accuracy. The coordinates provided by the dataset incorporate an error margin that
could extend up to 40 kilometers, making it unsuitable for the specific needs of this project. Figure 3
illustrates a cellular tower's location as indicated by OpenCelliD, highlighting the absence of an actual
tower at that specific location. The dataset indicates that the actual position of the cellular tower could
potentially be located anywhere within an estimated 37km radius from the given coordinates as shown in

Figure 4.

37.871Km

Figure 4: OpenCelliD [4] Position Error Margin.
1.1.3 US Cellular Tower Locator
The US Cellular Tower Website [5] provides US Cellular tower locations.

N
w ara g \\‘ i ME
MON \ BRUN
- MINNESOTA v
.
Minneapers i 5
] T Q SN |
UAKOT A / \
tase wicniGan
= garo = /
WoMNG W v i !
7
-~ 1owa =, Chitago pasy
v 9 it ot )
Safl Lake Gy B e
@ LLINDIS  ND AN A
; penvers  United States eantat City ks Cintindtey
Sacramento A eolofino ?  Stlous
n ColakAnc s
Sen Francisco Liggo
25n Jose # ;
Las Vegas Nashvilie
oLAN R
Albuquerg v
Los Angeles z L
R AN ARIZOMA WEW MEXICO
San Diega Dhasni Dallas
oTucson
- Chudad Judrez i L '
SONDRA Houston | 1OV EIANE 0
HIHUAHUA S8 AMOno S New Gijeans
Orlanda
% QAHUILA oTampa
o, ey,
\ 4
Q Gt ol

A N A4 ancsy - Montermey e e
A T AMAULIFAT Bahamas.

Figure 5 US Cellular Tower Locator Data [5].

Additional Data Collection

Due to the incompleteness of the datasets provided by the previous sources, extensive additional data was

gathered using three main approaches:

13
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1.14  Cellmapper

Cellmapper [6] utilizes crowd-sourced data, gathered from a broad user base, to provide cellular tower
locations as shown in Figure 6. For added precision, the data is cross verified with Google Maps, enhancing
the accuracy of the tower location information.

Figure 6: Cellmapper Crowd-Sourced Data [6].
1.1.5  Botlink-Developed Web Tool
Additional data was collected from the Botlink-Developed Web Tool. This involved zooming into the

website's maps to identify clear antenna patterns indicating tower locations as shown in Figure 7, followed
by extracting the precise coordinates of these towers.

Figure 7: Extraction of Tower Locations Using Botlink-Developed Website.

1.1.6 AntennaSearch

AntennaSearch [7] offers information on a variety of towers, including the cellular ones. As shown in Figure
8, the website provides all the antennas and towers within a 3-mile radius of the input coordinates. However,
it requires manual filtering to extract data specifically related to cellular towers and then to the four main
providers, given the broad range of tower types listed.

14
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From the combined data sources of Cellmapper, Botlink Website, and AntennaSearch, a total of 14,946
cellular tower locations were identified, recorded and added to the available datasets.
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Figure 8: AntennaSearch [7] Data Example.
LTE Coverage Simulation

The simulation process began by leveraging the existing data contained in the HIFLD and US Cellular
tower locator datasets. This approach, however, resulted in incomplete coverage with notable gaps caused
by a significant number of missing antenna locations as depicted in Figure 10 and Figure 9. To address this
inadequate set of antenna locations, a data acquisition phase was undertaken during which tower locations
were collected from sources described above including Cellmapper, AntennaSearch, and the Botlink
website. Upon integrating the additional identified antenna locations, updated simulation outcomes were
cross-referenced with the FCC coverage maps. Differences identified during this comparison were resolved
through adjustments to the simulation parameters to improve alignment with the reported FCC coverage.

Ve I R T
e Ny e

Figure 10: Initial Simulation Result for AT&T Figure 9: Result for the AT&T Operator for the

o

Operator over the Western Half of the Continental Western Half of the Continental USA.
USA.
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1.1.7 LTE COVERAGE ANALYSIS

The type of communication used for C2 of UAS varies depending on the type of UAS, planned operational
parameters, and the type of environment the UAS will be flying in. The two most common divisions for
type of operation are visual line-of-sight (VLOS) and beyond visual line-of-sight (BVLOS). In the case of
VLOS operations, C2 is usually accomplished using direct communication methods such as radio
transmitters, wireless fidelity (Wi-Fi), or Bluetooth receivers. For BVLOS operation, reliable long-range
communication methods are used, such as LTE communications, to extend operational range well beyond
common radio limits.

To support UAS operations in both VLOS and BVLOS scenarios, analysis of LTE coverage can accelerate
the planning process to determine the feasibility of operations for a given area using LTE as a mechanism
for C2 communications. For this C2 method the FCC provides a coverage map for LTE data derived from
data provided by the major LTE providers in the United States that meets a defined set of performance
requirements, such as SMbps down and 1Mbps up. [2] These throughput requirements meet the required
minimum rates for C2 communication, as discussed in Section 0.

Specifics on how these coverage maps were generated are not provided by the FCC and may not be
consistent between each provider. To validate these coverage maps and generate a non-provider version of
the coverage map, an analysis of LTE coverage was performed for the four major cellular providers in the
United States: Verizon, AT&T, T-Mobile, and US Cellular using a UND developed simulation tool.

1.1.8 Simulation Tool

The coverage analysis was performed using a modified version of an open-source RF Signal Propagation,
Loss, and Terrain analysis tool SPLAT!. [8] This tool provides an easy-to-use method to simulate RF
propagation including the effects of path loss and terrain blockage.

The modified version of the tool supports additional features such as multi-threading computation to
accelerate simulation time as compared to the single threaded version of SPLAT!. Support for higher
resolution terrain data, such as Light Detection and Ranging (LiDAR) data, and basic radiation pattern
profiles are supported in horizontal and vertical directions.
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The modified tool also includes a Graphical User Interface (GUI) and command line wrapper to allow for
easier use of the tool and automation of command line parameters and identification of the correct terrain
to use for the tool to provide accurate results. The GUI interface for the tool is shown in Figure 11.
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Figure 11: GUI Wrapper for RF Analysis Tool.

1.1.9 Initial test results

To provide timely analysis results and ensure the resulting dataset is a reasonable size, the analysis was
performed using 3-arcsecond (~90m) terrain data and the underlying tool was configured to use [ITWOM
3.0 for the path loss calculation since it should provide high quality results in areas near transmitters.

Before beginning the full analysis, multiple test sites that had most of their parameters and configurations
defined were chosen and simulated to verify the tool would produce results that are valid for a given LTE
antenna location. The first test site results are shown below in Figure 12 for a US cellular site in Northern
California where the results are relatively similar with gaps in the same relative locations around the tower.
Similar coverage patterns can be seen on the south facing sides of the mountains in the top left corners of
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Figure 12: LTE Analysis Test Site #1, FCC (left) and Tool (right).
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the images and the same gaps from valleys and blockage from mountains can be seen between the coverage
maps from the providers and the results generated by the analysis tool.

The results for a second site US Cellular site are shown in Figure 13, where again, the results are relatively

similar with gaps in the same areas with large gaps produced by the mountain in the same relative areas.
The tool did indicate better coverage at the edges but this is most likely from not using the exact same
configuration and analysis tool as the cellular provider.

Figure 13: LTE Analysis Test Site #2, FCC (left) and Tool (right).

1.1.10 Simulation Parameters

Simulation of LTE coverage involves several parameters that can significantly influence the accuracy of
the result. Key parameters used by the BPANE simulation tool include the following:

Antenna Height: This is the height of the cellular antenna above the ground. This critical parameter
has a significant impact on range and signal quality because of the need for line-of-sight
communication with the receiver. Antennas that are located at higher elevations exhibit fewer
problems associated with obstacles on the ground. The HIFLD dataset specifies only the maximum
elevation of the entire structure, not the height of the antenna itself. For simulation purposes, it is
assumed that the antenna is mounted at a point which is 75% to 80% of the maximum height of the
structure.

Effective Radiated Power (ERP): This parameter represents the power radiated by the antenna to
the surrounding area. ERP is calculated by combining the power output from the transmitter and
the gain of the antenna. The value of ERP strongly influences the effective range of signal
propagation. In the HIFLD dataset, the Effective Radiated Power for approximately 84.5% of the
antennas is recorded to be 140.82 Watts.

Receiver Height: The height of the receiver above the ground also affects signal reception.
Receivers at higher elevations experience fewer obstructions and potentially better signal quality
at the receiver. The receiver height shown in the FCC coverage maps of [2] is assumed to be at
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ground level to compare with simulations performed at ground level. Additional simulations were
performed at 50ft steps up to a maximum height of 400ft above ground level.

e Operating Frequency: The operating frequency also has a strong effect on signal propagation and

penetration through materials. The FCC Universal Licensing System website provided details about

the frequencies used by the licensees as shown in Figure 14.

Call Sign
» Return to Main

KNKNE48

A Block

824 - 835 MHz paired with 869 - 880 MHz
845 - 846.5 MHz paired with 890 - 891.5 MHz

Figure 14: FCC Universal Licensing System Website Data on Operator Frequencies [181].

e Range Limit: This parameter defines the maximum radius of the simulation from the transmitter,

measured in either kilometers or miles. This distance sets the outer boundary of analysis for the
coverage area of each cell location for each operator. For each cellular antenna, a range of 30km
was set for the Verizon network, while a larger range limit of 40km was applied for US Cellular,

AT&T, and T-Mobile.

o Signal Threshold: The simulation display incorporates a minimum threshold expressed in dBm or
dBuV/m. Any signal value below this threshold will not be displayed in the resulting image. The
values used in the simulation varied in the range of —-86dBm to —73dBm.

e Terrain Resolution: The simulation employed a terrain resolution of 3 arcseconds.

1.1.11 Parameter Tuning

During the course of simulations, key parameters such as antenna height, signal threshold, and antenna

range were tuned and adjusted after comparison to the FCC coverage map.

In instances where the antenna height was not explicitly specified, particularly with respect to the data
collected, an approach was adopted where nearby antenna heights were examined and a similar height was

Figure 15: Simulation Results with a
70dBm Signal Threshold.

Figure 16: Simulation Results with a
75dBm Signal Threshold.
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assumed for the simulation. This method provided a basis for initial estimations. Subsequent to this, if the
simulation results indicated an under coverage or an over coverage, adjustments were made to the signal
threshold to better align the results with expected coverage patterns. Figure 15, Figure 16, Figure 17, and
Figure 18 illustrate the impact of modifying the signal threshold on the simulation outcomes.

- sy =M | el wam

Figure 17: Simulation Results with a Figure 18: Simulation results with a
81dBm Signal Threshold. 86dBm Signal Threshold.

The range limit parameter was considered as a secondary adjustment strategy. This parameter was
particularly relevant in cases where modifications to antenna height and signal threshold alone were
insufficient to achieve an accurate representation of coverage. An illustrative example of this optimization
step can be seen with the Verizon operator's data, where an initial over-coverage was observed. Despite
attempts to rectify this erroneous result through reductions in antenna height and signal threshold, the
desired coverage was not attained. Consequently, a reduction in the range limit from 40 kilometers to 30
kilometers was implemented with positive results achieved.

Simulation Results

1.1.12  US Cellular Operator

The simulation process began with the US Cellular operator, chosen specifically because it has the smallest
network of towers in the United States. Data from the US Cellular locator website and the FCC Coverage
map reveals that the coverage provided by this operator is restricted to a limited number of states.
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The simulation parameters were tuned to align with actual network characteristics. The range limit was set
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Figure 20: Coverage Simulation Results for US Cellular Operator with a 50ft Receiver Height.
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Figure 19: Coverage Simulation Results for US Cellular Operator with a 100ft Receiver Height.

at 40km to represent the maximum effective communication radius from each cellular tower. In determining
antenna height, an average of 50m was calculated based on the available data for the collected tower
locations. Additionally, the ERP was set at an average of 140 Watts. Upon establishing the aforementioned
parameters, the signal threshold was tuned, with each resulting simulation outcome being compared against
the FCC coverage map. The process began with an initial signal threshold of -86dBm, which, upon analysis,
indicated over coverage. Subsequently, the threshold was adjusted until it reached the value of -76dBm for
the majority of antennas, and -70dBm for some regions where the coverage was limited.

21



The FAA's Center of Excellence for UAS Research

XASSURE

or System Safety of UAS rch Excelle

The simulation results for this operator are shown in Figure 20, Figure 19, and Figure 21. These figures
demonstrate that coverage improves with increased receiver height, with no noticeable change in coverage
after the receiver height reaches 100ft.

Figure 21: Coverage Slmulat10n Results for US Cellular Operator with a 150ft Receiver Height.

1.1.13  Verizon Operator

Adopting a similar approach to the one used previously, the initial parameters for the simulations included
a 40km range limit and an antenna height determined by averaging the heights from the collected location
data near the desired antenna. The ERP was also set at an average of 140 Watts. However, initial simulations
with these settings indicated over coverage. Adjustments to the antenna height and ERP value were made
in an attempt to rectify this erroneous result, but these modifications did not yield the expected results.
Consequently, it became necessary to decrease the range limit for this operator from 40km to 30km to
achieve a more accurate depiction of coverage.

1.1.14 AT&T Operator

For the AT&T operator, the simulation followed a methodology similar to the one used previously. The
range limit was established at 40km, and the signal threshold was carefully adjusted. This process resulted
in a range of threshold values, varying from -86dBm to -76dBm, depending on the specific region within
the country being analyzed.

