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Executive Summary 
The integration of Unmanned Aircraft Systems (UAS) into operational scenarios for first responders, 
particularly in rural or low population density areas, represents a significant advancement in rapid response 
and assessment capabilities. However, the effectiveness of these systems relies on robust Command and 
Control (C2) communications and reliable Global Positioning System (GPS) signals, which are crucial for 
operational safety and precise navigation. This project undertakes a comprehensive approach to document 
C2 communications (using the 4th Generation Long-Term Evolution communication system) and GPS 
navigation for UAS, focusing on three key areas: cellular coverage mapping, GPS signal quality assessment, 
and a review of the existing localization techniques in GPS denied environments. 

1. Cellular Coverage Mapping: 

The project's first objective is the development of a comprehensive map displaying cellular coverage from 
the four major service providers (Verizon, AT&T, US Cellular, and T-Mobile) across the 50 states of the 
USA, starting from ground level up to 400ft in receiver altitude. A modified version of the open-source RF 
Signal Propagation, Loss, and Terrain (SPLAT!) analysis tool was utilized, enhanced with multi-threading 
capabilities and high-resolution terrain data for accurate simulation. These simulations are meticulously 
compared against the FCC's 4G LTE coverage map, which serves as a benchmark, to ensure precision. By 
calibrating simulation parameters based on this comparison—adjusting the antenna height, ERP value, 
operating frequency, signal threshold, etc.—the project produces a detailed coverage map that helps 
operators identify regions with adequate service to maintain uninterrupted command and control 
capabilities for effective UAS deployment. 

2. GPS Signal Quality Mapping: 

The second component of the project involves creating a dynamically updating map of GPS signal quality 
across all 50 states. This map is particularly vital for navigation and precise positioning of UAS, especially 
in environments where GPS signals may be obstructed or weakened by geographical features. The GPS 
coverage map is generated using the latest satellite data (updated hourly) and accounts for terrain-induced 
signal blockage, providing a realistic overview of signal availability. This dynamic tool assists operators in 
real-time to adapt flight plans and operations according to the varying strengths of GPS signals across 
different regions. 

3.  Review of Alternative Location Technologies: 

Recognizing the limitations of GPS in certain scenarios, the third focus of the project is a literature review 
on alternative technologies that can provide precise location information where GPS signals are inadequate. 
This review covers a range of emerging and established technologies, such as terrestrial-based technologies 
like LIDAR, and AI-based methods. The aim is to explore and evaluate these alternatives to supplement or 
replace GPS in scenarios where it fails to meet operational needs. 

In summary, the research aims to fortify the foundational communication and navigational infrastructures 
required for effective deployment of UAS by first responders in challenging environments. By mapping 
cellular and GPS coverage and reviewing potential alternative technologies, the project supports safer, more 
reliable, and efficient UAS operations, thereby enhancing the capabilities of first responders in critical 
scenarios. 
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Introduction  
Command, Control, and Navigation are critical functions for any Unmanned Aircraft System (UAS).  These 
tasks become even more critical for first responders that operate in rural regions, or regions with low 
population density.  Such scenarios can be significantly enabled by an accurate understanding of the coverage 
for command and control as well as the strength of Global Positioning System (GPS) signals in regions of 
prospective UAS flight. To assure reliable flight planning, particularly in rural areas of the country, this 
project combined three tasks: (1) develop a map to display cellular coverage for the major providers, (2) 
develop a dynamically changing map of GPS signal quality, and (3) perform a literature review of techniques 
that may be used to provide precision location information in regions with insufficient GPS signal strength. 

4G LTE Coverage  

Complex Factors Influencing Signal Propagation in UAS Communication Systems 

In determining coverage for communication systems, especially for UAS, a range of environmental and 
technical factors can significantly impact signal effectiveness. While standard models typically focus on 
quantifiable elements like signal strength and terrain, other critical factors such as foliage, multipath 
interference, and the impact of building materials also play substantial roles, yet they are often not 
accounted for in primary analyses. 

Foliage, for instance, contributes to signal attenuation through absorption and scattering of radio waves, 
especially in frequencies used by Long-Term Evolution (LTE) and other cellular communications. The 
density, type, and water content of vegetation can all influence signal reduction and coverage area. 
Similarly, multipath interference, arising from signal reflections from various surfaces like buildings and 
mountains, can lead to signal fading or connectivity loss, particularly in urban or complex topographic 
settings. Moreover, the construction materials of urban buildings can either absorb or reflect Radio 
Frequency (RF) signals, impacting signal propagation. Dense materials like concrete or brick can notably 
weaken RF signals, affecting coverage inside buildings and in their proximity. 

These factors are omitted from the primary analyses in this work because of the complexity and variability 
they introduce into signal propagation models. Incorporation of elements like foliage density or specific 
building materials requires detailed, site-specific information that is difficult to obtain. Additionally, the 
dynamic nature of these factors, like seasonal changes in vegetation or urban development altering the 
existing environment, adds to the modeling challenge. Consequently, standard models usually prioritize 
more stable and measurable factors like terrain and signal strength, aiming for a balance between accuracy 
and practical applicability in coverage assessments.  

In addition to these factors, the Doppler effect is another consideration. This phenomenon, observed when 
there is relative motion between the transmitter and the receiver, results in a change in the frequency of the 
received signal compared to the transmitted one.  

When a UAS moves towards a transmitter, a positive Doppler shift is observed, meaning the observed 
frequency is higher than the transmitted frequency. Conversely, when moving away from the transmitter, 
the observed frequency decreases (negative Doppler shift). This shift can significantly impact 
communication system performance. 



 

9 

To see how fast a UAS would need to fly to experience a 1% shift in the carrier frequency, the Doppler 
effect formula for electromagnetic waves can be used: 

𝑓𝑓′ = 𝑓𝑓 ∗ �
𝑐𝑐

𝑐𝑐 ± 𝑣𝑣
� 

Where: 

• f': is the observed frequency. 

• f: is the transmitted frequency (carrier frequency). 

• c: is the speed of light. 

• v: is the velocity of the receiver relative to the source (the speed of the UAS). 

For a 1% shift, f' would be either 1.01f or 0.99f, depending on whether the UAS is moving towards or away 
from the transmitter. Considering a carrier frequency of 2GHz, to experience a 1% increase in the carrier 
frequency due to the Doppler effect, a UAS would need to fly at an extremely high speed of approximately 
3,030,303 m/s, or 10,909,090 km/h towards the source of the signal. This speed is extraordinarily high and 
far beyond the capabilities of any current UAS or aircraft.  Such a Doppler shift is not feasible for UAS 
operations. This calculation highlights the fact that while the Doppler effect is a critical consideration in 
high-speed scenarios, such as in satellite communications or deep-space probes, its impact on UAS is 
negligible at typical operational speeds and is neglected for this analysis. 

Comparative Analysis of Throughput Requirements in Manual and Automatic Unmanned 
Aircraft Modes 

Upon a comparative analysis of Table 1 and Table 2, which present the estimated non-payload throughput 
requirements for a single Unmanned Aircraft (UA) in both manual and automatic modes, several insights 
emerge regarding communication demands during various flight phases.  

In manual mode, as depicted in Table 1, the throughput requirements are notably higher across all 
communication links. This is particularly evident during the descent/landing phase, where the maximum 
throughput reaches 3,322 bytes/sec (or, 26,576 bits/sec). This peak value represents the worst-case scenario 
for throughput, demanding substantial data transmission to maintain control, navigation, and coordination. 
The heightened requirement is attributed to the pilot's need for increased data to manually manage the UA, 
coupled with the critical nature of the descent phase which necessitates heightened communication for 
safety and navigational precision. 

On the other hand, Table 2 outlines a different profile for automatic mode operations. Here, the demand on 
the Command and Control (C2) link is significantly reduced, reflecting the UA's autonomous capabilities 
which require less intervention from the ground pilot. The most demanding phase in automatic mode shows 
a total throughput of 2,077 bytes/sec (or 16,616 bits/sec), substantially lower than its manual equivalent, 
emphasizing the efficiency of autonomous systems in reducing bandwidth requirements. 

In essence, this analysis highlights the importance of communication systems capable of supporting the 
high data throughput required for manual UA operations, particularly during critical flight phases. The 
disparity between manual and automatic modes highlights the impact of autonomous systems on 
communication needs. Ensuring that communication systems are equipped to handle these peak demands 
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is crucial for the operational integrity and safety of UA flights, with the worst-case scenario of 3,322 
bytes/sec (or 26,576 bits/sec) in manual mode serving as a standard for system performance requirements.  

Table 1: Estimated Non-Payload Throughput Requirements (bytes/sec) of a Single Unmanned Aircraft in Manual 
Mode. Data from [1]. 

Flight Phase Forward
/ Return 

C2 Link 
vs. 

Air/Gnd. 
RF Link  

Aircraft 
Control  

Aircraft 
Control 

+ 
Navaids  

ATC 
Voice 
Relay  

Target 
Data  

Total 
Throughput 

bytes/sec 

Departure and 
Arrival (Takeoff/ 

Climbout) 

Forward 
Link 

C2 Link 115 188 600 N/A 903 
A/G Link 297 465 1144 N/A 1906 

Return 
Link 

C2 Link 405 265 600 600 1870 
A/G Link 957 460 1144 695 3256 

Transit/Extended 
Operations 

Forward 
Link 

C2 Link N/A 199 600 N/A 799 
A/G Link N/A 385 1144 N/A 1529 

Return 
Link 

C2 Link N/A 329 600 600 1529 
A/G Link N/A 544 1144 695 2383 

Departure and 
Arrival (Descent/ 

Landing) 

Forward 
Link 

C2 Link 390 276 600 N/A 1266 
A/G Link 946 476 1144 N/A 2566 

Return 
Link 

C2 Link 420 312 600 600 1932 
A/G Link 973 510 1144 695 3322 

 
 
Table 2: Estimated Non-Payload Throughput Requirements (bytes/sec) of a Single Unmanned Aircraft Operating in 

Automatic Mode. Data from [1]. 

Flight Phase 
Forward
/ Return 

C2 Link 
vs. 

Air/Gnd. 
RF Link 

Aircraft 
Control 

Aircraft 
Control 

+ 
Navaids 

ATC 
Voice 
Relay 

Target 
Data 

Total 
Throughput 

bytes/sec 

Departure and 
Arrival (Takeoff/ 

Climbout) 

Forward 
Link 

C2 Link N/A 79 600 N/A 679 
A/G Link N/A 121 1144 N/A 1256 

Return 
Link 

C2 Link 27 265 600 600 1492 
A/G Link 64 460 1144 695 2363 

Transit/Extended 
Operations 

Forward 
Link 

C2 Link N/A 47 600 N/A 647 
A/G Link N/A 86 1144 N/A 1230 

Return 
Link 

C2 Link N/A 85 600 600 1285 
A/G Link N/A 130 1144 695 1969 

Departure and 
Arrival (Descent/ 

Landing) 

Forward 
Link 

C2 Link 81 88 600 N/A 769 
A/G Link 416 132 1144 N/A 1692 

Return 
Link 

C2 Link 42 112 600 600 1354 
A/G Link 80 158 1144 695 2011 
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FCC Coverage Map 

In the context of C2 communications for UAS, the correlation between LTE network coverage and the 
required data transmission rates is critical. The effectiveness of C2 communication relies heavily on 
consistent and reliable LTE coverage, underscored by the adoption of standard benchmarks such as 5 Mbps 
for uplink and 1 Mbps for downlink speeds. The data in Table 1 and Table 2 suggests that the required C2 
throughput must exceed 3,322 bytes/second in order to support all activities of the UAS.  In order to achieve 
reliable connection to the LTE network and to achieve sufficient throughput to effectively control a UAS, 
an additional margin is required.  For this reason, the published benchmark of 5 Mbps for the uplink and 1 
Mbps for the downlink is used throughout the document.  The 5 Mbps uplink speed provides sufficient 
margin to transmit control signals and data from the UAS to the ground station, facilitating real-time 
operational control. Similarly, the 1 Mbps downlink speed provides ample throughput to receive operational 
commands and navigational data. 

In this context, the Federal Communications Commission (FCC) Coverage map [2] shown in Figure 1, 
released on May 15, 2021, becomes a key resource. This map presents Fourth Generation (4G) LTE mobile 
broadband coverage across the United States and features separate layers for broadband and voice coverage 
from the nation's four largest mobile carriers: AT&T Mobility, T-Mobile, US Cellular, and Verizon 
Wireless. The data shown on this map, voluntarily submitted by these major carriers, provides the public 
with detailed information on mobile service coverage, as part of the broader Broadband Data Collection 
program. The criteria associated with this map, such as a 90% cell edge probability and 50% cell loading 
factor, with a maximum resolution of 100 meters for both voice and data coverage, aim to depict areas 
where users can expect minimum download speeds of 5 Mbps and upload speeds of 1 Mbps. 

Utilizing the FCC Coverage map as a benchmark in this work allows for a comparative analysis to aid in 
evaluating the accuracy and reliability of data collection and the effectiveness of the technologies tested. 
By assuming a receiver position at ground level, the maps provide insights into the real-world applicability 
of LTE networks in supporting the requisite data rates for effective C2 communications in UAS operations. 
This analysis provides UAS operators with regions in which network connectivity satisfactorily meets the 
communication demands of each mission to ensure safe and efficient UAS deployments. 

Figure 1: FCC map for 4G LTE coverage [2] as of May 15, 2021 (AT&T Mobility, T-Mobile, US Cellular, 
Verizon). 
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Available Data Sources 

1.1.1 The Homeland Infrastructure Foundation-Level Data (HIFLD)   

The Homeland Infrastructure Foundation-Level Data (HIIFLD) dataset [3] contains cellular tower locations 
as recorded by the FCC. This dataset is intended for use in Geographic Information Systems (GIS) for 
general planning, analysis, and research. The database contains a total of 2,4047 cellular locations. This 
number includes the four main operators (Verizon, AT&T, US Cellular, and T-Mobile) in addition to other 
independent providers.  

1.1.2 OpenCelliD 

OpenCelliD [4] contains data that is primarily derived from smartphone users who use mobile applications 
such as OpenCelliD or OpenCelliD Client, and from commercial tracking devices such as black boxes. 
Additionally, corporations contribute through wholesale data donations. This collected data is then 

Figure 3: OpenCelliD [4] Example of Antenna 
Coordinates. 

Figure 2: The Homeland Infrastructure Foundation-Level Data (all providers) from [3]. 

Jarrell, Audrey
Was not in acronym list
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integrated into the OpenCellID API database. However, this dataset was excluded from use in this work 
because of its limited accuracy. The coordinates provided by the dataset incorporate an error margin that 
could extend up to 40 kilometers, making it unsuitable for the specific needs of this project. Figure 3 
illustrates a cellular tower's location as indicated by OpenCelliD, highlighting the absence of an actual 
tower at that specific location. The dataset indicates that the actual position of the cellular tower could 
potentially be located anywhere within an estimated 37km radius from the given coordinates as shown in 
Figure 4. 

1.1.3 US Cellular Tower Locator 

The US Cellular Tower Website [5] provides US Cellular tower locations.  

Additional Data Collection 

Due to the incompleteness of the datasets provided by the previous sources, extensive additional data was 
gathered using three main approaches: 

Figure 4: OpenCelliD [4] Position Error Margin. 

Figure 5: US Cellular Tower Locator Data [5]. 
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1.1.4 Cellmapper 

Cellmapper [6] utilizes crowd-sourced data, gathered from a broad user base, to provide cellular tower 
locations as shown in Figure 6. For added precision, the data is cross verified with Google Maps, enhancing 
the accuracy of the tower location information. 

