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EXECUTIVE SUMMARY

This report focuses on the spectrum considerations for Unmanned Aerial Systems (UAS) in public
safety and Unmanned Aircraft System Traffic Management (UTM). As UAS usage grows in
various sectors, ensuring efficient, scalable, and reliable wireless communications is crucial. This
research aimed to address critical gaps in spectrum management for safe UAS operations. The goal
of this research was to identify current and future spectrum needs for UAS operations, assess the
availability of spectrum resources, and develop dynamic spectrum sharing solutions. The research
also assessed interference challenges in unlicensed bands and proposed optimization algorithms to
ensure reliable data transmission.

The research yielded several important findings. In relation to spectrum shortfalls, the research
revealed that current spectrum allocations and technologies (e.g., unlicensed bands) are
insufficient to meet the needs of UAS operations, especially as UAV density under BVLOS
increases in the airspace. Both public safety and commercial UAS operations will face challenges
unless new spectrum resources, supported by algorithmic innovations, are developed. On the topic
of collaborative spectrum sensing and sharing, spectrum sensing can be used to efficiently allocate
underutilized spectrum bands. Introducing collaborative sensing technologies can further improve
accuracy. By using ML/Al-driven solutions, UAVs can autonomously detect and share
underutilized spectrum resources. Additionally, when considering the optimization of
communication systems, newly developed algorithms significantly enhance communication
performance in interference-heavy environments. The implementation of such algorithms for
video and data transmission by UAVs resulted in higher throughput and more reliable
communication even with interference. Finally, a federated learning-based framework allows
UAYV operators to collaboratively learn from decentralized data. This approach enhances data
privacy and security, while improving the accuracy and efficiency of spectrum sensing and
allocation decisions across large, multi-cell environments.

Despite these advancements, several challenges regarding spectrum considerations for safe and
reliable UAS operations remain. Actions are required in a number of areas. Validation of ML/AI-
driven spectrum management technologies is a challenge, specifically the investment in spectrum
management frameworks that can dynamically detect and allocate underutilized spectrum bands.
ML/Al-driven algorithms in UAS communication systems should be experimentally tested,
verified, and refined, especially in complex operations. Secondly, spectrum policy advocacy poses
challenges. Collaboration with policymakers and regulatory bodies, such as the Federal
Communications Commission (FCC) and National Telecommunications and Information
Administration (NTIA) to ensure proper spectrum allocation for UAS operations, is paramount,
especially priority access for public safety and first responders. Enhancing public safety operations
with future-proof technologies is an additional challenge, including investing in advanced
communication technologies (e.g., equipping UAVs with C-band radio, which is being repurposed



by the FCC in August 2024) and spectrum management tools that will enable UAS to operate
reliably and efficiently in BVLOS.

1 INTRODUCTION

Unmanned aerial systems (UAS) have attracted significant interests from communications and
networking, robotics, and control societies for exploring novel applications such as on-demand
connectivity, search-and-rescue operations, and situational awareness, to name a few. While such
efforts are essential, there are gaps in the fundamental research and experimentation of UAS
platforms. It is clear that the current innovations based on the assumption of visual line-of-sight
(VLOS) between an aerial vehicle and ground control station is a limiting factor. In order to truly
unleash the potential of UAS, real-world and commercial deployments will most likely be in the
form of beyond visual line-of-sight (BVLOS) scenarios, which in turn provide easier access to
remote or hazardous areas, less human intervention, and reduced cost of operation. Yet, compared
with the VLOS conditions, BVLOS carries higher safety risks since in the case of automated flights
there may be no human observations, or the pilot may only be observing potential obstacles or
other flying objects via a remote camera feed.

For safe operations of multiple UAS under BVLOS conditions, the Unmanned Aircraft System
Traffic Management (UTM) system is under development to enable advanced UAS use-cases.
Given the current state of knowledge, there is an immediate need for thorough assessment,
analysis, and modeling of spectrum management frameworks for efficient, reliable, and scalable
deployment of UAS under BVLOS scenarios. In this task, we provide a comprehensive assessment
of the shortfalls, impact, and needed changes in spectrum management to accommodate the
predicted levels of UAS operations and the diversity of technology solutions to address challenges
facing low altitude operations.