1.1.15 T-Mobile Operator

The T-Mobile operator presented the most challenges in the simulations. Within the HIFLD dataset, there
were only 59 cellular tower locations for T-Mobile, necessitating extensive data collection to bring the total
up to 11,895 locations. The simulation process was divided based on geographical location, focusing
separately on the western and eastern sides of the country. For each region, the simulation parameters
experienced multiple rounds of adjustment to align closely with the coverage depicted in the FCC coverage
map. The signal threshold values varied significantly, with most locations on the western side using around
-86dBm, while on the eastern side, thresholds were adjusted to -70dBm, -73dBm and -74dBm depending
on the coverage. The average estimated antenna height was set to 50 meters, and a uniform range limit of
40 kilometers was applied for all cellular antenna locations on the T-Mobile network.
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Examples

1.1.16 Scenario 1: Hiker in the Brownlee Reservoir Region on the Idaho/Oregon Border

In the context of search and rescue operations within the Brownlee Reservoir region, characterized by its
rugged terrain, the variability and inconsistency of LTE signal coverage presents a significant challenge as
shown in Figure 22 for the Verizon operator. The search pattern must consider the zones where signal is
absent, ensuring that search teams can communicate effectively despite the presence of regions of
inconsistent coverage. Additionally, it is crucial to consider the receiver elevation, as the coverage improves
at higher altitudes.

Figure 22: Verizon Coverage in the Region of Brownlee
Reservoir on the Idaho/Oregon border with a Receiver Height of
400ft.

1.1.17 Scenario 2: Wildfire Discovered in the Northeast Region of Durango, Colorado

In the event of a wildfire northeast of Durango, Colorado, the assessment of the fire's extent is complicated
by the area's uneven and rugged terrain. As depicted in Figure 23, LTE coverage is inconsistent, with
noticeable differences between Verizon (indicated in red) and AT&T (indicated in blue). To determine the
wildfire's size with precision, a flight plan (highlighted in yellow) has been developed. This plan considers
these factors to ensure that the fire is monitored effectively despite the uneven signal availability.
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Figure 23: Scenario of a Fire in the Region Northeast of Durango, Colorado.

1.1.18 Scenario 3: Avalanche Occurrence in the Mountainous Region of the Sierra Nevada

Similarly, the consequences of an avalanche require a detailed evaluation of the affected area. For example,
in the Sierra Nevada mountains, the terrain's steep and complex nature significantly affects the reliability
of LTE signals, as shown in Figure 25, with the coverage for Verizon operator. Search and recovery
strategies must be adapted to these communication dead zones, ensuring that rescue teams maintain
coordination in the absence of stable connectivity. The effectiveness of search and recovery efforts in the
extent of an avalanche can be significantly enhanced if the receiver is positioned at a higher altitude. In the
case of the Sierra Nevada mountains, elevating the receiver to 400ft markedly improves communication
coverage, as illustrated in Figure 24. This increase in altitude leads to better signal reception compared to
a lower altitude of 50ft, thereby facilitating a more accurate and efficient evaluation of the area.

Yosemite Wilderness™ ¥# . o
osemite Wilderness ¥

Figure 24: Scenario of an Avalanche in the
Mountainous Region of Sierra Nevada (Coverage at
400ft receiver height).

Figure 25: Scenario of an Avalanche in the
Mountainous Region of Sierra Nevada (Coverage at
50ft receiver height).
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GPS Coverage Analysis

The Global Positioning System (GPS) is a vital service that is required for normal operation of most UAS,
especially small UAS. For the case of small UAS, GPS may be the only primary positional sensor available
and depending on the type of operation being performed by the UAS, may be critical to its safe operation.
When the UAS is operating in close proximity to structures or performing semi-automated tasks like linear
infrastructure inspection, high accuracy GPS information is needed to maintain safe distances but also stay
within range of the structure or object being inspected. Another use-case is during emergency operations,
like forest fire fighting, the UAS may be operating in mountainous areas that may have blind spots for GPS
coverage due to the terrain features.

To help support the operation of UAS, especially small UAS (sUAS), in these types of environments,
analysis of GPS coverage will be useful. This type of analysis can be used to speed up the process of
planning operations for an area and to help reduce the potential for loss of GPS signal during operations.
With this goal in mind, the project developed a GPS coverage analysis map for UAS operations within the
United States of America. This map is meant to provide reasonably accurate and up to date GPS coverage
analysis using the current orbital position information of GPS satellites while also taking terrain blockage
into account when generating the coverage map. The current coverage analysis does not include obstacle
or structure information, just terrain information.

The generation of the GPS coverage map involves four main steps. The first is pulling the latest GPS
satellite orbit information, projecting it to the current time, and converting it to the same reference frame as
the rest of the calculations. The second step involves calculating the number of visible satellites with terrain
blockage for the entire analysis area of the United States of America. The third step involves converting the
visible satellite counts into a visible map layer for the GUI interface developed by Botlink that displays
gaps in coverage based on a user defined number of required satellites.

Since terrain data does not normally change significantly and to help speed up the coverage analysis, the
terrain line-of-sight blockage was precalculated using a uniform grid that the rest of the coverage analysis
steps use. This approach allows the coverage analysis program to look up the elevation angle (line-of-sight)
for the current location without having to perform a full path analysis between the current location and the
current position of every GPS satellite every time the coverage analysis is updated.

Terrain Data and Reference Grid

All of the stages of the coverage analysis use the same reference terrain dataset and grid system based on
the reference system used by the 3-arcsecond (~90m) terrain data. This grid spacing was chosen to reduce
the overall size of the generated data sets and to keep the processing time low enough to allow for updating
the coverage analysis every hour. The terrain data itself is divided into 1-degree by 1-degree
latitude/longitude squares with each 3-arcsecond terrain file containing 1,201 x 1,201 grid points evenly
distributed over the 1x1 degree area. This terrain reference system is used by the GPS coverage analysis
program and all of the output files from the analysis tools are broken up into the same 1x1 degree areas
with the same number of grid points within each file.

The coverage analysis is performed over the land area of the United States of America which encompasses
1410 1x1 degree areas, each with 1,442,401 grid points for a total of a little over 2 billion grid points for
the United States. The main areas covered are the Continental United States, Alaska, Hawaii, and Puerto
Rico, as shown in Figure 26.
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Figure 26: GPS Analysis Coverage Area.

Three different sets of terrain data at varying resolutions were pulled from two publicly available sources,
USGS [9] and EarthExplorer [10]. The three terrain resolutions used by the coverage analysis program,
during development of the tool, and for the generation of the datasets are 1/3-arcsecond (~10m), 1-
arcsecond (~30m), and 3-arcsecond (~90m) terrain elevation data.

GPS Positional Data Source

The up-to-date GPS position information is obtained by downloading current Two-Line Element (TLE)
orbit predictions for the GPS satellites from Space-Track [11]. During development and testing of the tools
and web interface, Celestrak [12] was used instead since it is free and does not require an account for usage.

The GPS TLE orbit information is then processed into a more usable format for calculation purposes using
an open-source python library called Skyfield. [13] This library allows calculation of orbit information for
celestial bodies and, for our purposes, is used to calculate the current GPS satellite position by projecting
the TLE orbit prediction forward in time and then converting its current location into the same reference
frame as the grid points and terrain data, WGS-84.

Terrain Line-of-Sight Pre-Calculation

Since the terrain data does not normally change over time and all of the tools and programs developed for
this project use the same reference grid as the 3-arcsecond terrain data, the terrain line-of-sight calculation
only needs to be performed once and the results of this analysis can be used as a look up dataset to
significantly speed up calculation. This dataset contains the geodetic elevation angle for a given heading at
the current gird point as shown in Figure 27.
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Figure 27: Precalculated Terrain Line-of-Sight.

The precalculated terrain line-of-sight data uses the same reference grid as the rest of the program with the
line-of-sight calculation for each grid point being performed at a 1-degree heading increment for a total of
360-degrees of line-of-sight data for each of the grid points and an overall total of about 732 billion line-
of-sight angles for the entire United States of America.

The process of generating this data set consisted of iterating over every grid point and calculating line-of-
sight for each of the 360 headings, each tracing a path at the desired heading and calculating the largest
line-of-sight angle on the path. The path calculation was performed every 90-meters (or 3-arcseconds) along
the path to a maximum distance larger than any potential terrain blockage. The maximum distance in this
case is about 672 km and is based on the distance at which two points at the tallest point on earth, Mt.
Everest, would have line-of-sight blocked by the curvature of the earth, as shown in Figure 28. The
maximum line-of-sight angle found along the path represents the overall line-of-sight angle for the heading
angle currently being calculated.

Blockage due to the
curvature of the earth

Figure 28: An Illustration of Line-of-Sight Blockage by the Curvature of the Earth.

To improve the accuracy of the line-of-sight calculation, two additional steps were taken to improve the
terrain elevation accuracy. The first improvement is higher resolution terrain data, 1/3 arcsecond, is used in
the near vicinity of each grid point. This approach is accomplished by loading in 1/3 arcsecond terrain data
for a 3x3 block of 1x1 degree terrain tiles centered on the 1x1 degree tile containing the current grid point.
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This additional step provides higher accuracy terrain data in the surrounding area of the grid point where
the terrain is more likely to block the line-of-sight.

The second improvement for the terrain elevation accuracy of the points along the path included bilinear
interpolation on the terrain elevation data. This approach leads to more accurate estimates of the terrain
elevation since the points on the path do not normally fall directly on an individual terrain point. Rather,
the path typically falls somewhere between terrain points. If no elevation data is available in the 1/3
arcsecond data set the program will fall back to the 3-arcsecond terrain data to obtain the elevation
information.

Another improvement made during the generation of the data set involved the chosen floating-point
precision of the variables used during the calculation. Using single-precision floating point variables would
significantly reduce the generation time of the dataset but would come at a cost of significant errors in the
result in some scenarios. Before generating the full dataset, multiple test areas were chosen and the line-of-
sight pre-calculation was performed for the 1x1 degree tiles associated with these areas using single and
double floating-point precision for comparison. For these test areas the majority of the differences were less
than one degree, but some experienced as much as 10-degree differences in value. Due to this large
variation, double precision variables were used during the generation of the dataset. This choice led to a
significant overall computation time due to the limited number of double-precision compute units on GPUs.

While the calculation was completed using double-precision variables, the resulting values were saved
using single-precision floating-point format, to reduce storage size. The generation of the precalculated
dataset was performed using CUDA and 24 NVIDIA Tesla V100’s housed at the Computational Research
Center at the University of North Dakota. The overall dataset consists of about 3TB of uncompressed binary
data.

Whenever GPS coverage analysis is performed, this pre-calculated dataset is read from disk and used as a
lookup table. Depending on hard drive read speed, this process can be the largest contributor to the runtime
of the coverage analysis. Attempts to accelerate the load times of the dataset using file streaming and
memory mapping with little observed benefit. To simplify the approach, the program loads each file fully
into memory while processing the corresponding area.

GPS Coverage Analysis

The first step of the GPS coverage analysis is to pull the latest GPS TLE orbit prediction, project the satellite
constellation to the desired time of analysis, and then convert the satellite location information to a usable
format as described above. Then for each of the 3-arcsecond (~90m) grid points in the U.S., the relative
geodetic offset of all of the GPS satellites is determined for that grid point so the elevation angle of the GPS
satellites may be determined. These calculated elevation angle values are then compared with the
corresponding precalculated terrain line-of-sight values; the satellite is considered visible if its elevation
angle is above the terrain line-of-sight angle. The total number of satellites that are visible is saved for the
current grid point and this process is then repeated for the entire area with the results saved to file in the
form of 1x1 degree areas that align with the terrain data.

These visible satellite counts represent the GPS coverage analysis and can be used to generate maps that
display areas of coverage, or gaps in coverage, based on a user defined required number of visible GPS
satellites. Samples of these results are shown in Figure 29 and Figure 30 where the gaps in coverage, white
squares, increase as the required number of visible satellites increases from 5 to 8. These figures are results
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from an earlier version of the program before improvements were made to the underlying code and the
generation process for the precalculated line-of-sight datasets.

Figure 29: GPS Coverage Analysis with 5 GPS Satellite Minimum for Valley in Wyoming.
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Figure 30: GPS Coverage Analysis with 8 GPS Satellite Minimum for Valley in Wyoming.
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The primary usage of the GPS coverage analysis is for the website developed by Botlink, as shown in Figure
31. This website automates the above process and provides an efficient portal to view the latest GPS
coverage analysis. As shown in the figure, the user can easily select the required number of visible satellites
on the bottom of the screen and the map will update showing the coverage gaps in red for the required
number of satellites.

Signal Layers

Cellular Simulations o SOUTH

JAKOTA

Pierre

Cell Towers

FCC Data

Figure 31: Botlink Website GPS Coverage Analysis Interface.

The website developed by Botlink simplified the process of debugging and evaluating the performance of
the GPS coverage analysis. The result of this process is presented in the form of two examples of GPS
coverage using the latest version of the code and datasets shown below. The first example is shown in
Figure 32 which depicts a lake in Washington State with a 5 GPS satellite requirement. In this example, the
coverage appears to be worse when near the south facing side of the nearby mountains and cliffs which
would indicate operations on the southern side of the lake would potentially have better GPS coverage when
compared to the north side of the lake.
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Fox Peak

Figure 32: GPS Coverage Analysis for 5 Satellites at a Lake in Washington State.