1.1.5 Botlink-Developed Web Tool 

Additional data was collected from the Botlink-Developed Web Tool. This involved zooming into the 
website's maps to identify clear antenna patterns indicating tower locations as shown in Figure 7, followed 
by extracting the precise coordinates of these towers. 

1.1.6 AntennaSearch 

AntennaSearch [7] offers information on a variety of towers, including the cellular ones. As shown in Figure 
8, the website provides all the antennas and towers within a 3-mile radius of the input coordinates. However, 
it requires manual filtering to extract data specifically related to cellular towers and then to the four main 
providers, given the broad range of tower types listed.  

Figure 6: Cellmapper Crowd-Sourced Data [6]. 

Figure 7: Extraction of Tower Locations Using Botlink-Developed Website. 
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From the combined data sources of Cellmapper, Botlink Website, and AntennaSearch, a total of 14,946 
cellular tower locations were identified, recorded and added to the available datasets. 

LTE Coverage Simulation 

The simulation process began by leveraging the existing data contained in the HIFLD and US Cellular 
tower locator datasets. This approach, however, resulted in incomplete coverage with notable gaps caused 
by a significant number of missing antenna locations as depicted in Figure 10 and Figure 9. To address this 
inadequate set of antenna locations, a data acquisition phase was undertaken during which tower locations 
were collected from sources described above including Cellmapper, AntennaSearch, and the Botlink 
website. Upon integrating the additional identified antenna locations, updated simulation outcomes were 
cross-referenced with the FCC coverage maps. Differences identified during this comparison were resolved 
through adjustments to the simulation parameters to improve alignment with the reported FCC coverage. 

 

Figure 10: Initial Simulation Result for AT&T 
Operator over the Western Half of the Continental 

USA. 

Figure 9: Result for the AT&T Operator for the 
Western Half of the Continental USA. 

Figure 8: AntennaSearch [7] Data Example. 
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1.1.7 LTE COVERAGE ANALYSIS 

The type of communication used for C2 of UAS varies depending on the type of UAS, planned operational 
parameters, and the type of environment the UAS will be flying in. The two most common divisions for 
type of operation are visual line-of-sight (VLOS) and beyond visual line-of-sight (BVLOS). In the case of 
VLOS operations, C2 is usually accomplished using direct communication methods such as radio 
transmitters, wireless fidelity (Wi-Fi), or Bluetooth receivers. For BVLOS operation, reliable long-range 
communication methods are used, such as LTE communications, to extend operational range well beyond 
common radio limits. 

To support UAS operations in both VLOS and BVLOS scenarios, analysis of LTE coverage can accelerate 
the planning process to determine the feasibility of operations for a given area using LTE as a mechanism 
for C2 communications. For this C2 method the FCC provides a coverage map for LTE data derived from 
data provided by the major LTE providers in the United States that meets a defined set of performance 
requirements, such as 5Mbps down and 1Mbps up. [2] These throughput requirements meet the required 
minimum rates for C2 communication, as discussed in Section 0. 

Specifics on how these coverage maps were generated are not provided by the FCC and may not be 
consistent between each provider. To validate these coverage maps and generate a non-provider version of 
the coverage map, an analysis of LTE coverage was performed for the four major cellular providers in the 
United States: Verizon, AT&T, T-Mobile, and US Cellular using a UND developed simulation tool. 

1.1.8 Simulation Tool 

The coverage analysis was performed using a modified version of an open-source RF Signal Propagation, 
Loss, and Terrain analysis tool SPLAT!. [8] This tool provides an easy-to-use method to simulate RF 
propagation including the effects of path loss and terrain blockage. 

The modified version of the tool supports additional features such as multi-threading computation to 
accelerate simulation time as compared to the single threaded version of SPLAT!. Support for higher 
resolution terrain data, such as Light Detection and Ranging (LiDAR) data, and basic radiation pattern 
profiles are supported in horizontal and vertical directions. 
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The modified tool also includes a Graphical User Interface (GUI) and command line wrapper to allow for 
easier use of the tool and automation of command line parameters and identification of the correct terrain 
to use for the tool to provide accurate results. The GUI interface for the tool is shown in Figure 11. 

1.1.9 Initial test results 

To provide timely analysis results and ensure the resulting dataset is a reasonable size, the analysis was 
performed using 3-arcsecond (~90m) terrain data and the underlying tool was configured to use ITWOM 
3.0 for the path loss calculation since it should provide high quality results in areas near transmitters.  

Before beginning the full analysis, multiple test sites that had most of their parameters and configurations 
defined were chosen and simulated to verify the tool would produce results that are valid for a given LTE 
antenna location. The first test site results are shown below in Figure 12 for a US cellular site in Northern 
California where the results are relatively similar with gaps in the same relative locations around the tower. 
Similar coverage patterns can be seen on the south facing sides of the mountains in the top left corners of 

Figure 11: GUI Wrapper for RF Analysis Tool. 

Figure 12: LTE Analysis Test Site #1, FCC (left) and Tool (right). 
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the images and the same gaps from valleys and blockage from mountains can be seen between the coverage 
maps from the providers and the results generated by the analysis tool. 

The results for a second site US Cellular site are shown in Figure 13, where again, the results are relatively 
similar with gaps in the same areas with large gaps produced by the mountain in the same relative areas. 
The tool did indicate better coverage at the edges but this is most likely from not using the exact same 
configuration and analysis tool as the cellular provider. 

1.1.10 Simulation Parameters 

Simulation of LTE coverage involves several parameters that can significantly influence the accuracy of 
the result. Key parameters used by the BPANE simulation tool include the following:  

• Antenna Height: This is the height of the cellular antenna above the ground. This critical parameter 
has a significant impact on range and signal quality because of the need for line-of-sight 
communication with the receiver. Antennas that are located at higher elevations exhibit fewer 
problems associated with obstacles on the ground. The HIFLD dataset specifies only the maximum 
elevation of the entire structure, not the height of the antenna itself. For simulation purposes, it is 
assumed that the antenna is mounted at a point which is 75% to 80% of the maximum height of the 
structure.  

• Effective Radiated Power (ERP): This parameter represents the power radiated by the antenna to 
the surrounding area. ERP is calculated by combining the power output from the transmitter and 
the gain of the antenna. The value of ERP strongly influences the effective range of signal 
propagation. In the HIFLD dataset, the Effective Radiated Power for approximately 84.5% of the 
antennas is recorded to be 140.82 Watts. 

• Receiver Height: The height of the receiver above the ground also affects signal reception. 
Receivers at higher elevations experience fewer obstructions and potentially better signal quality 
at the receiver. The receiver height shown in the FCC coverage maps of [2] is assumed to be at 

Figure 13: LTE Analysis Test Site #2, FCC (left) and Tool (right). 
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ground level to compare with simulations performed at ground level. Additional simulations were 
performed at 50ft steps up to a maximum height of 400ft above ground level.  

• Operating Frequency: The operating frequency also has a strong effect on signal propagation and 
penetration through materials. The FCC Universal Licensing System website provided details about 
the frequencies used by the licensees as shown in Figure 14. 

• Range Limit: This parameter defines the maximum radius of the simulation from the transmitter, 
measured in either kilometers or miles. This distance sets the outer boundary of analysis for the 
coverage area of each cell location for each operator. For each cellular antenna, a range of 30km 
was set for the Verizon network, while a larger range limit of 40km was applied for US Cellular, 
AT&T, and T-Mobile.  

• Signal Threshold: The simulation display incorporates a minimum threshold expressed in dBm or 
dBuV/m. Any signal value below this threshold will not be displayed in the resulting image. The 
values used in the simulation varied in the range of –86dBm to –73dBm. 

• Terrain Resolution: The simulation employed a terrain resolution of 3 arcseconds. 

1.1.11 Parameter Tuning  

During the course of simulations, key parameters such as antenna height, signal threshold, and antenna 
range were tuned and adjusted after comparison to the FCC coverage map.  

In instances where the antenna height was not explicitly specified, particularly with respect to the data 
collected, an approach was adopted where nearby antenna heights were examined and a similar height was 

Figure 14: FCC Universal Licensing System Website Data on Operator Frequencies [181]. 

Figure 15: Simulation Results with a 
70dBm Signal Threshold.  

Figure 16: Simulation Results with a 
75dBm Signal Threshold. 
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assumed for the simulation. This method provided a basis for initial estimations. Subsequent to this, if the 
simulation results indicated an under coverage or an over coverage, adjustments were made to the signal 
threshold to better align the results with expected coverage patterns. Figure 15, Figure 16, Figure 17, and 
Figure 18 illustrate the impact of modifying the signal threshold on the simulation outcomes. 

 

The range limit parameter was considered as a secondary adjustment strategy. This parameter was 
particularly relevant in cases where modifications to antenna height and signal threshold alone were 
insufficient to achieve an accurate representation of coverage. An illustrative example of this optimization 
step can be seen with the Verizon operator's data, where an initial over-coverage was observed. Despite 
attempts to rectify this erroneous result through reductions in antenna height and signal threshold, the 
desired coverage was not attained. Consequently, a reduction in the range limit from 40 kilometers to 30 
kilometers was implemented with positive results achieved.  

Simulation Results 

1.1.12 US Cellular Operator 

The simulation process began with the US Cellular operator, chosen specifically because it has the smallest 
network of towers in the United States. Data from the US Cellular locator website and the FCC Coverage 
map reveals that the coverage provided by this operator is restricted to a limited number of states. 

Figure 17: Simulation Results with a 
81dBm Signal Threshold. 

Figure 18: Simulation results with a 
86dBm Signal Threshold. 
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The simulation parameters were tuned to align with actual network characteristics. The range limit was set  

 

at 40km to represent the maximum effective communication radius from each cellular tower. In determining 
antenna height, an average of 50m was calculated based on the available data for the collected tower 
locations. Additionally, the ERP was set at an average of 140 Watts. Upon establishing the aforementioned 
parameters, the signal threshold was tuned, with each resulting simulation outcome being compared against 
the FCC coverage map. The process began with an initial signal threshold of -86dBm, which, upon analysis, 
indicated over coverage. Subsequently, the threshold was adjusted until it reached the value of -76dBm for 
the majority of antennas, and -70dBm for some regions where the coverage was limited. 

 

Figure 19: Coverage Simulation Results for US Cellular Operator with a 100ft Receiver Height. 

Figure 20: Coverage Simulation Results for US Cellular Operator with a 50ft Receiver Height. 
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The simulation results for this operator are shown in Figure 20, Figure 19, and Figure 21. These figures 
demonstrate that coverage improves with increased receiver height, with no noticeable change in coverage 
after the receiver height reaches 100ft. 

1.1.13 Verizon Operator 

Adopting a similar approach to the one used previously, the initial parameters for the simulations included 
a 40km range limit and an antenna height determined by averaging the heights from the collected location 
data near the desired antenna. The ERP was also set at an average of 140 Watts. However, initial simulations 
with these settings indicated over coverage. Adjustments to the antenna height and ERP value were made 
in an attempt to rectify this erroneous result, but these modifications did not yield the expected results. 
Consequently, it became necessary to decrease the range limit for this operator from 40km to 30km to 
achieve a more accurate depiction of coverage. 

1.1.14 AT&T Operator 

For the AT&T operator, the simulation followed a methodology similar to the one used previously. The 
range limit was established at 40km, and the signal threshold was carefully adjusted. This process resulted 
in a range of threshold values, varying from -86dBm to -76dBm, depending on the specific region within 
the country being analyzed. 

1.1.15 T-Mobile Operator 

The T-Mobile operator presented the most challenges in the simulations. Within the HIFLD dataset, there 
were only 59 cellular tower locations for T-Mobile, necessitating extensive data collection to bring the total 
up to 11,895 locations. The simulation process was divided based on geographical location, focusing 
separately on the western and eastern sides of the country. For each region, the simulation parameters 
experienced multiple rounds of adjustment to align closely with the coverage depicted in the FCC coverage 
map. The signal threshold values varied significantly, with most locations on the western side using around 
-86dBm, while on the eastern side, thresholds were adjusted to -70dBm, -73dBm and -74dBm depending 
on the coverage. The average estimated antenna height was set to 50 meters, and a uniform range limit of 
40 kilometers was applied for all cellular antenna locations on the T-Mobile network.  

Figure 21: Coverage Simulation Results for US Cellular Operator with a 150ft Receiver Height. 
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Examples  

1.1.16 Scenario 1: Hiker in the Brownlee Reservoir Region on the Idaho/Oregon Border 

In the context of search and rescue operations within the Brownlee Reservoir region, characterized by its 
rugged terrain, the variability and inconsistency of LTE signal coverage presents a significant challenge as 
shown in Figure 22 for the Verizon operator. The search pattern must consider the zones where signal is 
absent, ensuring that search teams can communicate effectively despite the presence of regions of 
inconsistent coverage. Additionally, it is crucial to consider the receiver elevation, as the coverage improves 
at higher altitudes. 

1.1.17 Scenario 2: Wildfire Discovered in the Northeast Region of Durango, Colorado 

In the event of a wildfire northeast of Durango, Colorado, the assessment of the fire's extent is complicated 
by the area's uneven and rugged terrain. As depicted in Figure 23, LTE coverage is inconsistent, with 
noticeable differences between Verizon (indicated in red) and AT&T (indicated in blue). To determine the 
wildfire's size with precision, a flight plan (highlighted in yellow) has been developed. This plan considers 
these factors to ensure that the fire is monitored effectively despite the uneven signal availability. 

 

Figure 22: Verizon Coverage in the Region of Brownlee 
Reservoir on the Idaho/Oregon border with a Receiver Height of 

400ft. 
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1.1.18 Scenario 3: Avalanche Occurrence in the Mountainous Region of the Sierra Nevada 

Similarly, the consequences of an avalanche require a detailed evaluation of the affected area. For example, 
in the Sierra Nevada mountains, the terrain's steep and complex nature significantly affects the reliability 
of LTE signals, as shown in Figure 25, with the coverage for Verizon operator. Search and recovery 
strategies must be adapted to these communication dead zones, ensuring that rescue teams maintain 
coordination in the absence of stable connectivity. The effectiveness of search and recovery efforts in the 
extent of an avalanche can be significantly enhanced if the receiver is positioned at a higher altitude. In the 
case of the Sierra Nevada mountains, elevating the receiver to 400ft markedly improves communication 
coverage, as illustrated in Figure 24. This increase in altitude leads to better signal reception compared to 
a lower altitude of 50ft, thereby facilitating a more accurate and efficient evaluation of the area. 

Figure 25: Scenario of an Avalanche in the 
Mountainous Region of Sierra Nevada (Coverage at 

50ft receiver height). 

Figure 24: Scenario of an Avalanche in the 
Mountainous Region of Sierra Nevada (Coverage at 

400ft receiver height). 

 Region of the fire 

Figure 23: Scenario of a Fire in the Region Northeast of Durango, Colorado. 
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GPS Coverage Analysis 
The Global Positioning System (GPS) is a vital service that is required for normal operation of most UAS, 
especially small UAS. For the case of small UAS, GPS may be the only primary positional sensor available 
and depending on the type of operation being performed by the UAS, may be critical to its safe operation. 
When the UAS is operating in close proximity to structures or performing semi-automated tasks like linear 
infrastructure inspection, high accuracy GPS information is needed to maintain safe distances but also stay 
within range of the structure or object being inspected. Another use-case is during emergency operations, 
like forest fire fighting, the UAS may be operating in mountainous areas that may have blind spots for GPS 
coverage due to the terrain features. 

To help support the operation of UAS, especially small UAS (sUAS), in these types of environments, 
analysis of GPS coverage will be useful. This type of analysis can be used to speed up the process of 
planning operations for an area and to help reduce the potential for loss of GPS signal during operations. 
With this goal in mind, the project developed a GPS coverage analysis map for UAS operations within the 
United States of America. This map is meant to provide reasonably accurate and up to date GPS coverage 
analysis using the current orbital position information of GPS satellites while also taking terrain blockage 
into account when generating the coverage map. The current coverage analysis does not include obstacle 
or structure information, just terrain information. 