1.1 Research Subtasks
This research was organized across the following inter-related subtasks.

1.1.1 Subtask 1: Evaluating the Spectrum Needs for UAS

This subtask aimed to provide an assessment of current and future spectrum needs for low altitude
UAS operations, including aircraft and UTM infrastructure. In this subtask, the research team
presented a methodology to estimate the total spectrum resources needed for each type of wireless
communication within the UTM system. The aggregated results revealed the required spectrum as
UAV density increases. This analysis is critical for understanding the scalability of current
spectrum allocations and predicting future needs as UAV traffic increases. The results offer
valuable data for spectrum planners and regulators to ensure efficient and reliable communication
networks are available for increasingly crowded airspaces.

1.1.2  Subtask 2: Exploring the Spectrum Supplies for UAS

In this subtask, the research team surveyed existing spectrum allocation in the US to determine
available, underutilized spectrum or allocated spectrum that can be repurposed for UAS needs.
This subtask also explored standardization and policy-making opportunities. To assess the
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available spectrum resources and related technologies (such as LTE, satellite, WiFi, etc.), the
research team divided efforts into two parts for this subtask. A simulator that the research tean
developed was introduced, which integrates wireless and flight simulations. This is a crucial
component for evaluating the performance of various wireless communication technologies and
the allocated spectrum for UAV operations. Additionally, this subtask included the investigation
of policy-making initiatives focused on spectrum licensing mechanisms for UAV operations in the
U.S., including efforts by the FCC and NTIA to develop a national spectrum strategy.

1.1.3 Subtask 3: Dynamic Spectrum Sensing and Access

This subtask encompassed the examination of the requirements for a dynamic spectrum access
management service to assign and monitor spectrum use within UTM that supports UAS
operations. A data-driven framework was proposed for collaborative wideband spectrum sensing
and scheduling for networked UAVs, which act as the secondary users to opportunistically utilize
detected spectrum holes. To this end, the research team proposed a multi-class classification
problem for wideband spectrum sensing to detect vacant spectrum spots based on collected RF
signal samples. To enhance the accuracy of the spectrum sensing module, the outputs from the
multi-class classification by each individual UAV are fused at a server in the UTM ecosystem to
achieve collaborative spectrum sensing. In the spectrum scheduling phase, reinforcement learning
(RL) solutions were leveraged to dynamically allocate the detected spectrum holes to the
secondary users (i.e., UAVs). To evaluate the proposed methods, a comprehensive simulation
framework was established that generates a near-realistic synthetic dataset using MATLAB LTE
toolbox by incorporating LTE base-station (BS) locations in a chosen area of interest, performing
ray-tracing, and emulating the primary users channel usage in terms of I/Q samples. This
evaluation methodology provides a flexible framework to generate large spectrum datasets that
could be used for developing ML/Al-based spectrum management solutions for aerial devices.

1.1.4 Subtask 4: Saturation and Interference Analysis

This subtask focused on conducting saturation/interference analysis on the current spectrum used
by UAS, such as the ISM band. In this subtask, the research team conducted a thorough and in-
depth analysis of UAV communication systems with ground nodes under varying interference
conditions, focusing on the development of transmission policies to enhance network performance
in unlicensed spectrum bands. Specifically, this included modeling and mitigating the impact of
interference, queuing delay, and buffer overflow on expected throughput. By employing
distributed optimization algorithms, including methods like coordinate descent and consensus-
based distributed optimizations to find optimal transmission policies, the subtask explores
techniques for improving the efficiency of packet transmission in complex UAV-ground
environments. Additionally, video streaming quality was optimized through two-step optimization
algorithms that maximize metrics such as Peak Signal-to-Noise Ratio (PSNR), balancing video
encoding rates and transmission policies over all nodes.