Another example requiring 5 GPS satellites is located in a mountainous region in Wyoming State as shown
in Figure 33. For this region, the coverage again appears to be the worse on the south facing side of the
mountains which would indicate that operating near the north facing sides of the mountains could
potentially provide better GPS coverage if operations need to be performed in the valleys between the
mountains.
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Figure 33: GPS Coverage Analysis for 5 Satellites for a Mountain in Wyoming state.

Reducing Server Runtime

The current version of the program performs the coverage analysis every hour and uses the results for that
associated hour. This process is repeated hourly for a total of 24 coverage analyses performed each day.
While the approach to calculate the coverage on an hourly basis is sufficient to provide accurate coverage
data, the predictability of the GPS constellation suggests that it may be possible to reuse results from one
day at a later time when the constellation repeats. Such an approach could significantly reduce the compute
requirements of the system.

Performing the analysis every hour incurs an inherent positional error as time passes since the analysis was
performed. This error is caused by the reality that GPS satellites do not occupy a geostationary orbit, but
instead the constellation orbits the earth approximately every 12 hours. The positional error in meters, and
change in angle, over time as observed from the ground, can be found in Table 3. A 30-minute interval
results in about a 4.712-degree change in position while a 60-minute update interval results in an error of
about 9.282 degrees.

Table 3: GPS Positional Change with Time.

Interval Position Angle
(minutes) (m) (degrees)
30 1,664,992 4.712
60 3,301,496 9.282
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To reduce the overall server time required to perform the GPS coverage analysis, the feasibility of
performing the coverage analysis at a fixed interval for a 24-hour period and then using the results as a
lookup dataset for an extended period of time was evaluated. This process works by performing the GPS
coverage analysis over a 24-hour period and then using that resulting set of coverage maps as a lookup table
where the generated result with the smallest amount of GPS satellite positional error compared to the
satellites current positions is used. The estimated positional errors or drift of the satellites over time are
shown in Table 4. Using the data for two weeks results in an error of approximately 1-degree in the angle,
as observed from the ground. This amount of error is not significant when compared to the amount of
positional error from the satellite orbiting the earth, as shown in Table 3. At a period of one month, the
positional error rises to approximately 4-degrees, and at a period of 6 months the positional error rises to
about 7.7-degrees. At this point, the error compounds with the error of Table 3, which would result in the
total error being almost doubled compared to the error associated with performing the analysis every hour.
The increase in error is relatively linear and could allow for longer periods of time between regenerating
the 24-hour GPS analysis.

Table 4: GPS Positional Change for Out of Data TLE Orbit Data.

Interval Position Angle
(minutes) (m) (degrees)
1 37,718 0.107

7 229,537 0.651

14 357,546 1.014

30 767,181 2.175

60 1,427,283 4.042
120 2,060,610 5.825

180 2,725,267 7.684

Due to time constraints, this feature was only analyzed and initially implemented, but has not been fully
tested or integrated into the Botlink website. Further work is needed to implement and test this result in
practice.
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Localization Techniques in GPS Denied Environments
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Figure 34: Categorization of All Publications Identified in Terms of their Approach to Navigation in GPS Denied
Environments.

1.1.19 LiDAR-Based Techniques

LiDAR technology is increasingly being utilized for UAS localization in environments where GPS is
unavailable. This remote sensing method uses laser beams to accurately measure distances and create
comprehensive maps in one, two, or three dimensions [14]. Its growing appeal lies in the recent
advancements that have significantly improved its range detection capabilities, accuracy, and portability
due to reduced size and weight [15]. Particularly beneficial in GPS-denied zones, LIDAR-based methods
offer precise, centimeter-level positioning solutions, overcoming the challenges of reliable UAS navigation
[16]. A series of research articles have been reviewed to explore various applications of LiIDAR in this field.

In [17], the authors developed a system for autonomous navigation of micro air vehicles (MAVs) in GPS-
denied environments, focusing on a LiDAR-based system for a quadrotor helicopter. This system, which
integrates a high-speed laser scan-matching algorithm, a data fusion filter, in addition to a Simultaneous
Localization and Mapping (SLaM) module, enables the quadrotor to autonomously explore and map
unstructured and unknown environments. The core of their research is a multilevel sensing and control
hierarchy designed to accurately estimate the MAV's position and velocity considering the constraints in
payload, computation, and communication on such small vehicles. The effectiveness of this system was
demonstrated in various settings, including indoor spaces and urban canyons, during the 2009 International
Aerial Robotics Competition. The system, however, encountered challenges in complex 3D environments
and featureless settings, where the scan matcher had difficulties in accurately calculating the vehicle's
movement. For instance, in the urban canyon experiment, the maximum deviation from the target trajectory
was 0.27m, significantly higher than in indoor flights. Additionally, the SLaM and planner modules are
designed to operate offboard, requiring frequent communication with the ground station, which poses an
additional challenge.

The approach in [18] focuses on navigating large distances in environments where GPS is unavailable,
specifically using a system that combines inertial navigation with LiDAR-based localization. The core of
this navigation system is the integration of semi-regular updates from LiDAR data with an existing Digital
Elevation Model (DEM), alongside an innovative use of an error-state Kalman filter that includes
estimations for biases in the Inertial Measurement Unit (IMU). This setup ensures a consistently accurate
estimate of the aircraft's state, minimizing the need for extensive computations when consulting the global
elevation map. A significant aspect of the system is its ability to match LiDAR scans to specific areas of
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the DEM, generating a map that highlights the symmetry of the landscape. This process identifies the most
likely position of the aircraft, enabling corrections to be applied to the navigational system to ensure
accuracy over long distances without GPS input. The study showcases the system's ability to accurately
determine an aircraft's location over a journey of 218 kilometers, achieving an impressively low final
positional deviation of only 27 meters.

In [19], the authors introduce a novel 3D simulation system for mini-UASs in GPS-denied environments,
using a hybrid approach that integrates the Robot Operating System (ROS) with the Unity3D game engine.
The system's key innovation is its ability to run real-time multi-UAS navigation and control algorithms,
handling large volumes of sensor data. ROS provides a clear software structure and facilitates hardware
interaction, while Unity3D offers robust graphics for 3D environment and sensor modeling. The paper also
discusses the development of a TCP/IP-based interface between ROS and Unity3D, detailed modeling of
environments and UAS sensors (especially LIDAR), and a user-friendly interface for simulation setup and
monitoring. The system's efficacy is demonstrated using a forest search scenario with autonomous UASs.

In [20], the study focuses on using LiDAR-based SLaM for drone navigation in GPS-denied environments.
The research uses MATLAB simulations to test the drone's navigation capabilities by generating LiDAR
data and applying 2D SLaM with pose graph optimization. Key to their approach is analyzing the impact
of loop closure threshold and search radius on the optimization process, which affects the drone's trajectory
accuracy and mapping. They found that adjusting these parameters can significantly enhance processing
speed and trajectory accuracy compared to ground truth. However, the study's limitations include its
confinement to 2D data and lack of real-world testing to validate the simulation results, which may affect
its practical applicability in complex 3D environments.

The paper [21] introduces an approach for 3D motion planning of Vertical Take-Off and Landing (VTOL)
UASs in GPS-denied, unknown forest and cluttered environments. The core of this method involves using
LiDAR sensors to detect and map the surrounding environment, creating a dynamic 3D occupancy grid
map that the UAS navigates through. The approach combines an online path planning algorithm based on
the A* search algorithm with an online trajectory generation method based on maneuver automation
techniques. These components work together to generate an obstacle-avoidant path for the UAS. The
effectiveness of this integrated LiDAR-based system is demonstrated through both simulations and real
flight tests on a UAS equipped with dual LiDAR sensors, highlighting its capability in real-time motion
planning and obstacle avoidance in challenging terrains like forests. However, the research does not explore
how effectively the proposed method can adjust to unpredicted environmental factors, leaving an evaluation
of its adaptability and resilience in variable conditions unaddressed.

In [22], an Adaptive Kalman Filter (AKF) is used to enhance the velocity and position estimation of UASs
in environments where GPS signal is either weak or obstructed. The approach integrates data collected from
different sensors like LiDAR, GPS, and an Inertial Navigation System (INS). In situations where both
LiDAR and GPS data are unavailable, the system relies solely on measurements from the IMU. However,
when new data from the LiDAR becomes available, the system's measurement equations are updated to
integrate this new information into the Kalman filter process. The key innovation lies in adapting the
measurement noise covariance of the AKF based on GPS receiver errors and LiDAR point-cloud matching
errors. This adaptation significantly improves the accuracy and reliability of position estimates.

The study in [23] evaluates advanced LiDAR-based 3D SLaM approaches for accurate indoor mapping.
Using a simulation framework with ROS and Gazebo, the research compares two distinct methods:
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Lightweight and Ground-Optimized LiDAR Odometry and Mapping (LeGO-LOAM) and LiDAR Inertial
Odometry via Smoothing and Mapping (LIO-SAM). These methods were tested in varied simulated indoor
environments, including empty square rooms, long narrow corridors, and circular rooms, each representing
different spatial complexities and clutter levels. The results indicate that LIO-SAM surpasses LeGO-LOAM
in accuracy for indoor environments. However, the research is limited to simulations, and real-world
implementation of these methods has not been explored in this study.

Despite the promising capabilities of LiDAR in UAS navigation, it is essential to acknowledge its
limitations. Challenges arise in adverse weather conditions, like heavy rain or fog, which can impair the
LiDAR sensor's performance. Environments with limited line-of-sight, such as dense forests or urban areas
with tall structures, also pose significant obstacles. Moreover, the computational demands of processing
large volumes of LiDAR data can strain onboard computing resources, leading to potential delays in
decision-making and increased energy consumption. Furthermore, the high cost of LiDAR technology
remains a barrier to widespread adoption. Addressing these challenges is critical for enhancing the
feasibility and efficiency of LiDAR-based UAS localization systems in a variety of operational contexts.

Table 5: A Summary of Pertinent Parameters Associated with Publications that Discuss LiDAR-Based Techniques.

Paper Hardware Aircraft Accuracy Location | Experiment | Distance
e Offboard Pelican
Computer quadrotor | ¢ Maximum Indoor/ 285 m
[17] | e IMU helicopter trajectory Outdoor Real-world 745 m
e LiDAR sensor (Micro air- deviation: 0.27 m 710 m
vehicle)
e IMU Bell 206L e Maximum
. (LongRang .. 196 km
[18] | e LiDAR sensor er) position error: Outdoor | Real-world 218 km
. 90.2 m
helicopter
o IMU
[19] | e Two LiDAR N/A e N/A Outdoor | Simulation N/A
sensors
e Maximum Root
[20] | e N/A N/A Mean Square N/A Simulation N/A
Error: 13.75m
o IMU
[21] * Two LIDAR Quadrotor e N/A Outdoor | Real-world N/A
sensors UAS
e Range finder
2] . IMU DJIS1000 | e F 1T1al position Outdoor | Real-world 405 m
¢ LiDAR sensor octocopter drift: 3.42 m
e Max. Root Mean
e IMU Square Error: . .
[23] o LiDAR sensor N/A oqLe GO-LOAM: Indoor Simulation N/A
1.291 m

36




The FAA's Center of Excellence for UAS Research

XASSURE

o LIO-SAM:
0.599 m

1.1.20 Radar/ Ultrasonic-Based Techniques

In environments where GPS signals are not accessible, localization methods like radar-based and ultrasonic-
based systems are employed. These systems operate by emitting radio waves or ultrasonic pulses and then
measuring the interval between the signal's transmission and its reception. This measurement, combined
with known data about the waves' travel speed, allows for the calculation of the time taken for the signals
to reach an object and return. This information is then used to accurately estimate the distance to the object,
offering an alternative to GPS-based positioning. This summary categorizes recent studies into radar-based
and ultrasonic-based techniques, each offering unique solutions to the challenges of GPS-denied navigation.

The studies in [24] and [25] introduce a millimeter wave radar sensor used to navigate indoor environments.
This method utilizes the principles of Interferometric Synthetic Aperture Radar (InSAR) and a Frequency-
Modulated Continuous Wave (FMCW) scheme combined with millimeter-wave technology, diverging
from traditional sensors that falter in poor visibility conditions such as dust, fog, smoke, or flames. The key
advantage of this system is its ability to conduct high-resolution 3D mapping and detect moving targets,
leveraging the atmospheric penetration capabilities of millimeter waves. While the paper presents a
preliminary study, it significantly contributes by developing a software simulator to validate the sensor's
functionality. This simulation tool demonstrates the sensor's proficiency in mapping and navigating through
challenging, unknown indoor spaces. However, it's important to note that comprehensive evaluation or
experimental results of the proposed radar sensor are not provided in this preliminary study. Another work
has been conducted in [26], it presents a comprehensive survey of UAS indoor localization techniques,
offering insights into various sensor technologies and their respective advantages and challenges. The focus
is particularly on the proposal and preliminary testing of an ultrasonic local positioning system, LOCATE-
US, developed by the University of Alcald. This system uses ultrasonic signals from five emitters and
processed by a specialized module on a Parrot Bebo 2 drone. The UAS's position was estimated using the
Gauss-Newton algorithm, showing low dispersion in both the horizontal and vertical coordinates. Finally,
the authors suggest the potential of combining ultrasound with other technologies like cameras or lasers,
for more accurate UAS indoor localization in future work.