The generation of the GPS coverage map involves four main steps. The first is pulling the latest GPS 
satellite orbit information, projecting it to the current time, and converting it to the same reference frame as 
the rest of the calculations. The second step involves calculating the number of visible satellites with terrain 
blockage for the entire analysis area of the United States of America. The third step involves converting the 
visible satellite counts into a visible map layer for the GUI interface developed by Botlink that displays 
gaps in coverage based on a user defined number of required satellites. 

Since terrain data does not normally change significantly and to help speed up the coverage analysis, the 
terrain line-of-sight blockage was precalculated using a uniform grid that the rest of the coverage analysis 
steps use. This approach allows the coverage analysis program to look up the elevation angle (line-of-sight) 
for the current location without having to perform a full path analysis between the current location and the 
current position of every GPS satellite every time the coverage analysis is updated. 

Terrain Data and Reference Grid 

All of the stages of the coverage analysis use the same reference terrain dataset and grid system based on 
the reference system used by the 3-arcsecond (~90m) terrain data. This grid spacing was chosen to reduce 
the overall size of the generated data sets and to keep the processing time low enough to allow for updating 
the coverage analysis every hour. The terrain data itself is divided into 1-degree by 1-degree 
latitude/longitude squares with each 3-arcsecond terrain file containing 1,201 x 1,201 grid points evenly 
distributed over the 1x1 degree area. This terrain reference system is used by the GPS coverage analysis 
program and all of the output files from the analysis tools are broken up into the same 1x1 degree areas 
with the same number of grid points within each file. 

The coverage analysis is performed over the land area of the United States of America which encompasses 
1410 1x1 degree areas, each with 1,442,401 grid points for a total of a little over 2 billion grid points for 
the United States. The main areas covered are the Continental United States, Alaska, Hawaii, and Puerto 
Rico, as shown in Figure 26. 
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Figure 26: GPS Analysis Coverage Area. 

Three different sets of terrain data at varying resolutions were pulled from two publicly available sources, 
USGS [9] and EarthExplorer [10]. The three terrain resolutions used by the coverage analysis program, 
during development of the tool, and for the generation of the datasets are 1/3-arcsecond (~10m), 1-
arcsecond (~30m), and 3-arcsecond (~90m) terrain elevation data. 

GPS Positional Data Source 

The up-to-date GPS position information is obtained by downloading current Two-Line Element (TLE) 
orbit predictions for the GPS satellites from Space-Track [11]. During development and testing of the tools 
and web interface, Celestrak [12] was used instead since it is free and does not require an account for usage. 

The GPS TLE orbit information is then processed into a more usable format for calculation purposes using 
an open-source python library called Skyfield. [13] This library allows calculation of orbit information for 
celestial bodies and, for our purposes, is used to calculate the current GPS satellite position by projecting 
the TLE orbit prediction forward in time and then converting its current location into the same reference 
frame as the grid points and terrain data, WGS-84. 

Terrain Line-of-Sight Pre-Calculation 

Since the terrain data does not normally change over time and all of the tools and programs developed for 
this project use the same reference grid as the 3-arcsecond terrain data, the terrain line-of-sight calculation 
only needs to be performed once and the results of this analysis can be used as a look up dataset to 
significantly speed up calculation. This dataset contains the geodetic elevation angle for a given heading at 
the current gird point as shown in Figure 27. 
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The precalculated terrain line-of-sight data uses the same reference grid as the rest of the program with the 
line-of-sight calculation for each grid point being performed at a 1-degree heading increment for a total of 
360-degrees of line-of-sight data for each of the grid points and an overall total of about 732 billion line-
of-sight angles for the entire United States of America. 

The process of generating this data set consisted of iterating over every grid point and calculating line-of-
sight for each of the 360 headings, each tracing a path at the desired heading and calculating the largest 
line-of-sight angle on the path. The path calculation was performed every 90-meters (or 3-arcseconds) along 
the path to a maximum distance larger than any potential terrain blockage. The maximum distance in this 
case is about 672 km and is based on the distance at which two points at the tallest point on earth, Mt. 
Everest, would have line-of-sight blocked by the curvature of the earth, as shown in Figure 28. The 
maximum line-of-sight angle found along the path represents the overall line-of-sight angle for the heading 
angle currently being calculated. 

 

To improve the accuracy of the line-of-sight calculation, two additional steps were taken to improve the 
terrain elevation accuracy. The first improvement is higher resolution terrain data, 1/3 arcsecond, is used in 
the near vicinity of each grid point. This approach is accomplished by loading in 1/3 arcsecond terrain data 
for a 3x3 block of 1x1 degree terrain tiles centered on the 1x1 degree tile containing the current grid point. 

Figure 27: Precalculated Terrain Line-of-Sight. 

Figure 28: An Illustration of Line-of-Sight Blockage by the Curvature of the Earth. 
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This additional step provides higher accuracy terrain data in the surrounding area of the grid point where 
the terrain is more likely to block the line-of-sight.  

The second improvement for the terrain elevation accuracy of the points along the path included bilinear 
interpolation on the terrain elevation data. This approach leads to more accurate estimates of the terrain 
elevation since the points on the path do not normally fall directly on an individual terrain point. Rather, 
the path typically falls somewhere between terrain points. If no elevation data is available in the 1/3 
arcsecond data set the program will fall back to the 3-arcsecond terrain data to obtain the elevation 
information. 

Another improvement made during the generation of the data set involved the chosen floating-point 
precision of the variables used during the calculation. Using single-precision floating point variables would 
significantly reduce the generation time of the dataset but would come at a cost of significant errors in the 
result in some scenarios. Before generating the full dataset, multiple test areas were chosen and the line-of-
sight pre-calculation was performed for the 1x1 degree tiles associated with these areas using single and 
double floating-point precision for comparison. For these test areas the majority of the differences were less 
than one degree, but some experienced as much as 10-degree differences in value. Due to this large 
variation, double precision variables were used during the generation of the dataset. This choice led to a 
significant overall computation time due to the limited number of double-precision compute units on GPUs.  

While the calculation was completed using double-precision variables, the resulting values were saved 
using single-precision floating-point format, to reduce storage size. The generation of the precalculated 
dataset was performed using CUDA and 24 NVIDIA Tesla V100’s housed at the Computational Research 
Center at the University of North Dakota. The overall dataset consists of about 3TB of uncompressed binary 
data. 

Whenever GPS coverage analysis is performed, this pre-calculated dataset is read from disk and used as a 
lookup table.  Depending on hard drive read speed, this process can be the largest contributor to the runtime 
of the coverage analysis. Attempts to accelerate the load times of the dataset using file streaming and 
memory mapping with little observed benefit. To simplify the approach, the program loads each file fully 
into memory while processing the corresponding area. 

GPS Coverage Analysis 

The first step of the GPS coverage analysis is to pull the latest GPS TLE orbit prediction, project the satellite 
constellation to the desired time of analysis, and then convert the satellite location information to a usable 
format as described above. Then for each of the 3-arcsecond (~90m) grid points in the U.S., the relative 
geodetic offset of all of the GPS satellites is determined for that grid point so the elevation angle of the GPS 
satellites may be determined. These calculated elevation angle values are then compared with the 
corresponding precalculated terrain line-of-sight values; the satellite is considered visible if its elevation 
angle is above the terrain line-of-sight angle. The total number of satellites that are visible is saved for the 
current grid point and this process is then repeated for the entire area with the results saved to file in the 
form of 1x1 degree areas that align with the terrain data. 

These visible satellite counts represent the GPS coverage analysis and can be used to generate maps that 
display areas of coverage, or gaps in coverage, based on a user defined required number of visible GPS 
satellites. Samples of these results are shown in Figure 29 and Figure 30 where the gaps in coverage, white 
squares, increase as the required number of visible satellites increases from 5 to 8. These figures are results 
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from an earlier version of the program before improvements were made to the underlying code and the 
generation process for the precalculated line-of-sight datasets. 

 
Figure 29: GPS Coverage Analysis with 5 GPS Satellite Minimum for Valley in Wyoming. 

 
Figure 30: GPS Coverage Analysis with 8 GPS Satellite Minimum for Valley in Wyoming. 
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The primary usage of the GPS coverage analysis is for the website developed by Botlink, as shown in Figure 
31. This website automates the above process and provides an efficient portal to view the latest GPS 
coverage analysis. As shown in the figure, the user can easily select the required number of visible satellites 
on the bottom of the screen and the map will update showing the coverage gaps in red for the required 
number of satellites. 

 
Figure 31: Botlink Website GPS Coverage Analysis Interface. 

The website developed by Botlink simplified the process of debugging and evaluating the performance of 
the GPS coverage analysis. The result of this process is presented in the form of two examples of GPS 
coverage using the latest version of the code and datasets shown below. The first example is shown in 
Figure 32 which depicts a lake in Washington State with a 5 GPS satellite requirement. In this example, the 
coverage appears to be worse when near the south facing side of the nearby mountains and cliffs which 
would indicate operations on the southern side of the lake would potentially have better GPS coverage when 
compared to the north side of the lake. 
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Figure 32: GPS Coverage Analysis for 5 Satellites at a Lake in Washington State. 

Another example requiring 5 GPS satellites is located in a mountainous region in Wyoming State as shown 
in Figure 33. For this region, the coverage again appears to be the worse on the south facing side of the 
mountains which would indicate that operating near the north facing sides of the mountains could 
potentially provide better GPS coverage if operations need to be performed in the valleys between the 
mountains. 
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Figure 33: GPS Coverage Analysis for 5 Satellites for a Mountain in Wyoming state. 

Reducing Server Runtime 

The current version of the program performs the coverage analysis every hour and uses the results for that 
associated hour. This process is repeated hourly for a total of 24 coverage analyses performed each day.  
While the approach to calculate the coverage on an hourly basis is sufficient to provide accurate coverage 
data, the predictability of the GPS constellation suggests that it may be possible to reuse results from one 
day at a later time when the constellation repeats.  Such an approach could significantly reduce the compute 
requirements of the system. 

Performing the analysis every hour incurs an inherent positional error as time passes since the analysis was 
performed. This error is caused by the reality that GPS satellites do not occupy a geostationary orbit, but 
instead the constellation orbits the earth approximately every 12 hours. The positional error in meters, and 
change in angle, over time as observed from the ground, can be found in Table 3. A 30-minute interval 
results in about a 4.712-degree change in position while a 60-minute update interval results in an error of 
about 9.282 degrees. 

Table 3: GPS Positional Change with Time. 

Interval 
(minutes) 

Position 
(m) 

Angle 
(degrees) 

30 1,664,992 4.712 

60 3,301,496 9.282 
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To reduce the overall server time required to perform the GPS coverage analysis, the feasibility of 
performing the coverage analysis at a fixed interval for a 24-hour period and then using the results as a 
lookup dataset for an extended period of time was evaluated. This process works by performing the GPS 
coverage analysis over a 24-hour period and then using that resulting set of coverage maps as a lookup table 
where the generated result with the smallest amount of GPS satellite positional error compared to the 
satellites current positions is used. The estimated positional errors or drift of the satellites over time are 
shown in Table 4. Using the data for two weeks results in an error of approximately 1-degree in the angle, 
as observed from the ground. This amount of error is not significant when compared to the amount of 
positional error from the satellite orbiting the earth, as shown in Table 3. At a period of one month, the 
positional error rises to approximately 4-degrees, and at a period of 6 months the positional error rises to 
about 7.7-degrees. At this point, the error compounds with the error of Table 3, which would result in the 
total error being almost doubled compared to the error associated with performing the analysis every hour. 
The increase in error is relatively linear and could allow for longer periods of time between regenerating 
the 24-hour GPS analysis. 

Table 4: GPS Positional Change for Out of Data TLE Orbit Data. 

Interval 
(minutes) 

Position 
(m) 

Angle 
(degrees) 

1 37,718 0.107 

7 229,537 0.651 

14 357,546 1.014 

30 767,181 2.175 

60 1,427,283 4.042 

120 2,060,610 5.825 

180 2,725,267 7.684 

 

Due to time constraints, this feature was only analyzed and initially implemented, but has not been fully 
tested or integrated into the Botlink website. Further work is needed to implement and test this result in 
practice. 
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Localization Techniques in GPS Denied Environments 

Localization Techniques Classification 

1.1.19 LiDAR-Based Techniques 

LiDAR technology is increasingly being utilized for UAS localization in environments where GPS is 
unavailable. This remote sensing method uses laser beams to accurately measure distances and create 
comprehensive maps in one, two, or three dimensions [14]. Its growing appeal lies in the recent 
advancements that have significantly improved its range detection capabilities, accuracy, and portability 
due to reduced size and weight [15]. Particularly beneficial in GPS-denied zones, LiDAR-based methods 
offer precise, centimeter-level positioning solutions, overcoming the challenges of reliable UAS navigation 
[16]. A series of research articles have been reviewed to explore various applications of LiDAR in this field. 

In [17], the authors developed a system for autonomous navigation of micro air vehicles (MAVs) in GPS-
denied environments, focusing on a LiDAR-based system for a quadrotor helicopter. This system, which 
integrates a high-speed laser scan-matching algorithm, a data fusion filter, in addition to a Simultaneous 
Localization and Mapping (SLaM) module, enables the quadrotor to autonomously explore and map 
unstructured and unknown environments. The core of their research is a multilevel sensing and control 
hierarchy designed to accurately estimate the MAV's position and velocity considering the constraints in 
payload, computation, and communication on such small vehicles. The effectiveness of this system was 
demonstrated in various settings, including indoor spaces and urban canyons, during the 2009 International 
Aerial Robotics Competition. The system, however, encountered challenges in complex 3D environments 
and featureless settings, where the scan matcher had difficulties in accurately calculating the vehicle's 
movement. For instance, in the urban canyon experiment, the maximum deviation from the target trajectory 
was 0.27m, significantly higher than in indoor flights. Additionally, the SLaM and planner modules are 
designed to operate offboard, requiring frequent communication with the ground station, which poses an 
additional challenge. 

The approach in [18] focuses on navigating large distances in environments where GPS is unavailable, 
specifically using a system that combines inertial navigation with LiDAR-based localization. The core of 
this navigation system is the integration of semi-regular updates from LiDAR data with an existing Digital 
Elevation Model (DEM), alongside an innovative use of an error-state Kalman filter that includes 
estimations for biases in the Inertial Measurement Unit (IMU). This setup ensures a consistently accurate 
estimate of the aircraft's state, minimizing the need for extensive computations when consulting the global 
elevation map. A significant aspect of the system is its ability to match LiDAR scans to specific areas of 
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Figure 34: Categorization of All Publications Identified in Terms of their Approach to Navigation in GPS Denied 
Environments. 
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the DEM, generating a map that highlights the symmetry of the landscape. This process identifies the most 
likely position of the aircraft, enabling corrections to be applied to the navigational system to ensure 
accuracy over long distances without GPS input. The study showcases the system's ability to accurately 
determine an aircraft's location over a journey of 218 kilometers, achieving an impressively low final 
positional deviation of only 27 meters. 

In [19], the authors introduce a novel 3D simulation system for mini-UASs in GPS-denied environments, 
using a hybrid approach that integrates the Robot Operating System (ROS) with the Unity3D game engine. 
The system's key innovation is its ability to run real-time multi-UAS navigation and control algorithms, 
handling large volumes of sensor data. ROS provides a clear software structure and facilitates hardware 
interaction, while Unity3D offers robust graphics for 3D environment and sensor modeling. The paper also 
discusses the development of a TCP/IP-based interface between ROS and Unity3D, detailed modeling of 
environments and UAS sensors (especially LiDAR), and a user-friendly interface for simulation setup and 
monitoring. The system's efficacy is demonstrated using a forest search scenario with autonomous UASs. 

In [20], the study focuses on using LiDAR-based SLaM for drone navigation in GPS-denied environments. 
The research uses MATLAB simulations to test the drone's navigation capabilities by generating LiDAR 
data and applying 2D SLaM with pose graph optimization. Key to their approach is analyzing the impact 
of loop closure threshold and search radius on the optimization process, which affects the drone's trajectory 
accuracy and mapping. They found that adjusting these parameters can significantly enhance processing 
speed and trajectory accuracy compared to ground truth. However, the study's limitations include its 
confinement to 2D data and lack of real-world testing to validate the simulation results, which may affect 
its practical applicability in complex 3D environments. 

The paper  [21] introduces an approach for 3D motion planning of Vertical Take-Off and Landing (VTOL) 
UASs in GPS-denied, unknown forest and cluttered environments. The core of this method involves using 
LiDAR sensors to detect and map the surrounding environment, creating a dynamic 3D occupancy grid 
map that the UAS navigates through. The approach combines an online path planning algorithm based on 
the A* search algorithm with an online trajectory generation method based on maneuver automation 
techniques. These components work together to generate an obstacle-avoidant path for the UAS. The 
effectiveness of this integrated LiDAR-based system is demonstrated through both simulations and real 
flight tests on a UAS equipped with dual LiDAR sensors, highlighting its capability in real-time motion 
planning and obstacle avoidance in challenging terrains like forests. However, the research does not explore 
how effectively the proposed method can adjust to unpredicted environmental factors, leaving an evaluation 
of its adaptability and resilience in variable conditions unaddressed. 

In [22], an Adaptive Kalman Filter (AKF) is used to enhance the velocity and position estimation of UASs 
in environments where GPS signal is either weak or obstructed. The approach integrates data collected from 
different sensors like LiDAR, GPS, and an Inertial Navigation System (INS). In situations where both 
LiDAR and GPS data are unavailable, the system relies solely on measurements from the IMU. However, 
when new data from the LiDAR becomes available, the system's measurement equations are updated to 
integrate this new information into the Kalman filter process. The key innovation lies in adapting the 
measurement noise covariance of the AKF based on GPS receiver errors and LiDAR point-cloud matching 
errors. This adaptation significantly improves the accuracy and reliability of position estimates.  

The study in [23] evaluates advanced LiDAR-based 3D SLaM approaches for accurate indoor mapping. 
Using a simulation framework with ROS and Gazebo, the research compares two distinct methods: 
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Lightweight and Ground-Optimized LiDAR Odometry and Mapping (LeGO-LOAM) and LiDAR Inertial 
Odometry via Smoothing and Mapping (LIO-SAM). These methods were tested in varied simulated indoor 
environments, including empty square rooms, long narrow corridors, and circular rooms, each representing 
different spatial complexities and clutter levels. The results indicate that LIO-SAM surpasses LeGO-LOAM 
in accuracy for indoor environments. However, the research is limited to simulations, and real-world 
implementation of these methods has not been explored in this study. 

Despite the promising capabilities of LiDAR in UAS navigation, it is essential to acknowledge its 
limitations. Challenges arise in adverse weather conditions, like heavy rain or fog, which can impair the 
LiDAR sensor's performance. Environments with limited line-of-sight, such as dense forests or urban areas 
with tall structures, also pose significant obstacles. Moreover, the computational demands of processing 
large volumes of LiDAR data can strain onboard computing resources, leading to potential delays in 
decision-making and increased energy consumption. Furthermore, the high cost of LiDAR technology 
remains a barrier to widespread adoption. Addressing these challenges is critical for enhancing the 
feasibility and efficiency of LiDAR-based UAS localization systems in a variety of operational contexts. 

 
Table 5: A Summary of Pertinent Parameters Associated with Publications that Discuss LiDAR-Based Techniques. 
Paper Hardware Aircraft Accuracy Location Experiment Distance 

[17] 

• Offboard 
Computer 

• IMU 
• LiDAR sensor 
 

Pelican 
quadrotor 
helicopter 
(Micro air-

vehicle) 

• Maximum 
trajectory 
deviation: 0.27 m 

Indoor/ 
Outdoor Real-world 

285 m 
745 m 
710 m 

[18] 
• IMU 
• LiDAR sensor 
 

Bell 206L 
(LongRang

er) 
helicopter 

• Maximum 
position error: 
90.2 m 

Outdoor Real-world 
196 km 
218 km 

[19] 
• IMU 
• Two LiDAR 

sensors 
N/A • N/A Outdoor Simulation N/A 

[20] • N/A N/A 
• Maximum Root 

Mean Square 
Error: 13.75m 

N/A Simulation N/A 

[21] 

• IMU 
• Two LiDAR 

sensors  
• Range finder 

Quadrotor 
UAS • N/A Outdoor Real-world N/A 

[22] 
• IMU 
• LiDAR sensor 

DJI S1000 
octocopter 

• Final position 
drift: 3.42 m 

Outdoor Real-world 405 m 

[23] 
• IMU 
• LiDAR sensor 

N/A 

• Max. Root Mean 
Square Error: 
o LeGO-LOAM: 

1.291 m 

Indoor Simulation N/A 
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o LIO-SAM: 
0.599 m 

 

1.1.20  Radar/ Ultrasonic-Based Techniques 

In environments where GPS signals are not accessible, localization methods like radar-based and ultrasonic-
based systems are employed. These systems operate by emitting radio waves or ultrasonic pulses and then 
measuring the interval between the signal's transmission and its reception. This measurement, combined 
with known data about the waves' travel speed, allows for the calculation of the time taken for the signals 
to reach an object and return. This information is then used to accurately estimate the distance to the object, 
offering an alternative to GPS-based positioning. This summary categorizes recent studies into radar-based 
and ultrasonic-based techniques, each offering unique solutions to the challenges of GPS-denied navigation. 

The studies in [24] and [25] introduce a millimeter wave radar sensor used to navigate indoor environments. 
This method utilizes the principles of Interferometric Synthetic Aperture Radar (InSAR) and a Frequency-
Modulated Continuous Wave (FMCW) scheme combined with millimeter-wave technology, diverging 
from traditional sensors that falter in poor visibility conditions such as dust, fog, smoke, or flames. The key 
advantage of this system is its ability to conduct high-resolution 3D mapping and detect moving targets, 
leveraging the atmospheric penetration capabilities of millimeter waves. While the paper presents a 
preliminary study, it significantly contributes by developing a software simulator to validate the sensor's 
functionality. This simulation tool demonstrates the sensor's proficiency in mapping and navigating through 
challenging, unknown indoor spaces. However, it's important to note that comprehensive evaluation or 
experimental results of the proposed radar sensor are not provided in this preliminary study. Another work 
has been conducted in [26], it presents a comprehensive survey of UAS indoor localization techniques, 
offering insights into various sensor technologies and their respective advantages and challenges. The focus 
is particularly on the proposal and preliminary testing of an ultrasonic local positioning system, LOCATE-
US, developed by the University of Alcalá. This system uses ultrasonic signals from five emitters and 
processed by a specialized module on a Parrot Bebo 2 drone. The UAS's position was estimated using the 
Gauss-Newton algorithm, showing low dispersion in both the horizontal and vertical coordinates. Finally, 
the authors suggest the potential of combining ultrasound with other technologies like cameras or lasers, 
for more accurate UAS indoor localization in future work.  

The paper in [27] introduces an outlier rejection technique to enhance the accuracy and reliability of radar 
odometry. This technique employs a FMCW radar system equipped with a single transmitting antenna and 
two receiving antennas positioned along the azimuthal axis. The key innovation is the integration of an 
odometry-oriented outlier removal algorithm within the Multiple-Target Tracking process, which 
significantly aids in differentiating between static and moving objects in the viewed scene. This approach 
is crucial for extracting accurate platform motion information, especially in challenging and cluttered 
environments. However, the paper does not specify the scenarios or environments in which this method 
was tested, leaving room for further exploration in its practical application.  

The research in [28] presents a GPS-denied navigation technique for small aircraft, using images generated 
by a Synthetic Aperture Radar (SAR) system. Building upon previous studies, the research uses radar 
images to calculate range and cross-range positions, employing the Range-Doppler Algorithm (RDA) for 
efficient image formation. This is particularly suitable for the restricted processing capabilities of small 
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aircraft. The paper introduces an inertial navigation system integrated with radar processing based on an 
indirect Extended Kalman Filter (EKF), which was tested with both real and simulated flight data. The 
study demonstrates the practicality and feasibility of SAR-based navigation in GPS-denied environments, 
showing that navigation errors can be estimated within acceptable limits. The paper also delves into the 
specifics of SAR image formation, highlighting the applicability and efficiency of the RDA in light aircraft 
navigation. Another work that uses synthetic aperture radar is [29]. Focusing on integrating SAR with an 
IMU and an indirect EKF, the study employs an INS and EKF system structure enhanced with radar 
telemetry for trajectory estimation. In this paper, the core aspect of the research is the evaluation of GPS-
denied navigation under various conditions: sensitivity to changes in IMU grades (consumer, tactical, and 
navigation grade), measurement noise strength from the SAR system, and the geometric relationship 
between the UAS and targets. The study includes an aircraft navigation and radar simulation that employs 
Six Degrees of Freedom, validating the covariance of estimation errors through Monte Carlo analysis. The 
authors address challenges in implementing radar systems for UASs, like computational complexity and 
image quality, and emphasize the potential of tactical-grade IMUs combined with high-fidelity SAR range 
measurements in supporting GPS-denied navigation.  

In [30], the authors discuss a novel navigation method for small drones using an omnidirectional radar 
system. The method is designed to estimate the drone's horizontal velocity and height independently from 
GPS. The radar system, consisting of two circular antenna arrays, is capable of digital beamforming in the 
receiving mode. The authors also focused on radar-aided positioning in GPS-denied scenarios, addressing 
the challenges posed by drone platforms' agility and rapid movement. They proposed a 3D motion 
estimation method that estimates both the radar's height above ground and its horizontal velocity vector. 
This method involves change-point detection for height estimation, Doppler spectrum analysis for velocity 
estimation, and a combination of multiple centroid estimates from different steering directions to estimate 
the drone's course. The authors finally suggest that this system is not only beneficial for navigation but also 
for coherent radar data processing. 

The paper in [31] presents a terrain-referenced navigation algorithm designed to locate and track a UAS in 
scenarios where GPS is unreliable. The algorithm utilizes a DEM to compare real-time elevation data 
measured by UAS radar and barometric altimeters against pre-stored terrain profiles. The system pre-
processes the DEM to create a database of potential UAS flight profiles, each uniquely identified by a 
scoring algorithm based on elevation and slope characteristics. During flight, the UAS's measured elevation 
profile is matched against this database to determine its location. The study algorithm's efficiency is tested 
through simulations on various terrain sizes and profile lengths, considering practical constraints such as 
the UAS's ability to fly in all directions with feasible turn rates.  

In [32], the authors present a robust localization and tracking system for indoor navigation of drones in 
environments where GPS is unavailable. The system leverages speaker-generated ultrasonic acoustic 
signals for estimating the drone's location. It employs a two-stage process; in the first stage, the system uses 
Frequency Hopping Spread Spectrum with ultrasonic signals for continuous localization of the drone. The 
Time of Arrival method is employed here, where the system measures the time delay between the 
transmission of the signal from the drone and its reception at various microphones. This time delay is then 
used to calculate the distance between the drone and the microphones. In the second stage, the velocity of 
the drone is estimated by measuring the frequency shift (Doppler shift) of the received signal. These two 
sets of data (distance and velocity) are then combined using a Kalman filter to provide an estimation of the 
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drone’s position. Comprehensive simulations conducted in MATLAB showed that the system can achieve 
high accuracy in localization, with errors of a few millimeters, significantly outperforming existing systems. 

Radar-based techniques, with their ability to perform high-resolution 3D mapping and detect moving 
targets, offer robust solutions in environments with poor visibility such as smoke or fog. However, these 
methods often involve complex systems and may require significant computational resources. Ultrasonic-
based systems, on the other hand, provide a cost-effective solution with lower computational demands. The 
precision of ultrasonic systems makes them suitable for indoor navigation where space constraints are a 
concern. However, these systems may be susceptible to interference from environmental noise and have 
limitations in range compared to radar-based systems. Both approaches demonstrate significant potential in 
enhancing reliability and accuracy of navigation in GPS-denied environments, each with its own set of 
advantages and challenges that need to be considered for specific application scenarios. 

 
Table 6: A Summary of Pertinent Parameters Associated with Publications that Discuss RADAR/Ultrasonic-Based 

Techniques. 
Paper Hardware Aircraft Accuracy Location Experiment Trajectory 

Distance 
[24], 
[25] 

• NA NA • 3D geometric 
resolution: 
10–20 cm 

Indoor Simulation NA 

[26] • Five ultrasonic 
emitters 

• FGPA Xilinx 
Zynq 7000 

• ad-hoc ultrasonic 
acquisition 
module 

Parrot 
Bebo 2 
drone 

• Variance: 
0.28 m 

Indoor Real-world NA 

[27] • FMCW 24-GHz 
SENTIRE Radar 

• Odroid XU4 
embedded CPU 

• battery for radar 
• DC-DC converter 
• IMU 

3DR X8+ 
octocopter 

• Max. drift: 
10m 

Outdoor Real-world NA 

[28] • FlexSAR System 
• NovAtel SPAN 

CPT7 IMU 

NA • Max. position 
error: 3m 

• Max. velocity 
error: 0.4 m/s 

NA Real-world 51-second 
GPS-
denied 
flight 

[29] • IMU 
• SAR system 

NA • Max. position 
error: 12m 

NA Simulation NA 

[30] • IMU 
• Radar system 

multi-
copter 

• Root Mean 
Square 
Errors: 

Outdoor Real-world 30 s 
trajectory 
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• Position: 2.6 
m 

• Velocity: 
0.32 m/s 

[31] • Intel(R) Core i7-
2620M CPU @ 
2.70 GHz 

• RADAR 
• Barometric 

altimeters 

NA • Min. 
accuracy: 
~84% 

Outdoor Simulation NA 

[32] • ultrasonic speaker 
• microphones 

Quadcopter • Avg. error: 
0.55 cm. 

Indoor Simulation NA 

 

1.1.21 Filter-Based Techniques 

In [33], the authors present a method to estimate a future location and attitude of one UAS platform from 
observations of a second UAS platform. This estimate of future location and attitude utilizes discrete-time 
analysis through the definition of a Jacobian that has been extended to a future value rather than the 
traditional approach of extension of the Jacobian to a previous (past) value. This future extended Jacobian 
is then used in connection with a Filtering Cramer-Rao Lower Bound (F-CRLB) to provide a lower-bound 
on future location and attitude. In order to compensate for noise in sensor values, the authors quantify the 
sensitivity of feedback control parameters to different noise sources in the system. This sensitivity is then 
combined with the Jacobian Matrix and F-CRLB to provide an accurate estimate of future location and 
attitude.   

The authors of [34] have focused their activities on an attempt to estimate the state of the aircraft at a future 
moment in time. The team has developed a control approach that is sufficiently efficient that it can be 
handled entirely on-board a very small, fast and agile aircraft, without input from external sources. The 
team has successfully demonstrated their approach in a complex environment that is filled with obstacles 
using an IMU and planar laser range finder. The measurements of the range finder are modified by a 
Gaussian Particle Filter prior to updating information on current and future UAS state. This approach 
significantly reduces the amount of data that needs to be processed in order to determine current location 
and attitude for use in estimating future state.   