The paper in [27] introduces an outlier rejection technique to enhance the accuracy and reliability of radar
odometry. This technique employs a FMCW radar system equipped with a single transmitting antenna and
two receiving antennas positioned along the azimuthal axis. The key innovation is the integration of an
odometry-oriented outlier removal algorithm within the Multiple-Target Tracking process, which
significantly aids in differentiating between static and moving objects in the viewed scene. This approach
is crucial for extracting accurate platform motion information, especially in challenging and cluttered
environments. However, the paper does not specify the scenarios or environments in which this method
was tested, leaving room for further exploration in its practical application.

The research in [28] presents a GPS-denied navigation technique for small aircraft, using images generated
by a Synthetic Aperture Radar (SAR) system. Building upon previous studies, the research uses radar
images to calculate range and cross-range positions, employing the Range-Doppler Algorithm (RDA) for
efficient image formation. This is particularly suitable for the restricted processing capabilities of small
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aircraft. The paper introduces an inertial navigation system integrated with radar processing based on an
indirect Extended Kalman Filter (EKF), which was tested with both real and simulated flight data. The
study demonstrates the practicality and feasibility of SAR-based navigation in GPS-denied environments,
showing that navigation errors can be estimated within acceptable limits. The paper also delves into the
specifics of SAR image formation, highlighting the applicability and efficiency of the RDA in light aircraft
navigation. Another work that uses synthetic aperture radar is [29]. Focusing on integrating SAR with an
IMU and an indirect EKF, the study employs an INS and EKF system structure enhanced with radar
telemetry for trajectory estimation. In this paper, the core aspect of the research is the evaluation of GPS-
denied navigation under various conditions: sensitivity to changes in IMU grades (consumer, tactical, and
navigation grade), measurement noise strength from the SAR system, and the geometric relationship
between the UAS and targets. The study includes an aircraft navigation and radar simulation that employs
Six Degrees of Freedom, validating the covariance of estimation errors through Monte Carlo analysis. The
authors address challenges in implementing radar systems for UASs, like computational complexity and
image quality, and emphasize the potential of tactical-grade IMUs combined with high-fidelity SAR range
measurements in supporting GPS-denied navigation.

In [30], the authors discuss a novel navigation method for small drones using an omnidirectional radar
system. The method is designed to estimate the drone's horizontal velocity and height independently from
GPS. The radar system, consisting of two circular antenna arrays, is capable of digital beamforming in the
receiving mode. The authors also focused on radar-aided positioning in GPS-denied scenarios, addressing
the challenges posed by drone platforms' agility and rapid movement. They proposed a 3D motion
estimation method that estimates both the radar's height above ground and its horizontal velocity vector.
This method involves change-point detection for height estimation, Doppler spectrum analysis for velocity
estimation, and a combination of multiple centroid estimates from different steering directions to estimate
the drone's course. The authors finally suggest that this system is not only beneficial for navigation but also
for coherent radar data processing.

The paper in [31] presents a terrain-referenced navigation algorithm designed to locate and track a UAS in
scenarios where GPS is unreliable. The algorithm utilizes a DEM to compare real-time elevation data
measured by UAS radar and barometric altimeters against pre-stored terrain profiles. The system pre-
processes the DEM to create a database of potential UAS flight profiles, each uniquely identified by a
scoring algorithm based on elevation and slope characteristics. During flight, the UAS's measured elevation
profile is matched against this database to determine its location. The study algorithm's efficiency is tested
through simulations on various terrain sizes and profile lengths, considering practical constraints such as
the UAS's ability to fly in all directions with feasible turn rates.

In [32], the authors present a robust localization and tracking system for indoor navigation of drones in
environments where GPS is unavailable. The system leverages speaker-generated ultrasonic acoustic
signals for estimating the drone's location. It employs a two-stage process; in the first stage, the system uses
Frequency Hopping Spread Spectrum with ultrasonic signals for continuous localization of the drone. The
Time of Arrival method is employed here, where the system measures the time delay between the
transmission of the signal from the drone and its reception at various microphones. This time delay is then
used to calculate the distance between the drone and the microphones. In the second stage, the velocity of
the drone is estimated by measuring the frequency shift (Doppler shift) of the received signal. These two
sets of data (distance and velocity) are then combined using a Kalman filter to provide an estimation of the
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drone’s position. Comprehensive simulations conducted in MATLAB showed that the system can achieve
high accuracy in localization, with errors of a few millimeters, significantly outperforming existing systems.

Radar-based techniques, with their ability to perform high-resolution 3D mapping and detect moving
targets, offer robust solutions in environments with poor visibility such as smoke or fog. However, these
methods often involve complex systems and may require significant computational resources. Ultrasonic-
based systems, on the other hand, provide a cost-effective solution with lower computational demands. The
precision of ultrasonic systems makes them suitable for indoor navigation where space constraints are a
concern. However, these systems may be susceptible to interference from environmental noise and have
limitations in range compared to radar-based systems. Both approaches demonstrate significant potential in
enhancing reliability and accuracy of navigation in GPS-denied environments, each with its own set of
advantages and challenges that need to be considered for specific application scenarios.

Table 6: A Summary of Pertinent Parameters Associated with Publications that Discuss RADAR/Ultrasonic-Based

Techniques.
Paper Hardware Aircraft Accuracy Location | Experiment | Trajectory
Distance
[24], | e NA NA e 3D geometric | Indoor Simulation | NA
[25] resolution:
1020 cm
[26] | e Five ultrasonic Parrot e Variance: Indoor Real-world | NA
emitters Bebo 2 0.28 m
e FGPA Xilinx drone
Zynq 7000
e ad-hoc ultrasonic
acquisition
module
[27] | ¢« FMCW 24-GHz 3DR X8+ e Max. drift: Outdoor | Real-world | NA
SENTIRE Radar | octocopter 10m
e Odroid XU4
embedded CPU
e battery for radar
e DC-DC converter
o IMU
[28] FlexSAR System | NA e Max. position | NA Real-world | 51-second
NovAtel SPAN error: 3m GPS-
CPT7 IMU e Max. velocity denied
error: 0.4 m/s flight
[29] IMU NA e Max. position | NA Simulation | NA
SAR system error: 12m
[30] IMU multi- e Root Mean Outdoor | Real-world |[30s
Radar system copter Square trajectory
Errors:
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Alliance for System Safety of L

e Position: 2.6
m
e Velocity:
0.32 m/s
[31] | o Intel(R) Corei7- | NA e Min. Outdoor | Simulation | NA
2620M CPU @ accuracy:
2.70 GHz ~84%
e RADAR
e Barometric
altimeters
[32] | e ultrasonic speaker | Quadcopter | o Avg. error: Indoor Simulation | NA
e microphones 0.55 cm.

1.1.21 Filter-Based Techniques

In [33], the authors present a method to estimate a future location and attitude of one UAS platform from
observations of a second UAS platform. This estimate of future location and attitude utilizes discrete-time
analysis through the definition of a Jacobian that has been extended to a future value rather than the
traditional approach of extension of the Jacobian to a previous (past) value. This future extended Jacobian
is then used in connection with a Filtering Cramer-Rao Lower Bound (F-CRLB) to provide a lower-bound
on future location and attitude. In order to compensate for noise in sensor values, the authors quantify the
sensitivity of feedback control parameters to different noise sources in the system. This sensitivity is then
combined with the Jacobian Matrix and F-CRLB to provide an accurate estimate of future location and
attitude.

The authors of [34] have focused their activities on an attempt to estimate the state of the aircraft at a future
moment in time. The team has developed a control approach that is sufficiently efficient that it can be
handled entirely on-board a very small, fast and agile aircraft, without input from external sources. The
team has successfully demonstrated their approach in a complex environment that is filled with obstacles
using an IMU and planar laser range finder. The measurements of the range finder are modified by a
Gaussian Particle Filter prior to updating information on current and future UAS state. This approach
significantly reduces the amount of data that needs to be processed in order to determine current location
and attitude for use in estimating future state.

[35] employs the matrix Lie group of the two-dimensional homogeneous transformation comprised of both
translation and rotation. This transformation is employed to account for all nonlinearity associated with a
UAS with six degrees of freedom. Sensors in this scenario include IMU and measurements of regional
features in the vicinity of the UAS flight. The approach was validated using real-world measurement.

Table 7: A Summary of Pertinent Parameters Associated with Publications that Discuss Filter-Based Techniques.

Paper Hardware Aircraft Accuracy Environment Experiments

[33] |« IMU Two fixed- | Max NA Simulation
wing UASs | RMSE= 70m
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[34] |e Hokuyo UTM-30LX fixed- Max. mean | Indoor Real-world
laser rangefinder wing micro | velocity
e Microstrain 3DM- air vehicle error= 0.148
GX3-25 IMU m/s

¢ 1.6GHz Intel Atom
base flight computer

[35] |e ADIS16448 IMU NA NA NA Simulation
e MT9VO034 digital
image sensor

1.1.22 Al/Decision-Making Techniques

Al and decision-making localization techniques have emerged as crucial navigation methods in GPS-denied
environments. These advanced techniques leverage artificial intelligence algorithms, including
Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), Recurrent Neural Networks
(RNNs), and many other models to analyze data from an array of sensors like cameras and IMUs. By
integrating such technologies, UASs can accurately determine their location, orientation, or trajectory in
complex environments, ranging from densely built urban areas to cluttered indoor settings. This shift
towards Al-driven navigation systems not only enhances the robustness and precision of UAS operations
but also paves the way for broader applications in diverse and challenging scenarios.

Many studies have been conducted to implement and improve these methods. In [36], the paper introduces

a method for enhancing UAS navigation in GPS-compromised urban environments by delving into end-to-
end aerial-road registration. To achieve this, the researchers developed a deep learning framework that
leverages an attention-based neural network. Characterized by its dual-branch architecture and shared
weights, this network enables the mapping of aerial images and road landmarks into a unified embedding
space. A key feature of this model is its Multibranch Attention Module (MBA), which adeptly filters out
misleading descriptor matches by concentrating on sparse road features within the images, thus elevating
accuracy. Utilizing an extensive dataset of approximately 50,000 paired images of aerial views and road
landmarks (created using GIS technology), the approach demonstrates a substantial advancement over
current methods in terms of accuracy in rotation angle and x-y translations. In essence, the study's
contributions are twofold: firstly, it offers a large-scale dataset for aligned Aerial-Road pairs, encouraging
further research in this field; secondly, the unique attention-based neural network architecture significantly
enhances accuracy, setting a new benchmark in the domain. Looking ahead, the authors suggest exploring
multitask learning in neural networks to simultaneously handle Aerial-Road matching, potentially
broadening the applicability and efficiency of their approach.

Another framework is developed in [37], it integrates localization algorithms like SLaM and Visual
Odometry (VO) with Partially Observable Markov Decision Processes (POMDPs). The authors have
employed a modular system featuring a POMDP solver algorithm implemented in C++, a ROS node
facilitating interface and communication with other modules. This integration allows the UAS to make
informed decisions in uncertain environments, focusing on safely avoiding obstacles while creating a
detailed occupancy map of the environment. The simulation of this framework was done using the Gazebo
environment and a 3DR Iris UAS platform.
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In [38], the approach utilizes SAR images, comparing newly generated images with pre-obtained reference
images to identify navigational errors. The authors employ a CNN structured with a three-channel image
configuration that includes the distorted image, the reference image, and their differential image, to pinpoint
these errors and precisely determine the UAS flight path. The ResNet architecture forms the core of the
neural network, with a modification in its final layer which is substituted by a fully connected layer.
Additionally, the research incorporates a transfer learning approach to enhance the network's performance.
This method allows the recovery of the true flight path during the synthetic aperture phase. The
effectiveness of this neural network-based approach is demonstrated through both simulated and real SAR
image data, offering an alternative to GPS-dependent navigation systems in challenging environments.
Another study that uses CNN is [39], the authors compare real time imagery captured by the UAS’s
downward-facing monocular Red-Green-Blue (RGB) camera with pre-existing satellite images using CNN.
By matching features and patterns between the UAS current view and the satellite data, the system can
estimate the UAS location even in the absence of GPS. It is important to highlight that the success of this
method largely depends on the availability of distinct textures in the environment. In regions like suburban
areas, where noticeable landmarks are limited, the accuracy of this technique decreases, resulting in a higher
margin of error.

In [40], the paper introduces an emergency safe-landing method for UAS in GPS-degraded environments,
crucial for Advanced Aerial Mobility and Urban Aerial Mobility. The integrated method combines an INS
for dead-reckoning navigation to an identified landing zone, and an Artificial Intelligence-based approach
for optical search and object detection. The system employs a 3D depth camera and a fully convolutional
neural network to recognize landing features and obstacles, integrated with a Markov Decision Process for
collision-free guidance towards the landing zone. The paper presents simulation results demonstrating the
system's effectiveness in safely navigating and landing a UAS under challenging conditions.

In their research [41] and [42], Fernando Vanegas and Felipe Gonzalez present a novel approach for
navigating UASs in GPS-denied, cluttered environments. They develop a system using a POMDP with an
online solver named Adaptive Belief Tree (ABT), tailored for handling uncertainties in sensor data and
UAS movement. This system, implemented on a quadcopter equipped with a downward-facing camera and
operating on the ROS, recalculates its flight path in real-time to locate targets on the ground whose positions
are initially unknown. Through simulations and real flight tests, the study demonstrates the system's
efficacy in successfully conducting target finding missions in complex environments without relying on
GPS, highlighting the potential of POMDP-based solutions in advanced UAS navigation. In [43], the same
authors extended their system to not only locate but also continuously follow a moving ground target. This
is achieved through a more sophisticated implementation of the ABT solver, which accounts for the
dynamic nature of the target’s movements.