[35] employs the matrix Lie group of the two-dimensional homogeneous transformation comprised of both 
translation and rotation. This transformation is employed to account for all nonlinearity associated with a 
UAS with six degrees of freedom. Sensors in this scenario include IMU and measurements of regional 
features in the vicinity of the UAS flight. The approach was validated using real-world measurement. 

 

Table 7: A Summary of Pertinent Parameters Associated with Publications that Discuss Filter-Based Techniques. 
Paper Hardware Aircraft Accuracy Environment Experiments 
[33] • IMU Two fixed-

wing UASs 
Max 
RMSE= 70m 

NA Simulation 



 

41 

[34] • Hokuyo UTM-30LX 
laser rangefinder 

• Microstrain 3DM-
GX3-25 IMU 

• 1.6GHz Intel Atom 
base flight computer 

fixed- 
wing micro 
air vehicle 

Max. mean 
velocity 
error= 0.148 
m/s 

Indoor Real-world 

[35] • ADIS16448 IMU 
• MT9V034 digital 

image sensor 

NA NA NA Simulation 

  

1.1.22 AI/Decision-Making Techniques 

AI and decision-making localization techniques have emerged as crucial navigation methods in GPS-denied 
environments. These advanced techniques leverage artificial intelligence algorithms, including 
Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), Recurrent Neural Networks 
(RNNs), and many other models to analyze data from an array of sensors like cameras and IMUs. By 
integrating such technologies, UASs can accurately determine their location, orientation, or trajectory in 
complex environments, ranging from densely built urban areas to cluttered indoor settings. This shift 
towards AI-driven navigation systems not only enhances the robustness and precision of UAS operations 
but also paves the way for broader applications in diverse and challenging scenarios. 

 Many studies have been conducted to implement and improve these methods. In [36], the paper introduces 
a method for enhancing UAS navigation in GPS-compromised urban environments by delving into end-to-
end aerial-road registration. To achieve this, the researchers developed a deep learning framework that 
leverages an attention-based neural network. Characterized by its dual-branch architecture and shared 
weights, this network enables the mapping of aerial images and road landmarks into a unified embedding 
space. A key feature of this model is its Multibranch Attention Module (MBA), which adeptly filters out 
misleading descriptor matches by concentrating on sparse road features within the images, thus elevating 
accuracy. Utilizing an extensive dataset of approximately 50,000 paired images of aerial views and road 
landmarks (created using GIS technology), the approach demonstrates a substantial advancement over 
current methods in terms of accuracy in rotation angle and x-y translations. In essence, the study's 
contributions are twofold: firstly, it offers a large-scale dataset for aligned Aerial-Road pairs, encouraging 
further research in this field; secondly, the unique attention-based neural network architecture significantly 
enhances accuracy, setting a new benchmark in the domain. Looking ahead, the authors suggest exploring 
multitask learning in neural networks to simultaneously handle Aerial-Road matching, potentially 
broadening the applicability and efficiency of their approach. 

Another framework is developed in [37], it integrates localization algorithms like SLaM and Visual 
Odometry (VO) with Partially Observable Markov Decision Processes (POMDPs). The authors have 
employed a modular system featuring a POMDP solver algorithm implemented in C++, a ROS node 
facilitating interface and communication with other modules. This integration allows the UAS to make 
informed decisions in uncertain environments, focusing on safely avoiding obstacles while creating a 
detailed occupancy map of the environment. The simulation of this framework was done using the Gazebo 
environment and a 3DR Iris UAS platform. 
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In [38], the approach utilizes SAR images, comparing newly generated images with pre-obtained reference 
images to identify navigational errors. The authors employ a CNN structured with a three-channel image 
configuration that includes the distorted image, the reference image, and their differential image, to pinpoint 
these errors and precisely determine the UAS flight path. The ResNet architecture forms the core of the 
neural network, with a modification in its final layer which is substituted by a fully connected layer. 
Additionally, the research incorporates a transfer learning approach to enhance the network's performance. 
This method allows the recovery of the true flight path during the synthetic aperture phase. The 
effectiveness of this neural network-based approach is demonstrated through both simulated and real SAR 
image data, offering an alternative to GPS-dependent navigation systems in challenging environments. 
Another study that uses CNN is [39], the authors compare real time imagery captured by the UAS’s 
downward-facing monocular Red-Green-Blue (RGB) camera with pre-existing satellite images using CNN. 
By matching features and patterns between the UAS current view and the satellite data, the system can 
estimate the UAS location even in the absence of GPS. It is important to highlight that the success of this 
method largely depends on the availability of distinct textures in the environment. In regions like suburban 
areas, where noticeable landmarks are limited, the accuracy of this technique decreases, resulting in a higher 
margin of error. 

In [40], the paper introduces an emergency safe-landing method for UAS in GPS-degraded environments, 
crucial for Advanced Aerial Mobility and Urban Aerial Mobility. The integrated method combines an INS 
for dead-reckoning navigation to an identified landing zone, and an Artificial Intelligence-based approach 
for optical search and object detection. The system employs a 3D depth camera and a fully convolutional 
neural network to recognize landing features and obstacles, integrated with a Markov Decision Process for 
collision-free guidance towards the landing zone. The paper presents simulation results demonstrating the 
system's effectiveness in safely navigating and landing a UAS under challenging conditions. 

In their research [41] and [42], Fernando Vanegas and Felipe Gonzalez present a novel approach for 
navigating UASs in GPS-denied, cluttered environments. They develop a system using a POMDP with an 
online solver named Adaptive Belief Tree (ABT), tailored for handling uncertainties in sensor data and 
UAS movement. This system, implemented on a quadcopter equipped with a downward-facing camera and 
operating on the ROS, recalculates its flight path in real-time to locate targets on the ground whose positions 
are initially unknown. Through simulations and real flight tests, the study demonstrates the system's 
efficacy in successfully conducting target finding missions in complex environments without relying on 
GPS, highlighting the potential of POMDP-based solutions in advanced UAS navigation. In [43], the same 
authors extended their system to not only locate but also continuously follow a moving ground target. This 
is achieved through a more sophisticated implementation of the ABT solver, which accounts for the 
dynamic nature of the target’s movements.  

The paper [44] presents an innovative approach for enabling a UAS to autonomously land on a moving 
Unmanned Ground Vehicle (UGV) in environments where GPS is unavailable. The system utilizes a hybrid 
camera array, combining a fisheye lens camera and a stereo camera, to accurately locate and track the 
moving UGV. This setup allows for wide Field of View and depth imaging, crucial for precise target 
location and motion state estimation in dynamic situations. The authors also introduce a novel state 
estimation algorithm that integrates a CNN model named YOLO v3-tiny for target detection and tracking, 
alongside a motion compensation algorithm for accurate estimation of the UGV motion. To control the 
UAS landing maneuver, a nonlinear controller based on the estimated motion state of the UGV is developed. 
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The system's performance is validated through extensive simulations and real-world experiments, 
demonstrating its effectiveness and robustness in GPS-denied environments. 

In the cited work [45], the researchers present a novel navigation method for UASs operating without GPS. 
This method uses deep learning to match aerial images taken by the UAS with DEMs, adapting to various 
lighting and weather conditions by producing several images of each location. The DEMs are created using 
a detailed per-pixel mapping approach. To evaluate their method's effectiveness, the authors utilized the 
Inception-ResNet-Fusion architecture, which analyzes the deep terrain features proposed in their study. On 
the other hand, the paper [46] proposes a method for GPS-denied navigation using low-cost inertial sensors 
and RNNs. This approach is designed to enhance the reliability of drone navigation when GPS signals are 
unavailable. The methodology involves training an RNN on a dataset of flight logs, which includes raw 
sensor measurements from accelerometers, gyroscopes, barometers, and magnetometers, and 
corresponding state estimates. The network is trained to predict changes in the drone's position and velocity 
based on these inertial measurements. The system’s performance is validated against a dataset of numerous 
flight logs, showing its ability to accurately estimate the drone’s position and velocity without GPS data. 
This is achieved through the network's capacity to learn the error characteristics of low-cost sensors and 
effectively predict the drone’s motion, showcasing the potential of RNNs in complex navigation tasks under 
challenging conditions. 

Another technique is introduced in [47], the authors approach the navigation of drones in subway and tunnel 
environments by modeling these structures as network graphs. Drones are viewed as traffic packets in data 
networks. The navigation within these tunnel networks utilizes router systems at each intersection. These 
routers are equipped with comprehensive network information and use the Open Shortest Path First protocol 
for interconnection. To efficiently navigate drones from their source to destination, the routers apply the 
Dijkstra algorithm, leveraging the available global network information to ascertain the most direct path 
for each drone. 

In their research, the authors of [48] introduce an innovative method for 3-D localization of UAS that 
leverages 5G cellular networks, which operate independently of GPS systems. The methodology involves 
formulating the UAS localization problem as an optimization problem that aims to minimize the error in 
Received Signal Strength Indicator measurements from four adjacent cellular base stations. To address this, 
the study proposes two machine learning-based approaches: a deep supervised learning technique using 
Multilayer Perceptron and a reinforcement learning strategy employing Deep Q-Learning (DQN). These 
approaches are designed to provide near-optimal localization solutions efficiently in real-time dynamic 
environments. The paper also conducts a comparative analysis of these machine learning techniques against 
traditional optimization methods, assessing their computational efficiency and effectiveness. Notably, the 
study suggests that the reinforcement learning approach is more suitable for UASs operating in smaller 
flight spaces requiring high accuracy, whereas the deep supervised learning approach is recommended for 
UASs in larger flight spaces due to its lower computational complexity, thereby contributing significantly 
to the enhancement of UAS localization in urban settings through the use of existing 5G cellular 
infrastructure. 

In the study [49], the researchers developed a novel approach for real-time aerial data collection and 
mapping without GPS reliance. Their methodology relies on the capabilities of CNNs, particularly the 
RetinaNet model, to process and analyze visual data captured by UASs. The process begins with the 
identification and localization of objects of interest and landmarks from the UAS camera, using CNNs to 
detect pixel coordinates of these elements along with key reference points. This is followed by geometric 
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viewpoint transformation, which projects the identified objects from the UAS perspective view onto an 
orthogonal map. The research introduces two distinct mapping strategies: Projection from Perspective to 
Orthogonal based on Reference Objects’ Coordinates and Projection from Perspective to Orthogonal based 
on Reference Objects’ Size. These methodologies were validated through outdoor field experiments, 
emphasizing their effectiveness in creating accurate mappings in environments devoid of GPS data. The 
approach is primarily dependent on an RGB camera, indicating that its performance might vary with 
changes in environmental lighting conditions. However, the study successfully demonstrates a significant 
advancement in UAS-based mapping technologies, highlighting the potential of CNNs in transforming 
aerial data collection, particularly in GPS-challenged scenarios. On the other hand, the authors of [50] 
proposed a data-driven solution using Spectrally Normalized Memory Neuron Network (SN-MNN). It 
leverages rotor revolutions per minute and historical UAS states, predicts the UAS’s position, and 
transforms it into GPS coordinates. This process includes state refinement through an extended Kalman 
filter-based state fusion. However, it is important to note that despite the SN-MNN advanced capabilities, 
its complexity may limit is applicability in high-speed, real-time operations. 

In [51], an advanced quadrotor navigation method that operates effectively in GPS-challenged and low-
light environment is explored. Central to this approach is the use of a Red-Green-Blue-Depth (RGB-D) 
camera, which is able to identify predefined 3D markers. Significantly, the system incorporates an SVM 
algorithm for the efficient recognition and classification of these markers. This integration of RGB-D 
cameras with SVM-based marker identification enables the quadrotor to accurately determine its location 
and orientation, offering an alternative to conventional GPS navigation systems. 

The application of AI and decision-making techniques in UAS localization presents a blend of advantages 
and limitations. These methods, particularly effective in GPS-denied environments, enhance the autonomy 
and flexibility of UASs. AI algorithms excel in processing complex sensory data, enabling UASs to 
navigate through challenging terrains and urban landscapes with precision. The integration of deep learning 
models like CNNs and RNNs with UAS systems facilitates accurate object detection, mapping, and path 
planning, even under uncertain conditions. However, these techniques have their constraints. The 
complexity and computational demands of advanced AI models can be a limiting factor, especially for real-
time applications requiring swift processing. Dependence on external environmental factors, such as 
lighting conditions or the presence of identifiable landmarks, can impact the accuracy of these methods. 
Furthermore, the effectiveness of AI-based navigation heavily relies on the quality and diversity of the 
training data, making the systems potentially less reliable in unfamiliar settings. Despite these challenges, 
the continuous advancements in AI and machine learning promise to mitigate these limitations, paving the 
way for more robust and versatile UAS navigation solutions. 

 
Table 8: A Summary of Pertinent Parameters Associated with Publications that Discuss AI-Based Techniques. 

Paper Hardware Aircraft Accuracy Location Experiment AI-Model 

[36] • Camera NA 
• MAE: 
• X= 5.2067 
• Y= 4.5221 

Outdoor Simulation GeoCNN + 
MBA 

[37] • Depth sensor 3DR Iris • NA Outdoor Simulation 
POMDP-
SLaM 
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[38] • Synthetic 
aperture radar 

NA • MSE < 1 NA Simulation Wide 
ResNet 

[39] • Canon IXUS 
125 HS camera 

SenseFly 
eBee 

• Error < 
50m 

Outdoor Real-world CNN 

[40] 

• RealSense 
• D435i depth 

camera 
• IMU 

Quadcopter • NA Outdoor Simulation YOLO v4 

[41] 
[42] 
[43] 

• Camera 
• IMU 
• Magnetometer 
• ultrasonic 

pressure sensor 
• barometric 

pressure 
sensor 

Multi-copter 
• Success: 

96.25% of 
the time 

Indoor Real-world POMDP 

[44] 

• Binocular 
Stereo 

• Camera, 
Fisheye Lens 

• Camera 
• NVIDIA Jetson 

TX2 
• Landmarked 

UGV 

DJI M100 • Error: 
~0.5m 

Outdoor Real-world YOLO v3-
tiny 

[45] • Monocular 
Camera 

NA 
• Min. 

Accuracy 
~88% 

Outdoor Simulation CNN 

[46] 

• IMU ICM-
20689 and 
BMI055, 

• Magnetometer 
IST8310, 

• Barometer 
MS5611 

Quadrotor, 
Fixed Wing, 
Standard 
VTOL, 
Octorotor, 
Tiltrotor 
VTOL, and 
Hexarotor 

• Mean  Max 
Position 
Error: 
85.79m 

NA Simulation RNN 

[47] • Routers NA • NA Indoor Simulation Dijkstra 

[48] • NA NA 

• Deep 
Learning: 
2.6m 

• Reinforcem
ent 

Outdoor Simulation 

Deep 
Learning 
(MPL) 
Reinforcem
ent 
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Learning: 
0.87m 

Learning 
(DQN) 

[49] 
• RGB 
• camera 

Parrot Anafi 
Parrot 
Bebop 2 

• Max. 
average 
projection 
error: 17.18 
inch 

Outdoor Real-world  RetinaNet 

[50] 

• Accelerometer 
• gyroscope, 
• barometer 
• compass 

micro-UAS 

• Root Mean 
Square 
Error: 
0.05953 m 

Outdoor Real-world 
SN-MNN + 
EKF 

[51] 

• ASUS Xtion 
Pro Live RGB-
Depth sensor, 
Nitrogen6x 

• Quad-Core 
ARM Cortex 
A9 processor. 

Quadrotor 

• Max lateral 
error:  
2.45 cm 

• max 
heading 
error: 
2.89 deg 

Indoor Real-world SVM 

   

1.1.23 Fusion Techniques 

Another method employed for UAS localization in GPS-denied environments is the utilization of fusion 
techniques. In navigation, fusion techniques involve the integration of data from multiple sensors to 
enhance accuracy and reliability, particularly in GPS-denied areas where traditional positioning signals are 
unreliable. These techniques combine measurements from sensors like IMUs, visual sensors (such as 
cameras), LiDAR, Radar, and more, each contributing unique data about the device's motion and its 
surroundings. The fusion process employs filtering algorithms like Kalman filters to fuse and process the 
sensor data, mitigating errors and providing a more accurate estimation of the device's position, orientation, 
and velocity.  

In [52], the authors introduced the All-Source Navigation (ASN) system, developed by BAE Systems 
Australia. ASN stands out for its adaptability and flexibility; at its core, it makes use of SLaM techniques 
and can integrate multiple sensors (IMU, camera, height sensor, etc.), offering a plug-and-play navigation 
solution. When the raw data collected from these sensors is fused in a Kalman filter, it is possible to update 
the state estimate of the vehicle with less than 4 satellites. This adaptability not only enhances navigational 
accuracy but also reduces reliance on expensive, high-accuracy IMUs and GPS equipment, making ASN a 
cost-effective choice. Practical tests conducted on the Kingfisher 2 UAS platform highlight ASN's 
performance.  

The authors in [53] designed and implemented a cost-effective vision-based UAS tailored for GPS-denied 
navigation in extremely low-light conditions and thermal imaging applications. This UAS leverages 
onboard sensors, notably a downward-facing optical flow camera, to enable semi-autonomous navigation 
within GPS-deprived indoor environments. The system's horizontal position is determined through the 
integration of horizontal velocity data, which, in turn, is computed by fusing inputs from the PX4Flow 
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camera and IMU. Additionally, the vertical position is directly measured using the ultrasonic sensor 
incorporated within the camera. The authors conducted an indoor flight test in near-complete darkness in 
order to assess the system's efficacy and potential utility in scenarios requiring precise navigation and 
thermal imaging capabilities.  

Similar to the previous paper, many studies have been conducted to make navigation in low-light conditions 
more accurate. In [54], the authors proposed a complete platform design and software architecture of a 
GPS-denied navigation SLaM based technique for MAVs. The system combines measurements of a 3D 
LiDAR, an altimeter, and a stereo camera to improve the performance of state estimation. This combination 
is used since optical sensors alone are susceptible to motion blur. The designed platform accounts for the 
computational resources requirements to meet the Size Weight and Power (SWaP) constraints of the 
MAV. The performance of the optical sensors has been also addressed in [55], where the authors built a 
sensor integration system that combines a stereo camera with a rotating sensor-laser range finder to solve 
the previous systems challenges such as camera’s low performance in low illumination environment and 
the high cost of a 3D range finder.  On the other hand, [56] describes the development of a UAS for 
autonomous tracking and landing on a moving platform in an environment with ultra-low illumination. A 
customized marker illuminating with infrared LED was secured on the moving platform to be utilized as a 
landing pad. The UAS installed with a monocular camera with an IR filter was used to track the marker to 
follow and land on the moving platform. Sensor reading from an onboard LiDAR scanning range finder 
was fused with a barometer to determine the absolute height relative to the marker and to measure the 
descent velocity during the landing process.  

Some applications usually require high speed navigation, which is why a study has been conducted in [57] 
to enhance this aspect of navigation. The authors built a quadrotor system that is able to navigate through 
both indoor and outdoor environments which is mainly used in object detection tasks. As the robot is flying 
at speeds of more than 18m/s, it constantly senses the environment using a stereo camera, updates the maps 
and plans a trajectory towards the goal using a laser-based height sensor for state estimation. Another 
system that focused on the UAS speed was designed in [58]. The study presented a navigation solution that 
consists of a stereo camera, IMU, and a height sensor fused together to allow autonomous navigation in 
indoor cluttered environments; in addition to a LiDAR to generate a 3D voxel map. However, the system 
does not use a global map but instead uses a local mapping technique that generates a point cloud around 
the current robot location. This point cloud is used to build a 3D voxel map. The results show that the 
system was able to fly at a speed of 7m/s with a 0.2 m drift in the y-position and a 0.5m in the z-position. 
Another study that uses velocity estimation is presented in [59], the authors proposed a global optical flow-
based velocity estimation of multicopters by fusing measurements from onboard sensors, including a 
downward-looking monocular camera, an IMU, and a sonar facing downwards. The AirSim-based 
simulation showed a maximum position error of 0.51m.  

 In [60], the authors have introduced an autonomous radioactive source localization system using a small 
aerial robotic platform in GPS denied known and unknown environment. The system relies on radiation 
detection using a radiation detector, source localization, 3D mapping and finally independent navigation 
towards the source. Since small aerial robots have limited endurance and due to the need for long dwelling 
times to allow the radiation counting statistics to provide reliable estimates, the authors developed a method 
to operate with a minimal number of measurements, resulting in a localization error of 0.31m.  [61] presents 
a SLaM system that remotely calculates the pose and environment map. The proposed system adapts to the 
sensory configuration of the aerial robot, by integrating different SLaM methods based on vision, laser, 
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and/or inertial measurements using an EKF. To do this, a minimum onboard sensory configuration is 
supposed to consist of a monocular camera, an IMU, and an altimeter. It allows to improve the results of 
well-known monocular visual SLaM methods (LSD-SLaM and ORB-SLaM are tested and compared in this 
work) by solving scale ambiguity and providing additional information to the EKF. A 2D laser sensor can 
be incorporated to the SLaM system, obtaining a local 2.5D map and a footprint estimation of the robot 
position that improves the 6D pose estimation through the EKF. [62] is another work that uses Kalman 
filter, in this case a relative multiplicative extended Kalman filter for estimating the relative state of a 
multirotor vehicle operating in a GPS-denied environment. The filter fuses data from an inertial 
measurement unit and altimeter with relative-pose updates from a keyframe-based visual odometry or laser 
scan-matching algorithm. Because the global position and heading states of the vehicle are unobservable in 
the absence of global measurements such as GPS, the filter in this article estimates the state with respect to 
a local frame that is collocated with the odometry keyframe. As a result, the odometry update provides 
nearly direct measurements of the relative vehicle pose.  

The proposed system in [63] uses a sensor combination, which consists of an image sensor and a range 
sensor only. The main idea behind this system is to investigate whether it is possible to abandon the need 
for an IMU, which plays the most important role in navigation. However, this sensor combination cannot 
provide all the information required for conventional guidance, navigation, and control systems. Therefore, 
the authors also developed an integrated guidance system that requires navigation information obtainable 
from the sensor combination. This proposed system replaces the body angular rate loop to the look angle 
rate loop obtained from the image sensor. A numerical simulation has been performed to test the 
performance of this system which resulted in a maximum tracking error of 5cm.  

In [64], the authors present a navigation system that uses the INS, optical flow, and magnetometer for 
localization of UAS. The magnetometer is used for altitude estimation, whereas the INS and the optical 
flow are combined for an accurate position and velocity estimate. The proposed approach is based on the 
extended version of Kalman filter. Experiment findings demonstrate that the suggested technique may 
greatly minimize navigation position, velocity, and attitude errors when compared to INS-only navigation.  

Another system presented in [65] has been designed to access remote sites and collect data of structures 
and field features following an earthquake or a natural disaster in a GPS-denied environment. The authors 
proposed a vision and marker-based localization method that uses LiDAR scan data and camera payload 
integrated with an octo-rotor UAS to reconstruct geometric features of the surrounding environment.  After 
collecting data from sensor combination, the system fuses the information using a Kalman filter algorithm 
for pose estimation.  

The work in [66] proposes a localization methodology based on an improved iterative closest/corresponding 
point based on point to line metric algorithm for position estimation of a quadrotor UAS in GPS-denied 
unknown environments. The quadrotor is equipped with a miniature laser range finder as the main onboard 
sensor.  

In the analyzed literature, a common theme emerged where numerous systems utilize teams of UAS. These 
groups of UASs are primarily engaged in target search operations and environmental exploration tasks. For 
example, in [67], the authors present a multi-UAS system that can be utilized for a team of UASs to 
autonomously navigate, search, and detect multiple targets in a cluttered and GPS-denied environment. The 
multi-UAS system uses a decentralized framework based on Decentralized Partially Observable Markov 
Decision Processes to formulate the decision-making process considering uncertainties in the environments 
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and sensing. This system was designed for a mission that needs to cooperate efficiently to search and find 
multiple targets, without knowing possible locations, by sharing limited vital observations through Wi-Fi 
connection. The system was tested in several cluttered and GPS-denied environments simulated in Gazebo 
and ROS interface. The environments were populated with different numbers and types of obstacles, several 
targets, a team of UASs and boundaries.  

Another similar work in proposed in [68], the authors designed a framework for a team of UASs to 
cooperatively explore and find a target in complex GPS-denied environments with obstacles. The team of 
UASs autonomously navigates and finds the target in a cluttered environment with a known map. The 
framework is based on a probabilistic Decentralized Partially Observable Markov Decision Processes 
which accounts for the uncertainties in sensing and the environment. The system is simulated using the 
ROS and Gazebo. Performance of the system with an increasing number of UASs in several indoor 
scenarios with obstacles is tested. Results indicate that the proposed multi-UAS system has improvements 
in terms of time-cost, the proportion of search area surveyed, and successful rates for search and rescue 
missions.  

The paper in [69] aims to give a comprehensive survey on the RF based localization systems with different 
radio communication technologies and localization mechanisms on UAS positioning. Toward this end, an 
evaluation framework is first established to evaluate the performance of each system on UAS positioning 
from different perspectives. Particularly, the Ultra-wideband (UWB) based system with time-based 
mechanisms is highlighted for UAS positioning under the consideration of the proposed evaluation 
framework. Finally, an analysis is conducted about the current challenges and the potential research issues 
in this area to identify the promising directions for future research.  

In [70], the work proposes a self-localization approach for tethered drones in GPS-denied environments 
without using a cable-tension force sensor. The proposed approach uses an extended Kalman filter to 
estimate the cable-tension force and the three-dimensional position of the drone with respect to a ground 
platform. The approach uses data reported by the onboard electric motors, accelerometers, gyroscopes, and 
altimeter (ultrasound sensor), embedded in the commercial-of-the-shelf IMUs. The paper also presents a 4-
state state-space model to estimate the drone’s 3D location, as well as the cable-tension force. The proposed 
approach was compared with an existing work that assumes known cable-tension force, and simulation 
results show that the proposed approach produces estimates with less than 0.3m errors when the actual 
cable-tension force is greater than 1N.  

In conclusion, fusion techniques in GPS-denied environment navigation present a blend of advantages and 
limitations. On the positive side, they offer enhanced accuracy and reliability in navigation by integrating 
data from various sensors like IMUs, cameras, LiDAR, RADAR, and others. This multi-sensor approach is 
adaptable to different scenarios, including low-light and cluttered environments, and is cost-effective as it 
reduces reliance on expensive GPS and high-accuracy IMUs. Moreover, these techniques, particularly when 
employing Kalman filters, are effective in mitigating sensor errors and providing precise estimations of 
position, orientation, and velocity, which is crucial in challenging environments.  

However, there are limitations. The effectiveness of these systems heavily depends on the quality and 
calibration of the sensors used. Inconsistent or inaccurate sensor data can lead to errors in navigation. 
Additionally, the computational complexity of processing and fusing data from multiple sources can be 
significant, posing challenges in terms of processing power and real-time application, especially in smaller 
UASs with limited computing resources. There's also the issue of designing systems that can robustly 
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handle varied and unpredictable environmental conditions, which can significantly impact sensor 
performance.  

A review of 19 papers in this field revealed that 16 of them utilized the IMU in the fusion operation, 13 
employed a visible light camera, while 6 incorporated LiDAR and range finders in their sensor 
combinations. Notably, the position error in these studies ranged from as low as 0.07m to as high as 11m, 
highlighting the variability in system performance based on sensor choice and integration techniques.  

 
Table 9: A Summary of Pertinent Parameters Associated with Publications that Discuss Fusion-Based Techniques. 

Paper Aircraft Aircraft specs 
Sensors/ 

Processors 
Evaluation 

metrics Location 

[52] 
Kingfisher 
2 UAS 

• Mass (including 
payload): 125Kg 

• Wingspan; 4.13m 
• Wing area: 2.67 m2 
• Max. airspeed: 100 

kts 
• Max. crosswind: 

15kts 
• Max. tailwind: 10kts 

• Kontron CP308 
board 

• IMU 
• Downward-

Looking camera 
• Air data system 
• Height sensor 

• Average position 
error <10m  
(peak at 11m) 

• Mean execution 
time= 0.39ms 

 

Outdoor 

[53] Quadrotor 

• Mass (including 
thermal camera): 
1108g 

• Propeller size:  
9.4x5.0 (inch) 

• Main controller 
board: Teensy 3.1 
MCU board 

• IMU is based on 
FreeIMU sensor 
suite 

• Pololu Mini 
Maestro Servo 
Controller board 

• Thermal camera 

• horizontal 
velocity ±0.2m/s 

• altitude ±0.15m  
• heading angle 

±0.1 rad 
 

Indoor 

[54] 

Micro-
Aerial 
Vehicle 
(MAV) 

• 650 mm diameter 
• 5.5 kg mass 

• Downward laser 
altimeter 

• IMU 
• 3-D LiDAR 
• Intel NUC i7 

• Final drift is 
around 13% of 
the total traveled 
distance 

Indoor 

[55] 
Customize
d quadrotor 

• 128cm, tip to tip 
• Max takeoff weight: 

5kg 
• Payload weight: 2kg 

• Stereo camera 
• Rotating sensor-

laser range finder 

• Reconstructed 
range: 30m 
(building a 3D 
map) 

Indoor/ 
Outdoor 

[56] 
Customize
d 
quadcopter 

-- 

• Camera 
• LiDAR 
• Scanning range 

finder 

• Max x-position 
error ~ 1m 

• Max y-position 
error ~ 1m 

Indoor/ 
Outdoor 
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• IMU 
• Intel NUC with 

i7 processor 

• Max z-position 
error ~ 3m 

 

[57] 

DJI F450 
frame with 
the DJI 
E600 
propulsion 
system 

-- 

• Stereo camera 
• IMU 
• Laser height 

sensor 
• Nodding Hokuyo 

LiDAR 
• Intel NUC i7 

processor 

Max position error 
~2m 

Indoor/ 
Outdoor 

[58] DJI F450 + 
E600 

 

• Cameras 
• Garmin LiDAR-

lite 
• VectorNav VN-

100 IMU 
• Height sensor 
• Intel NUC i7 

computer 
• Intel i7-5557U 

processor 

At 7m/s: 
• Y-position: Max 

of 0.2m drift 
• Z-position: Max 

of 0.5m 
• X-position: 

desired and 
estimate are the 
same 

Indoor/ 
Outdoor 

[59] 

DJI 
Matrice 
100 
quadcopter 

-- 

• Downward-
looking 
monocular 
camera 

• IMU 
• Sonar facing 

downwards 
• NVIDIA Tegra 

K1's 4-Plus-1 
Quad-core ARM 
Cortex-A15 
Processor 

Max error of 0.51m 
Indoor/ 
Outdoor 

[60] 
Small 
aerial robot 

take–off weight: 2.6kg 

• Radiation 
detection system 

• Pixhawk-
autopilot 

• Intel processor 
• Visual-inertial 

sensor 
• Cesium-137 

radiation source 

Localization error: 
0.31m 

Indoor 
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[61] 

Bebop 
Drone of 
Parrot 
Erle-Copter 
of Erle 
Robotics 

-- 

• Monocular 
camera 

• IMU 
• Altimeter 

RMSE: 103.71cm 
Mean: 49.82cm Indoor 

[62] 

Hexacopter 
in a Y6 
configurati
on 

-- 

• MEMS IMU 
• Altimeter 
• Intel i7 processor 
• Forward facing 

asus Xiton Pro 
Live RGB-D 
camera 

Max error: 
• Position: 

0.0648m 
• Attitude: 

1.6259 degrees 
• Velocity:  

0.1784m/s 

-- 

[63] -- -- 
• Image sensor 
• Range sensor 

Max error= 5cm Indoor 

[64] 

Mictoaerial 
vehicle 
(MAV):DJ
1 2312 

-- 

• Magnetometer 
(HMC3883L) 

• Optical flow 
sensor 
(PX4FLOW) 

• IMU (MPU6050) 

• Error= 1.8% of 
the travelled 
distance 

• Position error: 
• X max error ~ 

2.25m 
• Y max error ~ 6m 
• Z max error ~ 

0.65m 

Outdoor 

[65] 
octo-rotor 
UAS 
platform 

• Payload capacity: 
0.8Kg 

• Vehicle weight 
with battery: 2.5Kg 

 

• Light detection 
sensor 

• LiDAR 
• High resolution 

camera 
• IMU 
• 1.7GHz ARM 

Quad-Core 2GB 
RAM Processor 

• Reconstruction of 
the geometric 
feature of 
surrounding 
environment 

 

Indoor 

[66] Built by the 
authors 

• Four brushless 
electrical motors and 
10 in propellers 

• 2300 mAH battery 
• Weight= 1.6Kg 
• Size= 0.45m x 0.45m 

• Hokuyo UTM-
30LX miniature 
laser range finder 

• IMU 
• Gumstix 

embedded 
computer 

 
 

• Indoor hovering 
control 
experiment: 

• Horizontal 
displacement 
error< ±0.1 m 

• Altitude error < 
±0.2m. 