The paper [44] presents an innovative approach for enabling a UAS to autonomously land on a moving
Unmanned Ground Vehicle (UGV) in environments where GPS is unavailable. The system utilizes a hybrid
camera array, combining a fisheye lens camera and a stereo camera, to accurately locate and track the
moving UGV. This setup allows for wide Field of View and depth imaging, crucial for precise target
location and motion state estimation in dynamic situations. The authors also introduce a novel state
estimation algorithm that integrates a CNN model named YOLO v3-tiny for target detection and tracking,
alongside a motion compensation algorithm for accurate estimation of the UGV motion. To control the
UAS landing maneuver, a nonlinear controller based on the estimated motion state of the UGV is developed.
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The system's performance is validated through extensive simulations and real-world experiments,
demonstrating its effectiveness and robustness in GPS-denied environments.

In the cited work [45], the researchers present a novel navigation method for UASs operating without GPS.
This method uses deep learning to match aerial images taken by the UAS with DEMs, adapting to various
lighting and weather conditions by producing several images of each location. The DEMs are created using
a detailed per-pixel mapping approach. To evaluate their method's effectiveness, the authors utilized the
Inception-ResNet-Fusion architecture, which analyzes the deep terrain features proposed in their study. On
the other hand, the paper [46] proposes a method for GPS-denied navigation using low-cost inertial sensors
and RNNs. This approach is designed to enhance the reliability of drone navigation when GPS signals are
unavailable. The methodology involves training an RNN on a dataset of flight logs, which includes raw
sensor measurements from accelerometers, gyroscopes, barometers, and magnetometers, and
corresponding state estimates. The network is trained to predict changes in the drone's position and velocity
based on these inertial measurements. The system’s performance is validated against a dataset of numerous
flight logs, showing its ability to accurately estimate the drone’s position and velocity without GPS data.
This is achieved through the network's capacity to learn the error characteristics of low-cost sensors and
effectively predict the drone’s motion, showcasing the potential of RNNs in complex navigation tasks under
challenging conditions.

Another technique is introduced in [47], the authors approach the navigation of drones in subway and tunnel
environments by modeling these structures as network graphs. Drones are viewed as traffic packets in data
networks. The navigation within these tunnel networks utilizes router systems at each intersection. These
routers are equipped with comprehensive network information and use the Open Shortest Path First protocol
for interconnection. To efficiently navigate drones from their source to destination, the routers apply the
Dijkstra algorithm, leveraging the available global network information to ascertain the most direct path
for each drone.

In their research, the authors of [48] introduce an innovative method for 3-D localization of UAS that
leverages 5G cellular networks, which operate independently of GPS systems. The methodology involves
formulating the UAS localization problem as an optimization problem that aims to minimize the error in
Received Signal Strength Indicator measurements from four adjacent cellular base stations. To address this,
the study proposes two machine learning-based approaches: a deep supervised learning technique using
Multilayer Perceptron and a reinforcement learning strategy employing Deep Q-Learning (DQN). These
approaches are designed to provide near-optimal localization solutions efficiently in real-time dynamic
environments. The paper also conducts a comparative analysis of these machine learning techniques against
traditional optimization methods, assessing their computational efficiency and effectiveness. Notably, the
study suggests that the reinforcement learning approach is more suitable for UASs operating in smaller
flight spaces requiring high accuracy, whereas the deep supervised learning approach is recommended for
UASs in larger flight spaces due to its lower computational complexity, thereby contributing significantly
to the enhancement of UAS localization in urban settings through the use of existing 5G cellular
infrastructure.

In the study [49], the researchers developed a novel approach for real-time aerial data collection and
mapping without GPS reliance. Their methodology relies on the capabilities of CNNs, particularly the
RetinaNet model, to process and analyze visual data captured by UASs. The process begins with the
identification and localization of objects of interest and landmarks from the UAS camera, using CNNs to
detect pixel coordinates of these elements along with key reference points. This is followed by geometric
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viewpoint transformation, which projects the identified objects from the UAS perspective view onto an
orthogonal map. The research introduces two distinct mapping strategies: Projection from Perspective to
Orthogonal based on Reference Objects’ Coordinates and Projection from Perspective to Orthogonal based
on Reference Objects’ Size. These methodologies were validated through outdoor field experiments,
emphasizing their effectiveness in creating accurate mappings in environments devoid of GPS data. The
approach is primarily dependent on an RGB camera, indicating that its performance might vary with
changes in environmental lighting conditions. However, the study successfully demonstrates a significant
advancement in UAS-based mapping technologies, highlighting the potential of CNNs in transforming
aerial data collection, particularly in GPS-challenged scenarios. On the other hand, the authors of [50]
proposed a data-driven solution using Spectrally Normalized Memory Neuron Network (SN-MNN). It
leverages rotor revolutions per minute and historical UAS states, predicts the UAS’s position, and
transforms it into GPS coordinates. This process includes state refinement through an extended Kalman
filter-based state fusion. However, it is important to note that despite the SN-MNN advanced capabilities,
its complexity may limit is applicability in high-speed, real-time operations.

In [51], an advanced quadrotor navigation method that operates effectively in GPS-challenged and low-
light environment is explored. Central to this approach is the use of a Red-Green-Blue-Depth (RGB-D)
camera, which is able to identify predefined 3D markers. Significantly, the system incorporates an SVM
algorithm for the efficient recognition and classification of these markers. This integration of RGB-D
cameras with SVM-based marker identification enables the quadrotor to accurately determine its location
and orientation, offering an alternative to conventional GPS navigation systems.

The application of Al and decision-making techniques in UAS localization presents a blend of advantages
and limitations. These methods, particularly effective in GPS-denied environments, enhance the autonomy
and flexibility of UASs. Al algorithms excel in processing complex sensory data, enabling UASs to
navigate through challenging terrains and urban landscapes with precision. The integration of deep learning
models like CNNs and RNNs with UAS systems facilitates accurate object detection, mapping, and path
planning, even under uncertain conditions. However, these techniques have their constraints. The
complexity and computational demands of advanced Al models can be a limiting factor, especially for real-
time applications requiring swift processing. Dependence on external environmental factors, such as
lighting conditions or the presence of identifiable landmarks, can impact the accuracy of these methods.
Furthermore, the effectiveness of Al-based navigation heavily relies on the quality and diversity of the
training data, making the systems potentially less reliable in unfamiliar settings. Despite these challenges,
the continuous advancements in Al and machine learning promise to mitigate these limitations, paving the
way for more robust and versatile UAS navigation solutions.

Table 8: A Summary of Pertinent Parameters Associated with Publications that Discuss Al-Based Techniques.

Paper Hardware Aircraft Accuracy Location | Experiment | AI-Model
* MAE: GeoCNN +
[36] e Camera NA e X=5.2067 | Outdoor Simulation Mei: A
e Y=4.5221
- . . POMDP-
[37] | e Depth sensor 3DR Iris e NA Outdoor Simulation SLaM
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;3g] | ¢ Synthetic NA eMSE<1 |NA Simulation | W' 19¢
aperture radar ResNet
e Canon IXUS SenseFly e Error <
[39] 125 HS camera | eBee 50m Outdoor Real-world CNN
o RealSense
401 |° Zﬁ:r‘adepth Quadcopter | e NA Outdoor | Simulation | YOLO v4
o IMU
e Camera
o IMU
[41] e Magnetometer o Success:
[42] * ultrasonic Multi-copter 96.25% of | Indoor Real-world POMDP
[43] pressure sensor the time
e barometric
pressure
sensor
e Binocular
Stereo
e Camera,
Fisheye Lens
[44] | e Camera DIIM100 * ir)r(S):n Outdoor Real-world ZglLO v3-
e NVIDIA Jetson
TX2
e Landmarked
uGv
e Monocular * Min. . .
[45] Camera NA Accuracy Outdoor Simulation CNN
~88%
VS S
20689 and ’
BMI055, Standard e Mean Max
[46] | e Magnetometer z)f;rtgrlz)’tor E(r)rscl)trl.on NA Simulation RNN
IST8310, . ’ '
Tiltrotor 85.79m
e Barometer VTOL, and
MS5611
Hexarotor
[47] e Routers NA o NA Indoor Simulation Dijkstra
e Deep Deep
Learning: Learning
[48] | e NA NA 2.6m Outdoor Simulation (MPL)
e Reinforcem Reinforcem
ent ent
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Learning: Learning
0.87m (DQN)
e Max.
« RGB Parrot Anafi average
[49] Parrot projection | Outdoor Real-world RetinaNet
¢ camera Bebop 2 error: 17.18
inch
o Accelerometer e Root Mean
[s0] | ° ﬁﬁg:;;‘; j micro-UAS E‘I}r‘gre Outdoor | Real-world ]SEEFMNN '
e compass 0.05953 m
e ASUS Xtion e Max lateral
Pro Live RGB- error:
Depth sensor, 2.45 cm
[51] Nitrogen6x Quadrotor e max Indoor Real-world SVM
e Quad-Core heading
ARM Cortex error:
A9 processor. 2.89 deg

1.1.23  Fusion Techniques

Another method employed for UAS localization in GPS-denied environments is the utilization of fusion
techniques. In navigation, fusion techniques involve the integration of data from multiple sensors to
enhance accuracy and reliability, particularly in GPS-denied areas where traditional positioning signals are
unreliable. These techniques combine measurements from sensors like IMUSs, visual sensors (such as
cameras), LiDAR, Radar, and more, each contributing unique data about the device's motion and its
surroundings. The fusion process employs filtering algorithms like Kalman filters to fuse and process the
sensor data, mitigating errors and providing a more accurate estimation of the device's position, orientation,
and velocity.

In [52], the authors introduced the All-Source Navigation (ASN) system, developed by BAE Systems
Australia. ASN stands out for its adaptability and flexibility; at its core, it makes use of SLaM techniques
and can integrate multiple sensors (IMU, camera, height sensor, etc.), offering a plug-and-play navigation
solution. When the raw data collected from these sensors is fused in a Kalman filter, it is possible to update
the state estimate of the vehicle with less than 4 satellites. This adaptability not only enhances navigational
accuracy but also reduces reliance on expensive, high-accuracy IMUs and GPS equipment, making ASN a
cost-effective choice. Practical tests conducted on the Kingfisher 2 UAS platform highlight ASN's
performance.

The authors in [53] designed and implemented a cost-effective vision-based UAS tailored for GPS-denied
navigation in extremely low-light conditions and thermal imaging applications. This UAS leverages
onboard sensors, notably a downward-facing optical flow camera, to enable semi-autonomous navigation
within GPS-deprived indoor environments. The system's horizontal position is determined through the
integration of horizontal velocity data, which, in turn, is computed by fusing inputs from the PX4Flow
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camera and IMU. Additionally, the vertical position is directly measured using the ultrasonic sensor
incorporated within the camera. The authors conducted an indoor flight test in near-complete darkness in
order to assess the system's efficacy and potential utility in scenarios requiring precise navigation and
thermal imaging capabilities.

Similar to the previous paper, many studies have been conducted to make navigation in low-light conditions
more accurate. In [54], the authors proposed a complete platform design and software architecture of a
GPS-denied navigation SLaM based technique for MAVs. The system combines measurements of a 3D
LiDAR, an altimeter, and a stereo camera to improve the performance of state estimation. This combination
is used since optical sensors alone are susceptible to motion blur. The designed platform accounts for the
computational resources requirements to meet the Size Weight and Power (SWaP) constraints of the
MAV. The performance of the optical sensors has been also addressed in [55], where the authors built a
sensor integration system that combines a stereo camera with a rotating sensor-laser range finder to solve
the previous systems challenges such as camera’s low performance in low illumination environment and
the high cost of a 3D range finder. On the other hand, [56] describes the development of a UAS for
autonomous tracking and landing on a moving platform in an environment with ultra-low illumination. A
customized marker illuminating with infrared LED was secured on the moving platform to be utilized as a
landing pad. The UAS installed with a monocular camera with an IR filter was used to track the marker to
follow and land on the moving platform. Sensor reading from an onboard LiDAR scanning range finder
was fused with a barometer to determine the absolute height relative to the marker and to measure the
descent velocity during the landing process.

Some applications usually require high speed navigation, which is why a study has been conducted in [57]
to enhance this aspect of navigation. The authors built a quadrotor system that is able to navigate through
both indoor and outdoor environments which is mainly used in object detection tasks. As the robot is flying
at speeds of more than 18m/s, it constantly senses the environment using a stereo camera, updates the maps
and plans a trajectory towards the goal using a laser-based height sensor for state estimation. Another
system that focused on the UAS speed was designed in [58]. The study presented a navigation solution that
consists of a stereo camera, IMU, and a height sensor fused together to allow autonomous navigation in
indoor cluttered environments; in addition to a LIDAR to generate a 3D voxel map. However, the system
does not use a global map but instead uses a local mapping technique that generates a point cloud around
the current robot location. This point cloud is used to build a 3D voxel map. The results show that the
system was able to fly at a speed of 7m/s with a 0.2 m drift in the y-position and a 0.5m in the z-position.
Another study that uses velocity estimation is presented in [59], the authors proposed a global optical flow-
based velocity estimation of multicopters by fusing measurements from onboard sensors, including a
downward-looking monocular camera, an IMU, and a sonar facing downwards. The AirSim-based
simulation showed a maximum position error of 0.51m.

In [60], the authors have introduced an autonomous radioactive source localization system using a small
aerial robotic platform in GPS denied known and unknown environment. The system relies on radiation
detection using a radiation detector, source localization, 3D mapping and finally independent navigation
towards the source. Since small aerial robots have limited endurance and due to the need for long dwelling
times to allow the radiation counting statistics to provide reliable estimates, the authors developed a method
to operate with a minimal number of measurements, resulting in a localization error of 0.31m. [61] presents
a SLaM system that remotely calculates the pose and environment map. The proposed system adapts to the
sensory configuration of the aerial robot, by integrating different SLaM methods based on vision, laser,
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and/or inertial measurements using an EKF. To do this, a minimum onboard sensory configuration is
supposed to consist of a monocular camera, an IMU, and an altimeter. It allows to improve the results of
well-known monocular visual SLaM methods (LSD-SLaM and ORB-SLaM are tested and compared in this
work) by solving scale ambiguity and providing additional information to the EKF. A 2D laser sensor can
be incorporated to the SLaM system, obtaining a local 2.5D map and a footprint estimation of the robot
position that improves the 6D pose estimation through the EKF. [62] is another work that uses Kalman
filter, in this case a relative multiplicative extended Kalman filter for estimating the relative state of a
multirotor vehicle operating in a GPS-denied environment. The filter fuses data from an inertial
measurement unit and altimeter with relative-pose updates from a keyframe-based visual odometry or laser
scan-matching algorithm. Because the global position and heading states of the vehicle are unobservable in
the absence of global measurements such as GPS, the filter in this article estimates the state with respect to
a local frame that is collocated with the odometry keyframe. As a result, the odometry update provides
nearly direct measurements of the relative vehicle pose.

The proposed system in [63] uses a sensor combination, which consists of an image sensor and a range
sensor only. The main idea behind this system is to investigate whether it is possible to abandon the need
for an IMU, which plays the most important role in navigation. However, this sensor combination cannot
provide all the information required for conventional guidance, navigation, and control systems. Therefore,
the authors also developed an integrated guidance system that requires navigation information obtainable
from the sensor combination. This proposed system replaces the body angular rate loop to the look angle
rate loop obtained from the image sensor. A numerical simulation has been performed to test the
performance of this system which resulted in a maximum tracking error of Scm.

In [64], the authors present a navigation system that uses the INS, optical flow, and magnetometer for
localization of UAS. The magnetometer is used for altitude estimation, whereas the INS and the optical
flow are combined for an accurate position and velocity estimate. The proposed approach is based on the
extended version of Kalman filter. Experiment findings demonstrate that the suggested technique may
greatly minimize navigation position, velocity, and attitude errors when compared to INS-only navigation.

Another system presented in [65] has been designed to access remote sites and collect data of structures
and field features following an earthquake or a natural disaster in a GPS-denied environment. The authors
proposed a vision and marker-based localization method that uses LiDAR scan data and camera payload
integrated with an octo-rotor UAS to reconstruct geometric features of the surrounding environment. After
collecting data from sensor combination, the system fuses the information using a Kalman filter algorithm
for pose estimation.

The work in [66] proposes a localization methodology based on an improved iterative closest/corresponding
point based on point to line metric algorithm for position estimation of a quadrotor UAS in GPS-denied
unknown environments. The quadrotor is equipped with a miniature laser range finder as the main onboard
sensor.

In the analyzed literature, a common theme emerged where numerous systems utilize teams of UAS. These
groups of UASs are primarily engaged in target search operations and environmental exploration tasks. For
example, in [67], the authors present a multi-UAS system that can be utilized for a team of UASs to
autonomously navigate, search, and detect multiple targets in a cluttered and GPS-denied environment. The
multi-UAS system uses a decentralized framework based on Decentralized Partially Observable Markov
Decision Processes to formulate the decision-making process considering uncertainties in the environments
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and sensing. This system was designed for a mission that needs to cooperate efficiently to search and find
multiple targets, without knowing possible locations, by sharing limited vital observations through Wi-Fi
connection. The system was tested in several cluttered and GPS-denied environments simulated in Gazebo
and ROS interface. The environments were populated with different numbers and types of obstacles, several
targets, a team of UASs and boundaries.

Another similar work in proposed in [68], the authors designed a framework for a team of UASs to
cooperatively explore and find a target in complex GPS-denied environments with obstacles. The team of
UASs autonomously navigates and finds the target in a cluttered environment with a known map. The
framework is based on a probabilistic Decentralized Partially Observable Markov Decision Processes
which accounts for the uncertainties in sensing and the environment. The system is simulated using the
ROS and Gazebo. Performance of the system with an increasing number of UASs in several indoor
scenarios with obstacles is tested. Results indicate that the proposed multi-UAS system has improvements
in terms of time-cost, the proportion of search area surveyed, and successful rates for search and rescue
missions.

The paper in [69] aims to give a comprehensive survey on the RF based localization systems with different
radio communication technologies and localization mechanisms on UAS positioning. Toward this end, an
evaluation framework is first established to evaluate the performance of each system on UAS positioning
from different perspectives. Particularly, the Ultra-wideband (UWB) based system with time-based
mechanisms is highlighted for UAS positioning under the consideration of the proposed evaluation
framework. Finally, an analysis is conducted about the current challenges and the potential research issues
in this area to identify the promising directions for future research.

In [70], the work proposes a self-localization approach for tethered drones in GPS-denied environments
without using a cable-tension force sensor. The proposed approach uses an extended Kalman filter to
estimate the cable-tension force and the three-dimensional position of the drone with respect to a ground
platform. The approach uses data reported by the onboard electric motors, accelerometers, gyroscopes, and
altimeter (ultrasound sensor), embedded in the commercial-of-the-shelf IMUs. The paper also presents a 4-
state state-space model to estimate the drone’s 3D location, as well as the cable-tension force. The proposed
approach was compared with an existing work that assumes known cable-tension force, and simulation
results show that the proposed approach produces estimates with less than 0.3m errors when the actual
cable-tension force is greater than 1N.

In conclusion, fusion techniques in GPS-denied environment navigation present a blend of advantages and
limitations. On the positive side, they offer enhanced accuracy and reliability in navigation by integrating
data from various sensors like IMUs, cameras, LIDAR, RADAR, and others. This multi-sensor approach is
adaptable to different scenarios, including low-light and cluttered environments, and is cost-effective as it
reduces reliance on expensive GPS and high-accuracy IMUs. Moreover, these techniques, particularly when
employing Kalman filters, are effective in mitigating sensor errors and providing precise estimations of
position, orientation, and velocity, which is crucial in challenging environments.

However, there are limitations. The effectiveness of these systems heavily depends on the quality and
calibration of the sensors used. Inconsistent or inaccurate sensor data can lead to errors in navigation.
Additionally, the computational complexity of processing and fusing data from multiple sources can be
significant, posing challenges in terms of processing power and real-time application, especially in smaller
UASs with limited computing resources. There's also the issue of designing systems that can robustly

49



The FAA's Center of Excellence for UAS Researct

XASSURE

handle varied and unpredictable environmental conditions, which can significantly impact sensor
performance.

A review of 19 papers in this field revealed that 16 of them utilized the IMU in the fusion operation, 13
employed a visible light camera, while 6 incorporated LiDAR and range finders in their sensor
combinations. Notably, the position error in these studies ranged from as low as 0.07m to as high as 11m,
highlighting the variability in system performance based on sensor choice and integration techniques.

Table 9: A Summary of Pertinent Parameters Associated with Publications that Discuss Fusion-Based Techniques.

Paper | Aircraft Aircraft specs Sensors/ Evalua.tlon Location
Processors metrics
e Mass (including
payload): 125Kg e Kontron CP308 .
e Wingspan; 4.13m board * Average position
. e Wing area: 2.67 m2 e IMU error <10m
Kingfisher i (peak at 11m)
[52] e Max. airspeed: 100 e Downward- : Outdoor
2 UAS . e Mean execution
kts Looking camera .
e Max. crosswind: e Air data system time=0.39ms
15kts e Height sensor
e Max. tailwind: 10kts
e Main controller
board: Teensy 3.1
« Mass (including MCU board ° horizc')ntal
thermal camera): e IMU is based on Ve1.001ty +0.2m/s
(53] | Quadrotor 1108g FrfeeIMU sensor | e altltu'de +0.15m Indoor
o Propeller size: sutte .. * heading angle
9.4x5.0 (inch) ¢ Pololu Mini +0.1 rad
Maestro Servo
Controller board
e Thermal camera
. e Downward laser . L
Micro- altimeter o Final drift is
[54] Aerial e 650 mm diameter . IMU around 13% of Indoor
Vehicle e 5.5 kg mass e 3.D LiDAR the total traveled
(MAV) _ distance
e Intel NUC 17
e 128cm, tip to tip o Stereo camera e Reconstructed
[55] Customize | e Max takeoff weight:  Rotating sensor- range: 30m Indoor/
d quadrotor | 5kg laser range finder (building a 3D Outdoor
e Payload weight: 2kg map)
Customize e Camera o Max x-position
;56 | d B e LiDAR error ~ Im Indoor/
quadcopter e Scanning range  [® Max y-position Outdoor

finder

error ~ Im

50




The FAA's Center of Excellence for UAS Researct

XASSURE

o IMU
e Intel NUC with
17 processor

e Max z-position
error ~ 3m

DIJI F450
frame with
the DJI
E600
propulsion
system

e Stereo camera

e IMU

o Laser height
sensor

e Nodding Hokuyo
LiDAR

e Intel NUC i7
processor

Max position error
~2m

Indoor/
Outdoor

[58]

DII F450 +
E600

e Cameras

e Garmin LiDAR-
lite

e VectorNav VN-
100 IMU

e Height sensor

e Intel NUC 17
computer

e Intel i7-5557U
processor

At Tm/s:

e Y-position: Max
of 0.2m drift

e Z-position: Max
of 0.5m

e X-position:
desired and
estimate are the
same

Indoor/
Outdoor

DIJI
Matrice
100
quadcopter

e Downward-
looking
monocular
camera

e IMU

e Sonar facing
downwards

e NVIDIA Tegra
K1's 4-Plus-1
Quad-core ARM
Cortex-A15
Processor

Max error of 0.51m

Indoor/
Outdoor

[60]

Small
aerial robot

take—off weight: 2.6kg

e Radiation
detection system

e Pixhawk-
autopilot

o Intel processor

e Visual-inertial
sensor

e (Cesium-137

radiation source

Localization error:
0.31m

Indoor
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Bebop
Drone of e Monocular
[61] Parrot camera RMSE: 103.71cm Indoor
Erle-Copter o IMU Mean: 49.82cm
of Erle o Altimeter
Robotics
e MEMS IMU Max error:
e Altimeter e Position:
Hexacopter .
- e Intel i7 processor 0.0648m
inaYo6 ) .
[62] A e Forward facing e Attitude: -
configurati )
on asus Xiton Pro 1.6259 degrees
Live RGB-D ¢ Velocity:
camera 0.1784m/s
I
[63] |- -- ® Thage sensor Max error= 5cm Indoor
e Range sensor
o Error=1.8% of
the travelled
e Magnetometer distance
Mictoaerial (HMC3883L) .. )
vehicle e Optical flow * Position error:
64 - ~ Outd
[64] (MAV):DJ sensor * ;( ;;: error oot
12312 (PX4FLOW) Y 6
[ ] ~
o IMU (MPU6050) fax error = om
e 7 max error ~
0.65m
e Light detection
sensor R ucti ;
e Payload capacity: | LiDAR ¢ hecons mCt?on °
. . the geometric
octo-rotor 0.8Kg e High resolution feature of
[65] | UAS e Vehicle weight camera ) Indoor
) surrounding
platform with battery: 2.5Kg ¢ IMU .
environment
e 1.7GHz ARM
Quad-Core 2GB
RAM Processor
* Hokuyo U .TM- o Indoor hovering
30LX miniature
e Four brushless control
. laser range finder .
electrical motors and MU experiment:
. [ ]
[66] Built by the 10 in propellers G ) e Horizontal Indoor/
authors e 2300 mAH battery * u;nsi‘;:ix d displacement Outdoor
o Weight=1.6Kg embecde error< 0.1 m
computer

e Size=0.45m x 0.45m

e Altitude error <
+0.2m.
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e Trajectory
tracking control
experiment
(outdoor):

e The tracking
error <+0.2m.

e Downward facing
cameras

e Collision rate:

Small-size e Multi-orientation o
[67] | quadcopter | -- range sensors max of 44% Indoor
(multiple) . IMU . Sl%ccesi rate:
e Intel® Core™ i7- min 35%
6700
e Range laser e Min target
sensors detection rate:
DR Iris e Map of the Independent:
[68] (multiple) |~ environment 37.5% Indoor
o IMU e Divided: 67.5%
e Downward-facing | e Informed:
camera 82.5%
Custom- . RGBTD camera
[69] |builtuas |- © ZDLIDAR ) asm Indoor
platform e Altimeter
e IMU
e IMU .
e Accelerometer e Position Error:
(701 | -- 3 e Gyroscope . ;s(;?ﬁ:;n Indoor/
e Altimeter Square Error: Outdoor
e (able-tension- <03m

force sensor

1.1.24 Ground Guided Techniques

This collection of papers delves into ground-based techniques for UAS navigation in GPS-denied
environments. These methods explore various approaches, including triangulation, trilateration, path
planning using cellular towers, and cooperative localization, each offering solutions to enable precise and

reliable UAS navigation without reliance on satellite-based positioning.