Indoor/ 
Outdoor 
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• Trajectory 
tracking control 
experiment 
(outdoor): 

• The tracking 
error < ±0.2m. 

[67] 
Small-size 
quadcopter 
(multiple) 

-- 

• Downward facing 
cameras 

• Multi-orientation 
range sensors 

• IMU 
• Intel® Core™ i7-

6700 

• Collision rate:  
max of 44% 

• Success rate:  
min 55% 

Indoor 

[68] 
3DR Iris 
(multiple) -- 

• Range laser 
sensors 

• Map of the 
environment 

• IMU 
• Downward-facing 

camera 

• Min target 
detection rate: 
Independent: 
37.5% 

• Divided: 67.5% 
• Informed: 

82.5% 

Indoor 

[69] 
Custom-
built UAS 
platform 

-- 

• RGB-D camera 
• 2D LiDAR 
• Altimeter 
• IMU 

• ~0.25m 
Indoor 
 

[70] -- -- 

• IMU 
• Accelerometer 
• Gyroscope 
• Altimeter 
• Cable-tension-

force sensor 

• Position Error: 
< 5.075m 

• Root Mean 
Square Error:  
< 0.3m 

Indoor/ 
Outdoor 

 

1.1.24 Ground Guided Techniques   

This collection of papers delves into ground-based techniques for UAS navigation in GPS-denied 
environments. These methods explore various approaches, including triangulation, trilateration, path 
planning using cellular towers, and cooperative localization, each offering solutions to enable precise and 
reliable UAS navigation without reliance on satellite-based positioning.  

The paper in [71] presents a navigation system for UAS operating in GPS-denied environments. The system 
leverages a ground-based multi-antenna localization setup, where the UAS, equipped with an aviation 
transponder (either mode C or S), communicates with these antennas. The ground-based system calculates 
the UAS's position using triangulation (multilateration) of the time elapsed for responses between the UAS 
and the antennas. This position information is then relayed back to the UAs via a data telemetry link. The 
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UAS's autopilot utilizes this information for navigation, similarly to how it would use GPS-based data. The 
system architecture is specifically designed to enable UAS operation in environments devoid of Global 
Navigation Satellite Systems like GPS.  

In [72], the authors propose a relative navigation method for UASs in GPS-denied environments. This 
method, utilizing wireless ranging information, constructs three virtual base stations using distance data 
collected at different time intervals. Remarkably, it requires only one actual ground-based station for 
calculating the UAS's position. The authors compared their technique to traditional multi-base station 
wireless positioning methods, which usually have an error margin of over 10cm. This method achieves 
similar accuracy with the added convenience of requiring just one base station. 

The study in [73] presents a two-stage trilateration method for precise, real-time positioning of drones in 
GPS-denied environments, such as under bridges or indoors, using UWB technology known for its high-
ranging accuracy and transmission rate. This technique requires multiple UWB devices: one installed on 
the UAS and others on ground-based targets. The trilateration method calculates the position by measuring 
relative distances through signal transmission between these devices, determining the target's position in a 
fixed coordinate system. This method not only significantly reduces altitude error but also enhances 
positioning reliability in challenging GPS-denied areas. Additionally, the UAS itself can be used to locate 
ground users in such environments, offering a robust solution for drone navigation and positioning.  

The paper in [74] introduces a path planning method for UASs in GPS-denied environments, using cellular 
towers as navigation landmarks. The proposed UAS path planner aims to travel optimally from a specific 
source to a goal location, taking into account the presence of these landmarks. In areas lacking landmarks, 
the vehicle employs dead reckoning, with the objective of determining a time-optimal path while 
maintaining covariance within certain bounds. Due to the complexity of solving this as a continuous domain 
stochastic optimal control problem, the path is discretized into waypoints. The optimal locations of these 
waypoints are determined using particle swarm optimization, combined with a rabbit-carrot-based path-
following technique, to achieve a near-optimal path that meets the specified criteria.  

The paper in [75] introduces a cooperative localization technique for UASs in GPS-denied environments, 
utilizing a ground sensor architecture for guidance. This technique ensures that each UAS remains in 
constant contact with at least one Unattended Ground Sensor, which acts as a beacon for relative navigation, 
eliminating the need for dead reckoning. In [76], the authors present an Ultrasonic Beacon System (UBS) 
for UAS localization and mapping in GPS-denied environments, specifically targeting areas under bridges. 
The system comprises mobile beacons mounted on UAS's and stationary beacons placed in the surrounding 
environment, with beacon software monitored on the Ground Control Station. An Extended Kalman Filter 
algorithm estimates position data using the mobile beacon's position and IMU data. Additionally, the paper 
describes experiments where autonomous UASs (Pixhawk and Bebop2) equipped with UBS and deep 
learning were used for structural damage detection, focusing on concrete crack detection. 

The work in [77] explores the use of UASs for indoor construction site monitoring in GPS-denied 
environments. It introduces a method employing fiducial markers (AprilTags) linked to 3D coordinates in 
Building Information Models for UAS localization. By using cameras onboard UASs to identify their 
position relative to these tags, the method allows for precise navigation in indoor settings.  

The ground-based techniques for UAS navigation in GPS-denied environments, as discussed in these 
papers, bring forth notable advantages, such as the ability to operate in confined or indoor spaces, under 
bridges, or in heavily built-up areas where GPS signals are weak or non-existent. The use of UWB 
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technology, cellular towers, ultrasonic beacons, and fiducial markers demonstrates a level of innovation 
and flexibility in UAS navigation.  

However, these techniques also come with certain limitations. The reliance on ground-based infrastructure, 
such as multiple antennas or beacons, can pose logistical challenges in terms of deployment and 
maintenance. The accuracy and reliability of these systems can be affected by environmental factors, such 
as signal interference or physical obstacles, which might impact the communication between UASs and 
ground sensors. Furthermore, some methods require complex computational algorithms, like Extended 
Kalman Filters or particle swarm optimization, which could demand significant processing power and 
potentially limit real-time responsiveness. 

 
Table 10: A Summary of Pertinent Parameters Associated with Publications that Discuss Ground Guiding 

Techniques. 
Paper Aircraft Aircraft specs Hardware Evaluation metrics Environment 

[71] 

Finwing Sabre 
(controlled by 
a Pixhawk 
autopilot) 

Finwing Sabre: 
Weight: 3.12Kg 
Wingspan: 1.9m  

ADS-B transponder, 
Multiple antennas, 
Ground control 
station. 

Deviation from the 
planned trajectory:  
60-80m 

Outdoor 

[72] -- -- Base station 
Wireless link 

Standard deviation of 
errors: 
x-axis: 0.1357m 
y-axis: 0.1467m 
z-axis: 0.0669m 

Outdoor 

[73] -- -- UWB transmitters Average position error 
<1m 

Indoor/ 
Outdoor 

[74] -- -- Landmarks (cellular 
towers) 

x-axis max error: ~30m 
y-axis max error: 20m 

Outdoor 

[75] -- -- 
UGCs 
Three UASs/ Two 
UASs 

-- -- 

[76] 
Pixhawk UAS 
Bebop2 UAS 

-- 
Ultrasonic beacons 
IMU 

Experiment 1: 
7 cm latitude,  
3.1 cm longitude 
Experiment 2:  
error< 17cm 

Indoor/ 
Outdoor 

[77] Parrot Bebop 2 

Weight: 500g 
Flight time ~ 
25min 
Operation range: 
up to 2Km 
Video resolution: 
14MP 

Cameras, tags Maximum error < 0.5m Indoor 
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Image resolution: 
1920x1080 pixels, 
30 frames/sec 

  

1.1.25 Vision-Based Techniques 

Vision based techniques encompass the range of sensors intended to perform some combination of 
camera/visual sensor function in a number of spectrum configurations from purely visual to near-infrared 
and infrared sensors. As is common in these systems, there may be a combination of methods used to 
perform localization. The emphasis, however, is on the uniqueness of the proposed solution with respect to 
vision systems themselves. The primary metric for evaluating vision research besides size, weight and 
power (which remain relatively small, especially where vision sensors are solely used in localization) is 
error, especially horizontal, linear error. Altitude can be compensated for by using combinations of IMU 
and air data sensors. Rotation is useful in understanding the stability and reliability of aircraft, but the ability 
to track lateral position is the main measurement of success.  

a) Visual Odometry (Feature Point and Direct Methods)  

Visual Odometry is unique in the categorization of vision-based localization methods. There are two 
varieties under research, feature-based and direct. The former focuses on selecting features valuable for 
tracking from frame to frame to establish motion and rotation information. The latter focuses on pixel 
selection to accomplish the same task and is the newer of the two. While nominally separated in the 
taxonomy of approaches across relative and absolute visual location, it is also appropriate to compare the 
two directly which we do in the review of techniques here.  
  
Visual odometry uses a progressive sequence of camera or other visual sensor images to estimate the 
relative location and rotation of an unmanned aircraft. The direct, or pixel selection method, is the newer 
of the two. Instead of pulling feature points and tracking those points, pixel changes are tracked from image 
to image instead, providing motion and rotation information to perform localization.  
  
The technique’s advantages include the ability to mount systems in locations that may not be vertically 
oriented, though most research uses and tests these systems in such a configuration. The technique may 
also be more suitable to autonomous operations where terrain may vary and very local details might not be 
mapped with sufficient precision or known. More than one VO solution does use pre-mapping as part of 
the solution, but this, again, is the nature of vision solutions, especially where they are part of a larger 
localization package.  
  
The first of the techniques [78] uses monocular vision (single camera) to provide localization. One 
contribution of this work focuses on the system algorithms and feature database that uses a confidence 
index to rank and manage the usefulness of feature points, including dropping features where appropriate. 
However, the primary contribution of the work is flight test validation that includes not only indoor flight 
test and outdoor flight test, but the transition between the two environments using two different aircraft, a 
Yamaha Rmax based helicopter (150lb) and micro-copter drone (2lb), demonstrating the flexibility of the 
system across two different UAS categories. Tracking in results was effective, with horizontal location 
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divergence from GPS position at a maximum of roughly 5-10m and then recovering. Velocity measurement 
was also reported and tracked a difference within 1 m/s along multiple axes. [79], in research conducted 
earlier, uses an extended Kalman filter combined with optical flow estimation and also uses the same Rmax 
platform. However, it simulates the flight and compares the results to real-world flight data from Rmax 
flights. Results indicate maximum errors within 5m. As an earlier example of the same platform, the results 
point to the efficacy of their technique, but the real-world flight results of [78] may provide a better 
indication of both the accuracy and usefulness of similar classes of solutions across multiple aircraft types. 
A similar flow estimation method was used in [80] and flew indoor tests on a multicopter platform. Results 
were limited, however, and a comparison between [79] and [80] could not be made.  
  
In [58], the technique implements a hybrid of feature-based and direct methods called “semi-direct visual 
odometry” (SVO) which uses a variety of depth filtering methods in combination with a stereoscopic 
camera. Sensor fusion is a core part of the implementation here, utilizing gyroscopic systems in combination 
with the camera feeding into the SVO solution as a subsystem. Height sensor plus accelerometers 
accompany the SVO subsystem, feeding into an unscented Kalman filter to produce the localization 
solution. Finally, LiDAR is used to create mapping, planning, and trajectory generation using graphing 
methods. The system appears to be robust and mountable on a less than 10lb sUAS flight system. A total 
solution may not be usable on micro-vehicles but does demonstrate usability on smaller aircraft.  
  
This gives way to [81] which adapts odometry techniques to the specific needs of fixed wing aircraft.  In 
mounting a fixed wing system, the limitations of a vehicle unable to hover and are frequently employed in 
higher speed, higher endurance, higher altitude missions impose limits on the design of potential odometry 
systems. Here, relative vision techniques used with a singular monocular camera provides localization 
without the limitations of shorter-range sensors. A multi-state constraint Kalman Filter is the main 
component of the fixed-wing system as it is agnostic regarding distance to features. The system employed 
is a roughly 3lb hand launched aircraft with a 2m wingspan. Flight tests conducted indicate useful 
navigation but difficulty in straight-line flight, especially over less well-featured terrain with error 
maximums on the order of 10m. [82] also uses a multi-state constraint filter as an effort to overcome the 
weaknesses of RGB-D stereo cameras and laser scanners. In simulations using imagery and telemetry 
acquired from previous flight tests, error using the method accumulated to less than 3% over the flight, 15-
20m horizontally.  
  
A number of research efforts focus on indoor navigation at small scale using feature based odometry. While 
not demonstrating functionality outdoors, another feature matching technique in [83] employs an RGB-D 
camera that provides stereoscopic light information. The system development was conducted on board a 
light multicopter flown in indoor environments. The limitation of the stereoscopic system, as with others, 
remains the limited range of the sensor. The primary contribution of the work, however, is an empirical 
approach to testing and sampling using the Belief Roadmap algorithm. Overall, multiple sampling methods 
were tested, and a sampling uncertainty method outperformed others. Practical navigation results indicated 
a maximum deviation of 19cm. However, this was in indoor environments with limited area. [84] offers a 
similar test in a limited indoor cluttered environment. The primary contribution involves POMDP tested 
through simulation using reward functions. In [85], multi-objective functions make the primary 
contribution with a monocular camera fusion system feeding into the controller. Path planning is 
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accomplished using a potential field. Flight tests validated the adequacy of local control in the Proportional-
Integral-Derivative control loop.  
  
[86] poses a unique application of Odometry. Instead of focusing on onboard replacement sensors, here a 
ground-based system using infrared stereo is used as a landing aid for multiple airborne vehicles, 
performing a navigation function similar to radio-navigation common to crewed aircraft such as VHF 
Omnidirectional Range or instrument landing systems. While this component applies directly to the ground-
guided portion of the GPS denied localization taxonomy, the odometry focus of this implementation 
warrants inclusion here. Most notable is the demonstration of guidance to landing for both copter and fixed-
wing UAS using arresting cables, very different types of guidance, stages of flight, and even control laws. 
The landing error for copter flight test remained below 10cm for a 54cm vehicle size. Error for the fixed-
wing landing test was below 2m for a touch-down area of four arresting cables spaced 4m apart. [87] 
presents a similar effort in creating an infrared based approach-and-land system. In this case, visual 
processing was aimed at actual runway detection and estimation. Errors in flight tests were calculated as 
Root Mean Square (RMS) values. Given the angular nature of the navigation solution, these values 
decreased appropriately with proximity to the runway.   
  