The paper in [71] presents a navigation system for UAS operating in GPS-denied environments. The system
leverages a ground-based multi-antenna localization setup, where the UAS, equipped with an aviation
transponder (either mode C or S), communicates with these antennas. The ground-based system calculates
the UAS's position using triangulation (multilateration) of the time elapsed for responses between the UAS
and the antennas. This position information is then relayed back to the UAs via a data telemetry link. The

53




The FAA's Center of Excellence for UAS Research

XASSURE

UAS's autopilot utilizes this information for navigation, similarly to how it would use GPS-based data. The
system architecture is specifically designed to enable UAS operation in environments devoid of Global
Navigation Satellite Systems like GPS.

In [72], the authors propose a relative navigation method for UASs in GPS-denied environments. This
method, utilizing wireless ranging information, constructs three virtual base stations using distance data
collected at different time intervals. Remarkably, it requires only one actual ground-based station for
calculating the UAS's position. The authors compared their technique to traditional multi-base station
wireless positioning methods, which usually have an error margin of over 10cm. This method achieves
similar accuracy with the added convenience of requiring just one base station.

The study in [73] presents a two-stage trilateration method for precise, real-time positioning of drones in
GPS-denied environments, such as under bridges or indoors, using UWB technology known for its high-
ranging accuracy and transmission rate. This technique requires multiple UWB devices: one installed on
the UAS and others on ground-based targets. The trilateration method calculates the position by measuring
relative distances through signal transmission between these devices, determining the target's position in a
fixed coordinate system. This method not only significantly reduces altitude error but also enhances
positioning reliability in challenging GPS-denied areas. Additionally, the UAS itself can be used to locate
ground users in such environments, offering a robust solution for drone navigation and positioning.

The paper in [74] introduces a path planning method for UASs in GPS-denied environments, using cellular
towers as navigation landmarks. The proposed UAS path planner aims to travel optimally from a specific
source to a goal location, taking into account the presence of these landmarks. In areas lacking landmarks,
the vehicle employs dead reckoning, with the objective of determining a time-optimal path while
maintaining covariance within certain bounds. Due to the complexity of solving this as a continuous domain
stochastic optimal control problem, the path is discretized into waypoints. The optimal locations of these
waypoints are determined using particle swarm optimization, combined with a rabbit-carrot-based path-
following technique, to achieve a near-optimal path that meets the specified criteria.

The paper in [75] introduces a cooperative localization technique for UASs in GPS-denied environments,
utilizing a ground sensor architecture for guidance. This technique ensures that each UAS remains in
constant contact with at least one Unattended Ground Sensor, which acts as a beacon for relative navigation,
eliminating the need for dead reckoning. In [76], the authors present an Ultrasonic Beacon System (UBS)
for UAS localization and mapping in GPS-denied environments, specifically targeting areas under bridges.
The system comprises mobile beacons mounted on UAS's and stationary beacons placed in the surrounding
environment, with beacon software monitored on the Ground Control Station. An Extended Kalman Filter
algorithm estimates position data using the mobile beacon's position and IMU data. Additionally, the paper
describes experiments where autonomous UASs (Pixhawk and Bebop2) equipped with UBS and deep
learning were used for structural damage detection, focusing on concrete crack detection.

The work in [77] explores the use of UASs for indoor construction site monitoring in GPS-denied
environments. It introduces a method employing fiducial markers (AprilTags) linked to 3D coordinates in
Building Information Models for UAS localization. By using cameras onboard UASs to identify their
position relative to these tags, the method allows for precise navigation in indoor settings.

The ground-based techniques for UAS navigation in GPS-denied environments, as discussed in these
papers, bring forth notable advantages, such as the ability to operate in confined or indoor spaces, under
bridges, or in heavily built-up areas where GPS signals are weak or non-existent. The use of UWB
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technology, cellular towers, ultrasonic beacons, and fiducial markers demonstrates a level of innovation
and flexibility in UAS navigation.

However, these techniques also come with certain limitations. The reliance on ground-based infrastructure,
such as multiple antennas or beacons, can pose logistical challenges in terms of deployment and
maintenance. The accuracy and reliability of these systems can be affected by environmental factors, such
as signal interference or physical obstacles, which might impact the communication between UASs and
ground sensors. Furthermore, some methods require complex computational algorithms, like Extended
Kalman Filters or particle swarm optimization, which could demand significant processing power and
potentially limit real-time responsiveness.

Table 10: A Summary of Pertinent Parameters Associated with Publications that Discuss Ground Guiding

Techniques.
Paper Aircraft Aircraft specs Hardware Evaluation metrics |Environment
Finwing Sabre Finwing Sabre: ADS._B transponder, Deviation from the
(controlled by . Multiple antennas, .
[71] . Weight: 3.12Kg planned trajectory: Outdoor
a Pixhawk . Ground control
. Wingspan: 1.9m . 60-80m
autopilot) station.
Standard deviation of
Base station CTTors:
[72] - -~ . . x-axis: 0.1357m Outdoor
Wireless link .
y-axis: 0.1467m
z-axis: 0.0669m
(73] |- B UWB transmitters Average position error  |[Indoor/
<lm Outdoor
(741 |- B Landmarks (cellular x—ax%s max error: ~30m Outdoor
towers) y-axis max error: 20m
UGCs
[75] - -~ Three UASs/ Two |- -~
UASSs
Experiment 1:
(761 Pixhawk UAS Ultrasonic beacons ; Tn:rila;gﬁdi’ de Indoor/
- . u
Bebop2 UAS MU L one Outdoor
Experiment 2:
error< 17cm
Weight: 500g
Flight time ~
25min
[77] [Parrot Bebop 2|Operation range: [Cameras, tags Maximum error < 0.5m [Indoor
up to 2Km
[Video resolution:
14MP
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Image resolution:
1920x1080 pixels,
30 frames/sec

1.1.25 Vision-Based Techniques

Vision based techniques encompass the range of sensors intended to perform some combination of
camera/visual sensor function in a number of spectrum configurations from purely visual to near-infrared
and infrared sensors. As is common in these systems, there may be a combination of methods used to
perform localization. The emphasis, however, is on the uniqueness of the proposed solution with respect to
vision systems themselves. The primary metric for evaluating vision research besides size, weight and
power (which remain relatively small, especially where vision sensors are solely used in localization) is
error, especially horizontal, linear error. Altitude can be compensated for by using combinations of IMU
and air data sensors. Rotation is useful in understanding the stability and reliability of aircraft, but the ability
to track lateral position is the main measurement of success.

a) Visual Odometry (Feature Point and Direct Methods)

Visual Odometry is unique in the categorization of vision-based localization methods. There are two
varieties under research, feature-based and direct. The former focuses on selecting features valuable for
tracking from frame to frame to establish motion and rotation information. The latter focuses on pixel
selection to accomplish the same task and is the newer of the two. While nominally separated in the
taxonomy of approaches across relative and absolute visual location, it is also appropriate to compare the
two directly which we do in the review of techniques here.

Visual odometry uses a progressive sequence of camera or other visual sensor images to estimate the
relative location and rotation of an unmanned aircraft. The direct, or pixel selection method, is the newer
of the two. Instead of pulling feature points and tracking those points, pixel changes are tracked from image
to image instead, providing motion and rotation information to perform localization.

The technique’s advantages include the ability to mount systems in locations that may not be vertically
oriented, though most research uses and tests these systems in such a configuration. The technique may
also be more suitable to autonomous operations where terrain may vary and very local details might not be
mapped with sufficient precision or known. More than one VO solution does use pre-mapping as part of
the solution, but this, again, is the nature of vision solutions, especially where they are part of a larger
localization package.

The first of the techniques [78] uses monocular vision (single camera) to provide localization. One
contribution of this work focuses on the system algorithms and feature database that uses a confidence
index to rank and manage the usefulness of feature points, including dropping features where appropriate.
However, the primary contribution of the work is flight test validation that includes not only indoor flight
test and outdoor flight test, but the transition between the two environments using two different aircraft, a
Yamaha Rmax based helicopter (1501b) and micro-copter drone (21b), demonstrating the flexibility of the
system across two different UAS categories. Tracking in results was effective, with horizontal location
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divergence from GPS position at a maximum of roughly 5-10m and then recovering. Velocity measurement
was also reported and tracked a difference within 1 m/s along multiple axes. [79], in research conducted
earlier, uses an extended Kalman filter combined with optical flow estimation and also uses the same Rmax
platform. However, it simulates the flight and compares the results to real-world flight data from Rmax
flights. Results indicate maximum errors within Sm. As an earlier example of the same platform, the results
point to the efficacy of their technique, but the real-world flight results of [78] may provide a better
indication of both the accuracy and usefulness of similar classes of solutions across multiple aircraft types.
A similar flow estimation method was used in [80] and flew indoor tests on a multicopter platform. Results
were limited, however, and a comparison between [79] and [80] could not be made.

In [58], the technique implements a hybrid of feature-based and direct methods called “semi-direct visual
odometry” (SVO) which uses a variety of depth filtering methods in combination with a stereoscopic
camera. Sensor fusion is a core part of the implementation here, utilizing gyroscopic systems in combination
with the camera feeding into the SVO solution as a subsystem. Height sensor plus accelerometers
accompany the SVO subsystem, feeding into an unscented Kalman filter to produce the localization
solution. Finally, LiDAR is used to create mapping, planning, and trajectory generation using graphing
methods. The system appears to be robust and mountable on a less than 10lb sSUAS flight system. A total
solution may not be usable on micro-vehicles but does demonstrate usability on smaller aircraft.

This gives way to [81] which adapts odometry techniques to the specific needs of fixed wing aircraft. In
mounting a fixed wing system, the limitations of a vehicle unable to hover and are frequently employed in
higher speed, higher endurance, higher altitude missions impose limits on the design of potential odometry
systems. Here, relative vision techniques used with a singular monocular camera provides localization
without the limitations of shorter-range sensors. A multi-state constraint Kalman Filter is the main
component of the fixed-wing system as it is agnostic regarding distance to features. The system employed
is a roughly 3Ib hand launched aircraft with a 2m wingspan. Flight tests conducted indicate useful
navigation but difficulty in straight-line flight, especially over less well-featured terrain with error
maximums on the order of 10m. [82] also uses a multi-state constraint filter as an effort to overcome the
weaknesses of RGB-D stereo cameras and laser scanners. In simulations using imagery and telemetry
acquired from previous flight tests, error using the method accumulated to less than 3% over the flight, 15-
20m horizontally.

A number of research efforts focus on indoor navigation at small scale using feature based odometry. While
not demonstrating functionality outdoors, another feature matching technique in [83] employs an RGB-D
camera that provides stereoscopic light information. The system development was conducted on board a
light multicopter flown in indoor environments. The limitation of the stereoscopic system, as with others,
remains the limited range of the sensor. The primary contribution of the work, however, is an empirical
approach to testing and sampling using the Belief Roadmap algorithm. Overall, multiple sampling methods
were tested, and a sampling uncertainty method outperformed others. Practical navigation results indicated
a maximum deviation of 19cm. However, this was in indoor environments with limited area. [84] offers a
similar test in a limited indoor cluttered environment. The primary contribution involves POMDP tested
through simulation using reward functions. In [85], multi-objective functions make the primary
contribution with a monocular camera fusion system feeding into the controller. Path planning is
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accomplished using a potential field. Flight tests validated the adequacy of local control in the Proportional-
Integral-Derivative control loop.

[86] poses a unique application of Odometry. Instead of focusing on onboard replacement sensors, here a
ground-based system using infrared stereo is used as a landing aid for multiple airborne vehicles,
performing a navigation function similar to radio-navigation common to crewed aircraft such as VHF
Omnidirectional Range or instrument landing systems. While this component applies directly to the ground-
guided portion of the GPS denied localization taxonomy, the odometry focus of this implementation
warrants inclusion here. Most notable is the demonstration of guidance to landing for both copter and fixed-
wing UAS using arresting cables, very different types of guidance, stages of flight, and even control laws.
The landing error for copter flight test remained below 10cm for a 54cm vehicle size. Error for the fixed-
wing landing test was below 2m for a touch-down area of four arresting cables spaced 4m apart. [87]
presents a similar effort in creating an infrared based approach-and-land system. In this case, visual
processing was aimed at actual runway detection and estimation. Errors in flight tests were calculated as
Root Mean Square (RMS) values. Given the angular nature of the navigation solution, these values
decreased appropriately with proximity to the runway.

Drawing a contrast with previous approaches, [88] attempts to use a prebuilt map to create a basis for pixel
matching and alignment with known features and edge detection. For an area of roughly 100x50m, the error
remained usually within 2m.

In summary, Visual Odometry is one of the more promising GPS-denied solutions. As with other research,
it remains at its best when combined with multiple methods in the taxonomy within the size, weight, power
constraints of the platform. As discussed, the faster, higher nature of fixed-wing flight and missions may
limit the usefulness of stereoscopic sensors, especially at higher altitudes. But monocular implementations
may be sufficient. And the development and interest in ground-based odometry solutions demonstrates that
not all localization need be contained and limited to airborne systems that reduce useful mission load. As
always, validation in flight is most useful in determining the maturity and readiness of a system for
deployment and/or commercialization. Regardless, several solutions have demonstrated that visual
odometry is effective and useful for a variety of platforms and environments.

Table 11: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques Focused
Exclusively on Visual Odometry.

Paper Method Hardware Aircraft Accuracy |Location| Experiments| SWaP
Mounted
Rm: 21
(78] [Visual Odomet Monocular - I?X ter/Micr 5-10m Outdoor/ |Flight Test, Onhi]i .
st © eryVision ericopte cro transient [Indoor |Real World venicieas
drone well as
1501b
Mounted
. Monocular . Flight Test,
<
[79] [Visual Odometry \Vision Rmax Helicopter [< Sm Outdoor Real World i)/relhlifl()elb
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Monocular
. Vision + Small Flight Test, [Small
Visual t [ ;
[80] |Visual Odometry Ultrasonic  |Multicopter v ndoor Real World |UAS
Sensor
. Stereoscopic [Small Flight Test, |Small
[58] [Visual Odometry camera Multicopter tm [ndoor Real World |UAS

Table 12: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques that Combine
Visual Odometry with a Collection of other Approaches.

Paper| Method Hardware Aircraft | Accuracy | Location |Experiments| SWaP
Monocular Strix
Visual Max ~0.02 Flight Test
[81] Oils(l)lrillet Camera + StratoSurfer lo::tion m Outdoor Relfl W:rsl(i ~31b
Y Jetson TX2  |Fixed-Wing
Visual
+
OdorTletry Monocular Small <3%, 15- ) .
[82] [Multistate . . n/a Simulation  |n/a
. Camera Fixed-Wing [20m
Constraint
Filter
Visual
try +
(83] ggﬁen;e Y " [stereo CameraMicro 0.19m ndoor Flight Test, [Micro Air
(RGB-D) Multicopter | Real World  |Vehicle
Space
Mapping
Visual
M 1 Small . .
[84] |[Odometry + CaongrC; ar Mnlllélltico tor n/a n/a Simulation |n/a
POMDP P
[85] Visual Monocular Small rcecsmt)rr(l)ie ndoor Flight Test, [Small
Odometry |Camera Multicopter P Real World  [Multicopter
adequate
Visual Small L 0.1m Small
Odometry +|Ground-Based [Multicopter ' Flight Test, [Aircraft,
<
[86] Ground Hardware + Small IC:liopetgr\,Viim Outdoor Real World  |Ground
Based Fixed Wing X £ Systems
Visual Small
Ground-Based
Odometry + Small Fixed Flight Test, [|Aircraft
[87] O MHardware A m (FLIR) [Outdoor g Csh, treratt
Ground Wing Real World  |Ground
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Based Systems
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[88] Visual Monocular Small o Outdoor Flight Test, [Small
Odometry |Camera Multicopter Htdoo Real World  [Multicopter
b. SLaM

Simultaneous location and mapping, or SLaM, is a mature technology that has been employed successfully
in automobile navigation since 2005 and the Grand DARPA Challenge [89]. SLaM is about the buildout of
localization while simultaneously creating a map of the environment. A variety of techniques will follow
the type of sensor used whether laser (LiDAR) or visual in the case of vision-SLaM. This map-building
process is integral to the method and informs the advantages and drawbacks to the technique. This process
is also in contrast to visual odometry which focuses on the change of image to acquire the pose of the
camera and therefore the vehicle.

A straightforward example of vision SLaM can be seen in [90]. An indoor multicopter platform is used
with a monocular camera in concert with the SLaM algorithm. In indoor flight tests, the linear performance
was effective. In an earlier flight test, linear error reached less than 0.5m. The error in rotation was
significant, however. Earlier map drift caused the full loss of the map in rotation. The addition of a
correction step mostly eliminated the issue and RMS error was reduced to less than Scm. [91] reported a
similar monocular setup with an extended Kalman filter. As part of the design, however, the flexibility of
vision systems is demonstrated by this project’s inclusion of a visual odometry algorithm coupled with the
SLaM solution. In outdoor test flights, error was held to the centimeter level. [92] performed similarly
undergoing indoor tests with a micro UAS and single camera. The source mentions the use of a laser
rangefinder in larger multicopter aircraft but left off this implementation. Error remained small, well within
centimeter distances. Also employing monocular vision and a laser rangefinder was [17]. However, beyond
development of the system and visual depiction of mapping results from the laser, no data on accuracy was
provided. [93] is an older research effort exploring SLaM with a monocular camera. In indoor testing, the
error recorded was nevertheless, less than 2m demonstrating the efficacy of the technique in early practical
tests.

One interesting system developed in [94], sought to focus on Martian exploration for former bodies of
water. A combination of visual odometry and SLaM techniques plus POMDP mentioned earlier, the
research’s contribution is primarily toward mapping techniques for survey, ultimately off Earth. The
techniques, however, provide navigation capability and, in concert with a monocular visual-inertial state
estimator, resulted in simulation test with RMS error greater than 20m. Authors report calibration issues
contributing to the results.

In an effort to tackle the problem of higher altitude air navigation, [95] uses a combination of VO and SLaM
methods. As an earlier example of the research, a heavier more performant helicopter was used that included
PC-104 architecture. As with other SLaM solutions, the vision system is monocular. In part, because of the
expected operational altitude, stereo vision would have been of limited use, given the narrow onboard
mounting separation. Horizontal error in one axis during flight tests that incorporated all solutions was less
than 5m.
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The changing nature of outdoor environment, especially where lighting constantly changes, [96] sought to
use an algorithm processing low resolution images within a SLaM structure. While the platform is ground-
only, the effort to mitigate a combination of environmental factors is a notable contribution. As before,
visual odometry is coupled with the SL.aM system. There is not extensive error data as the research was
intended to demonstrate viability of the technique.

Of the two, SLaM and visual odometry, SLaM is the more mature technology. However, as demonstrated
here, the two are not incompatible. Multiple sources show the use of both. The focus of the research here,
however, is the SLaM technique, at least in concert with the physical systems. It is also notable that there
is a lack of laser mapping such as the LiDAR systems found in autonomous automobile development.
Where there are lasers used, it is primarily in either indoor, small volume settings or at very low altitudes
given the range limitations of lasers. It is evident that SLaM’s clear weaknesses: less effective in transient
environments with no opportunity to map and the inability to deal with non-static objects such as ground
vehicles or people, indicates a reliance on secondary systems. This is likely a contributor to the fact that
visual odometry is also used often in these solutions.
Table 13: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques Focused

Exclusively on SLaM.
Paper| Method | Hardware Aircraft | Accuracy |Environment] Experiments SWaP
Vision Monocular Micro Flight Test, |Small
< It
[50] SLaM Camera Multicopter Sem ndoor Real World  [Multicopter
Vision Optical Flow [Small Flight Test, [Small
1 <0.1 t .
[91] SLaM Camera Multicopter 0.Im Outdoor Real World  |Multicopter
Monocular
Vision Camera + Micro Flight Test, |Small
92 . <0.1 Ind .
[92] SLaM Laser Multicopter m naoor Real World  [Multicopter
Rangefinder
[17] Laser Laser Small a a a Small
SLaM Rangefinder [|Multicopter Multicopter

Table 14: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques that Combine
SLaM with a Collection of other Approaches.

Paper| Method Hardware | Aircraft | Accuracy Environmentl Experiments| SWaP
.. M 1 Small
[93] |Vision SLaM onoewiat L <2m Indoor Ground Test ma
Camera Aircraft
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.. Small Small
[94] Vision SLaM [Monocular Multicopter >20m Outdoor Simulation  |Multicopter
+ POMDP Camera . .
(Martian) (Martian)
Vision SLaM
. Monocular . Flight Test, .
J’_
[95] | Visual Camera Helicopter [<5m Outdoor Real World Helicopter
Odometry
isi LaM
[96] Xl\sllionals a Monocular  |Ground b.a Outdoor Ground Test, |Ground
S Camera Vehicle ' Htaoo Real World |Vehicle
Odometry

c¢. Template Matching
Template matching involves image processing methods that use datasets to evaluate feature alignments.
Given a known dataset, vision sensors can be used to align an aircraft’s relative position and rotation relative
to that dataset. There are advantages and drawbacks to this approach, but a handful of research projects
have used the technique.

In [97], the authors use another ground-based landing system similar to [86] and [87]. Here the calibration
process includes selecting reference points and matching pre-calibrated imagery taken by IR cameras to the
current state of the vehicle. Accuracy in this case (noting that this is angular and so precision increases with
proximity to the runway as in instrument landing systems) produced error two within tens of centimeters.
[98], in an effort to enable mountainous terrain navigation, used parallax occlusion visual data to match
against other imagery, namely drainage patterns. The concept of the work and its contribution are that on-
board sensors would produce a product like the latter type of image and localize by comparison to the
rugged terrain dataset. This was demonstrated in computation simulation of these images but was not
integrated into an aircraft or simulated as an aircraft. The technique warrants further investigation, possibly
as part of an evaluation of multiple techniques most suitable to rugged terrain navigation and the various
challenges surrounding mountain flight. In [99] a hybrid approach to be integrated into a helicopter was
proposed to build maps. The process, from hybrid feature extraction in an initial map creation to generating
a more efficient follow-up, works as a system design not yet implemented. In a unique contribution, [100]
creates a dataset called “denseUAV” using densely sampled imagery dedicated to UAS navigation. Of
interest, these images were collected at 80m, 90m, and 100m above ground to account for the change in
perspective downward looking vision sensors would get with altitude change. Coupled with this was a
baseline model adapted to take advantage of the dataset. As a demonstration of the methodology, the
techniques showed a potential contribution to a systematic use of dataset generation for navigation.

The limitations of template matching are self-descriptive. There must be robust datasets suitable for air
navigation. This is difficult because ground features can change dramatically depending on the altitude of
the aircraft attempting localization and navigation. This is mitigated by increasing the dataset to account
for multiple altitudes worth of information. In any case, this describes a brute force attempt at localization
except in known small areas. UAS transiting an area would be much more likely to stumble on terrain and
features not found or at least not found along the precise flight plan.
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Table 15: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques that Combine
Template Matching with a Collection of other Approaches.

Paper| Method Hardware | Aircraft | Accuracy Environmentl Experiments| SWaP
Small Fixed
INIR C , . . .
[97] Template Grounzmera Small F1xed<1m Outdoor Flight Test, |Wing,
Matching . Wing Real World  |Ground
Equipment .
Equipment
Templat
(o8] | SPEE e h/a h/a h/a Simulation  |n/a
Matching
Template
Matching +
. M 1
[99] [Hybrid onocutar n/a n/a n/a n/a n/a
Camera
Feature
Extraction
Template
Matching + |C . .
[100] atciing amera. n/a n/a Outdoor Simulation  |n/a
Dataset (unspecified)
Creation

d. Feature Points Matching

Visual odometry methods frequently involve feature matching methods. The works discussed here are best
categorized as dedicated primarily to feature matching rather than having such methods as part of a larger
solution or are treated in isolation from a larger system. [101], for example, emphasizes the feature matching
methods directly while still performing simulation and indoor flight test. The contribution to a navigation
solution is the claim that as few as four feature points are sufficient for operation. Position error, indeed,
remained below 0.5m. In [102], this method was used to create a control loop to system servos for
navigation using feature points. The flight platform was a small, nearly micro, UAS. In flight test, the error
was tested usually down to the centimeter level over a minute of flight time. The research in [103]
performed feature points comparison using Google Map data. Applying the method returned confidence
levels of correspondence. In subsequent flight test, the maximum trajectory error appears to be less than
10m. The authors regard this as a successful demonstration of the method given the limitations of the
dataset. Gimbal stabilization and thermal cameras are expected improvements. Finally, [104] looks at front-
camera image collection for the dataset and then performs feature matching. Simulations conducted indicate
that the solution could lead to simultaneous operation in a SLaM-like system.
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Table 16: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques that Combine
Feature Points Matching with a Collection of other Approaches.

Paper| Method Hardware | Aircraft | Accuracy |[Environment] Experiments| SWaP
Feature .
. Monocular Small Flight Test, Small
[101] Points . <0.1m Indoor .
. Camera |Multicopter Real World | Multicopter
Matching
Feature
Points
Matching +| Monocular Micro Flight Test, Micro
102 . <0.1 Ind .
[102] Servo Camera |Multicopter m naoor Real World | Multicopter
Control
Loop
Feature
Points
. Monocular Small Flight Test Small
1 Matching + <1 t :
[103] ) Mate mg. Camera |Multicopter Om Outdoor Real World | Multicopter
Commercial
Dataset
Feature Monocular
. Y Camera + Ground Ground
[104] Points . n/a Indoor n/a .
. Augmented | Vehicle Vehicle
Matching .
Reality

The upshot of feature points research as a category is that it is a potential avenue for further refinement of
algorithms and methodology. As with template matching, preexisting data is required for localization, at
least to start. There are interesting potential avenues to pursue such as refinement application of existing
datasets as in [103]. The more robust areas of investigation appear to be, on the whole, in visual odometry
or in some mixture of methods.

This is a theme across all vision methods. The definition and boundary between the methods is fluid and
not strictly limited. A VO solution can certainly feed into a SLaM system. Monocular or binocular vision
hardware can couple with multistep control systems to improve the solution. One of the key points of vision
methods is that the physical equipment can be lightweight and less demanding on even smaller UAS. There
is opportunity for image processing techniques to employ CPU or GPU intensive solutions and that could
impose power and weight costs, but continued improvements in mobile processing, especially in ARM,
shows that such limitations will decrease over time. The takeaway appears to be that outdoor tests
demonstrate the viability or at least the proximity of a solution to wider use. Interest appears to be high in
the visual odometry arena and, alone or coupled with other techniques, marks a need for further research in
this area.
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