Drawing a contrast with previous approaches, [88] attempts to use a prebuilt map to create a basis for pixel 
matching and alignment with known features and edge detection. For an area of roughly 100x50m, the error 
remained usually within 2m.  
  
In summary, Visual Odometry is one of the more promising GPS-denied solutions. As with other research, 
it remains at its best when combined with multiple methods in the taxonomy within the size, weight, power 
constraints of the platform. As discussed, the faster, higher nature of fixed-wing flight and missions may 
limit the usefulness of stereoscopic sensors, especially at higher altitudes. But monocular implementations 
may be sufficient. And the development and interest in ground-based odometry solutions demonstrates that 
not all localization need be contained and limited to airborne systems that reduce useful mission load. As 
always, validation in flight is most useful in determining the maturity and readiness of a system for 
deployment and/or commercialization. Regardless, several solutions have demonstrated that visual 
odometry is effective and useful for a variety of platforms and environments.  
 

Table 11: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques Focused 
Exclusively on Visual Odometry. 

Paper Method Hardware Aircraft Accuracy Location Experiments SWaP 

[78] Visual  Odometry 
Monocular 
Vision 

Rmax 
Helicopter/Micro-
drone 

5-10m 
transient 

Outdoor/ 
Indoor 

Flight Test, 
Real World 

Mounted 
on 2lb 
vehicle as 
well as 
150lb 

[79] Visual Odometry 
Monocular 
Vision 

Rmax Helicopter < 5m Outdoor 
Flight Test, 
Real World 

Mounted 
on 160lb 
vehicle 
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[80] Visual Odometry 

Monocular 
Vision + 
Ultrasonic 
Sensor 

Small 
Multicopter 

n/a Indoor Flight Test, 
Real World 

Small 
UAS 

[58] Visual Odometry Stereoscopic 
camera 

Small 
Multicopter 

~1m Indoor Flight Test, 
Real World 

Small 
UAS 

  
  
Table 12: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques that Combine 

Visual Odometry with a Collection of other Approaches. 

Paper Method Hardware Aircraft Accuracy Location Experiments SWaP 

[81] Visual 
Odometry 

Monocular 
Camera + 
Jetson TX2 

Strix 
StratoSurfer 
Fixed-Wing 

Max ~0.02m 
location 

Outdoor Flight Test, 
Real World 

~3lb 

[82] 

Visual 
Odometry + 
Multistate 
Constraint 
Filter 

Monocular 
Camera 

Small 
Fixed-Wing 

<3%, 15-
20m n/a Simulation n/a 

[83] 

Visual 
Odometry + 
Belief 
Space 
Mapping 

Stereo Camera 
(RGB-D) 

Micro 
Multicopter 

0.19m Indoor Flight Test, 
Real World 

Micro Air 
Vehicle 

[84] 
Visual 
Odometry + 
POMDP 

Monocular 
Camera 

Small 
Multicopter n/a n/a Simulation n/a 

[85] 
Visual 
Odometry 

Monocular 
Camera 

Small 
Multicopter 

Control 
response 
adequate 

Indoor 
Flight Test, 
Real World 

Small 
Multicopter 

[86] 

Visual 
Odometry + 
Ground 
Based 

Ground-Based 
Hardware 

Small 
Multicopter 
+ Small 
Fixed Wing 

< 0.1m 
Copter, <2m 
Fixed Wing 

Outdoor Flight Test, 
Real World 

Small 
Aircraft, 
Ground 
Systems 

[87] 

Visual 
Odometry + 
Ground 
Based 

Ground-Based 
Hardware 
(FLIR) 

Small Fixed 
Wing <1m (FLIR) Outdoor 

Flight Test, 
Real World 

Small 
Aircraft, 
Ground 
Systems 
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[88] 
Visual 
Odometry 

Monocular 
Camera 

Small 
Multicopter <2m Outdoor 

Flight Test, 
Real World 

Small 
Multicopter 

   
b. SLaM  

Simultaneous location and mapping, or SLaM, is a mature technology that has been employed successfully 
in automobile navigation since 2005 and the Grand DARPA Challenge [89]. SLaM is about the buildout of 
localization while simultaneously creating a map of the environment. A variety of techniques will follow 
the type of sensor used whether laser (LiDAR) or visual in the case of vision-SLaM. This map-building 
process is integral to the method and informs the advantages and drawbacks to the technique. This process 
is also in contrast to visual odometry which focuses on the change of image to acquire the pose of the 
camera and therefore the vehicle.  
  
A straightforward example of vision SLaM can be seen in [90]. An indoor multicopter platform is used 
with a monocular camera in concert with the SLaM algorithm. In indoor flight tests, the linear performance 
was effective. In an earlier flight test, linear error reached less than 0.5m. The error in rotation was 
significant, however. Earlier map drift caused the full loss of the map in rotation. The addition of a 
correction step mostly eliminated the issue and RMS error was reduced to less than 5cm. [91] reported a 
similar monocular setup with an extended Kalman filter. As part of the design, however, the flexibility of 
vision systems is demonstrated by this project’s inclusion of a visual odometry algorithm coupled with the 
SLaM solution. In outdoor test flights, error was held to the centimeter level. [92] performed similarly 
undergoing indoor tests with a micro UAS and single camera. The source mentions the use of a laser 
rangefinder in larger multicopter aircraft but left off this implementation. Error remained small, well within 
centimeter distances. Also employing monocular vision and a laser rangefinder was [17]. However, beyond 
development of the system and visual depiction of mapping results from the laser, no data on accuracy was 
provided. [93] is an older research effort exploring SLaM with a monocular camera. In indoor testing, the 
error recorded was nevertheless, less than 2m demonstrating the efficacy of the technique in early practical 
tests.  
  
One interesting system developed in [94], sought to focus on Martian exploration for former bodies of 
water. A combination of visual odometry and SLaM techniques plus POMDP mentioned earlier, the 
research’s contribution is primarily toward mapping techniques for survey, ultimately off Earth. The 
techniques, however, provide navigation capability and, in concert with a monocular visual-inertial state 
estimator, resulted in simulation test with RMS error greater than 20m. Authors report calibration issues 
contributing to the results.  
  
In an effort to tackle the problem of higher altitude air navigation, [95] uses a combination of VO and SLaM 
methods. As an earlier example of the research, a heavier more performant helicopter was used that included 
PC-104 architecture. As with other SLaM solutions, the vision system is monocular. In part, because of the 
expected operational altitude, stereo vision would have been of limited use, given the narrow onboard 
mounting separation. Horizontal error in one axis during flight tests that incorporated all solutions was less 
than 5m.  
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The changing nature of outdoor environment, especially where lighting constantly changes, [96] sought to 
use an algorithm processing low resolution images within a SLaM structure. While the platform is ground-
only, the effort to mitigate a combination of environmental factors is a notable contribution. As before, 
visual odometry is coupled with the SLaM system. There is not extensive error data as the research was 
intended to demonstrate viability of the technique.  
  
Of the two, SLaM and visual odometry, SLaM is the more mature technology. However, as demonstrated 
here, the two are not incompatible. Multiple sources show the use of both. The focus of the research here, 
however, is the SLaM technique, at least in concert with the physical systems. It is also notable that there 
is a lack of laser mapping such as the LiDAR systems found in autonomous automobile development. 
Where there are lasers used, it is primarily in either indoor, small volume settings or at very low altitudes 
given the range limitations of lasers. It is evident that SLaM’s clear weaknesses: less effective in transient 
environments with no opportunity to map and the inability to deal with non-static objects such as ground 
vehicles or people, indicates a reliance on secondary systems. This is likely a contributor to the fact that 
visual odometry is also used often in these solutions.  

Table 13: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques Focused 
Exclusively on SLaM. 

Paper Method Hardware Aircraft Accuracy Environment Experiments SWaP 

[90] Vision 
SLaM 

Monocular 
Camera 

Micro 
Multicopter 

<5cm Indoor Flight Test, 
Real World 

Small 
Multicopter 

[91] 
Vision 
SLaM 

Optical Flow 
Camera 

Small 
Multicopter <0.1m Outdoor 

Flight Test, 
Real World 

Small 
Multicopter 

[92] 
Vision 
SLaM 

Monocular 
Camera + 
Laser 
Rangefinder 

Micro 
Multicopter <0.1m Indoor 

Flight Test, 
Real World 

Small 
Multicopter 

[17] Laser 
SLaM 

Laser 
Rangefinder 

Small 
Multicopter 

n/a n/a n/a Small 
Multicopter 

  
  
Table 14: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques that Combine 

SLaM with a Collection of other Approaches. 

Paper Method Hardware Aircraft Accuracy Environment Experiments SWaP 

[93] Vision SLaM 
Monocular 
Camera n/a <2m Indoor Ground Test 

Small 
Aircraft 
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[94] 
Vision SLaM 
+ POMDP 

Monocular 
Camera 

Small 
Multicopter 
(Martian) 

>20m Outdoor Simulation 
Small 
Multicopter 
(Martian) 

[95] 
Vision SLaM 
+ Visual 
Odometry 

Monocular 
Camera Helicopter <5m Outdoor 

Flight Test, 
Real World Helicopter 

[96] 
Vision  SLaM 
+ Visual 
Odometry 

Monocular 
Camera 

Ground 
Vehicle b.a Outdoor 

Ground Test, 
Real World 

Ground 
Vehicle 

  
c. Template Matching   

Template matching involves image processing methods that use datasets to evaluate feature alignments. 
Given a known dataset, vision sensors can be used to align an aircraft’s relative position and rotation relative 
to that dataset. There are advantages and drawbacks to this approach, but a handful of research projects 
have used the technique.  
  
In [97], the authors use another ground-based landing system similar to [86] and [87]. Here the calibration 
process includes selecting reference points and matching pre-calibrated imagery taken by IR cameras to the 
current state of the vehicle. Accuracy in this case (noting that this is angular and so precision increases with 
proximity to the runway as in instrument landing systems) produced error two within tens of centimeters. 
[98], in an effort to enable mountainous terrain navigation, used parallax occlusion visual data to match 
against other imagery, namely drainage patterns. The concept of the work and its contribution are that on-
board sensors would produce a product like the latter type of image and localize by comparison to the 
rugged terrain dataset. This was demonstrated in computation simulation of these images but was not 
integrated into an aircraft or simulated as an aircraft. The technique warrants further investigation, possibly 
as part of an evaluation of multiple techniques most suitable to rugged terrain navigation and the various 
challenges surrounding mountain flight. In [99] a hybrid approach to be integrated into a helicopter was 
proposed to build maps. The process, from hybrid feature extraction in an initial map creation to generating 
a more efficient follow-up, works as a system design not yet implemented. In a unique contribution, [100] 
creates a dataset called “denseUAV” using densely sampled imagery dedicated to UAS navigation. Of 
interest, these images were collected at 80m, 90m, and 100m above ground to account for the change in 
perspective downward looking vision sensors would get with altitude change. Coupled with this was a 
baseline model adapted to take advantage of the dataset. As a demonstration of the methodology, the 
techniques showed a potential contribution to a systematic use of dataset generation for navigation.  
  
The limitations of template matching are self-descriptive. There must be robust datasets suitable for air 
navigation. This is difficult because ground features can change dramatically depending on the altitude of 
the aircraft attempting localization and navigation. This is mitigated by increasing the dataset to account 
for multiple altitudes worth of information. In any case, this describes a brute force attempt at localization 
except in known small areas. UAS transiting an area would be much more likely to stumble on terrain and 
features not found or at least not found along the precise flight plan.  
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Table 15: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques that Combine 
Template Matching with a Collection of other Approaches. 

Paper Method Hardware Aircraft Accuracy Environment Experiments SWaP 

[97] Template 
Matching 

NIR Camera, 
Ground 
Equipment 

Small Fixed 
Wing 

<1m Outdoor Flight Test, 
Real World 

Small Fixed 
Wing, 
Ground 
Equipment 

[98] 
Template 
Matching 

n/a n/a n/a n/a Simulation n/a 

[99] 

Template 
Matching + 
Hybrid 
Feature 
Extraction 

Monocular 
Camera 

n/a n/a n/a n/a n/a 

[100] 

Template 
Matching + 
Dataset 
Creation 

Camera 
(unspecified) 

n/a n/a Outdoor Simulation n/a 

  
d. Feature Points Matching  

Visual odometry methods frequently involve feature matching methods. The works discussed here are best 
categorized as dedicated primarily to feature matching rather than having such methods as part of a larger 
solution or are treated in isolation from a larger system. [101], for example, emphasizes the feature matching 
methods directly while still performing simulation and indoor flight test. The contribution to a navigation 
solution is the claim that as few as four feature points are sufficient for operation. Position error, indeed, 
remained below 0.5m. In [102], this method was used to create a control loop to system servos for 
navigation using feature points. The flight platform was a small, nearly micro, UAS. In flight test, the error 
was tested usually down to the centimeter level over a minute of flight time. The research in [103] 
performed feature points comparison using Google Map data. Applying the method returned confidence 
levels of correspondence. In subsequent flight test, the maximum trajectory error appears to be less than 
10m. The authors regard this as a successful demonstration of the method given the limitations of the 
dataset. Gimbal stabilization and thermal cameras are expected improvements. Finally, [104] looks at front-
camera image collection for the dataset and then performs feature matching. Simulations conducted indicate 
that the solution could lead to simultaneous operation in a SLaM-like system.  
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Table 16: A Summary of Pertinent Parameters Associated with Publications that Discuss Techniques that Combine 
Feature Points Matching with a Collection of other Approaches. 

Paper Method Hardware Aircraft Accuracy Environment Experiments SWaP 

[101] 
Feature 
Points 

Matching 

Monocular 
Camera 

Small 
Multicopter <0.1m Indoor 

Flight Test, 
Real World 

Small 
Multicopter 

[102] 

Feature 
Points 

Matching + 
Servo 

Control 
Loop 

Monocular 
Camera 

Micro 
Multicopter <0.1m Indoor 

Flight Test, 
Real World 

Micro 
Multicopter 

[103] 

Feature 
Points 

Matching + 
Commercial 

Dataset 

Monocular 
Camera 

Small 
Multicopter <10m Outdoor 

Flight Test, 
Real World 

Small 
Multicopter 

[104] 
Feature 
Points 

Matching 

Monocular 
Camera + 

Augmented 
Reality 

Ground 
Vehicle n/a Indoor n/a 

Ground 
Vehicle 

  
The upshot of feature points research as a category is that it is a potential avenue for further refinement of 
algorithms and methodology. As with template matching, preexisting data is required for localization, at 
least to start. There are interesting potential avenues to pursue such as refinement application of existing 
datasets as in [103]. The more robust areas of investigation appear to be, on the whole, in visual odometry 
or in some mixture of methods.  
  
This is a theme across all vision methods. The definition and boundary between the methods is fluid and 
not strictly limited. A VO solution can certainly feed into a SLaM system. Monocular or binocular vision 
hardware can couple with multistep control systems to improve the solution. One of the key points of vision 
methods is that the physical equipment can be lightweight and less demanding on even smaller UAS. There 
is opportunity for image processing techniques to employ CPU or GPU intensive solutions and that could 
impose power and weight costs, but continued improvements in mobile processing, especially in ARM, 
shows that such limitations will decrease over time. The takeaway appears to be that outdoor tests 
demonstrate the viability or at least the proximity of a solution to wider use. Interest appears to be high in 
the visual odometry arena and, alone or coupled with other techniques, marks a need for further research in 
this area.  
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