1.1.5 Subtask 5: Spectrum Management Framework for Operators
Subtask 5 proposed a data-driven framework for collaborative wideband spectrum sensing and
scheduling across distributed UAV operators. The main goal of the solution is to enable distributed
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model training, which in turn, provides data privacy and security. In the model training stage, the
research team explored dataset generation in a multi-cell environment and trained a machine
learning (ML) model using the federated learning (FL) architecture. Unlike the existing studies on
FL for wireless that presume datasets are readily available for training, this research proposed a
novel architecture that directly integrates wireless dataset generation, which involves capturing
I/Q samples from over-the-air signals in a multi-cell environment, into the FL training process. In
the traditional FL that employs FedAvg as the aggregating method, each UAV is assigned an equal
weight during model aggregation. However, due to the disparities in channel conditions in a multi-
cell environment, the FedAvg approach may not generalize effectively for all the UAV locations.
To address this issue, a proportional weighted federated averaging method (pwFedAvg) was
utilized, in which the aggregating weights incorporate wireless channel conditions and received
signal powers at each individual UAV. As such, the proposed method integrates the intrinsic
properties of wireless datasets into the FL algorithm. This subtask builds upon the results from
subtask 3.

2 SUBTASK 1: EVALUATING THE SPECTRUM NEEDS FOR UAS

2.1 Introduction

The UTM architecture is being developed to orchestrate safe operation of multiple UAVs. Within
the concept of operations of the UTM architecture (Kopardekar et al., 2016), the need for spectrum
resources arises for the wireless communications involved between the UAV, the UAV operator
and the USS network. Since UAVs operating in UTM are not assigned a particular frequency band,
it is essential to know what resources are needed for safe operations especially in BVLOS
conditions. Subtask 1 focuses on a methodology to provide an estimate of the aggregated spectrum
resources required for each kind of wireless communication within the UTM system. The
aggregated results indicate how much spectrum is necessary when the density of UAVs increases.

2.2 Methods

As shown in Figure 1, the research team followed the methodology adapted from (Kakar, 2015),
to compute spectrum requirements for a given coverage cell that involves the information
exchange between the UAVs, the spectrum efficiency, and the density of UAVs. To compute the
total spectrum required, the formula multiplies the frequency reuse factor (K). Therefore:

_K.B.M.R
~ U.E '

where, K is the frequency reuse factor, B is the data rate requirement (kbit/s) for a single UAV, M

(2.1)

is the UAV density in a single cell, U is the utilization factor (< 1), R is the redundancy factor
(= 1) that allows backup links, E is the spectral efficiency (bits/s/Hz). Finally, W (MHz) is the
aggregate bandwidth requirement.

12



exchange

v
rates per UAV

Spectrum
efficiency
and protocol

l

( Information

» Spectrum for Multiply by Aggregated
| "| each type of » reuse factor > spectrum
Density of coverage cell K requirement
UAV
per coverage
cell

Figure 1. Methodology to compute aggregated spectrum requirements.

2.3 Results

2.3.1 Remote ID Requirements

Remote ID is the ability of a drone in flight to broadcast identification and location information
that can be received by other parties. For safety and security reasons, the FAA has mandated that
UAVs must broadcast Remote ID. Remote ID will provide information such as the identity,
location, and altitude of the UAV and its control station or take-off location. Table 1 summarizes
the required amount of data rate for broadcasting Remote ID.

Table 1. RemotelD contents of each UAV.

RemotelD Contents

Min Transmission Rate |Data rate

RemotelD Bits (Hz) (bfs)
UVIN 32 1 32
Latitude 32 1 32
Longitude 32 1 32
Altitude 32 1 32
Velocity 32 1 32
Latitude 32 1 32
Longitude 32 1 32
Altitude 32 1 32
Emergency Status 8 1 8
Time Status 40 1 40
Overhead 40 1 40
Total 344

Given the contents of RemotelD data from Table 1, Table 2 computes the total spectrum required
for broadcasting RemotelD when multiple UAVs are in the area using the methodology defined in
Figure 1.
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Table 2. Estimated aggregated spectrum requirements for broadcasting RemotelD.

Aggregating RemotelD requirements
M K B (bps) R U E (b/s/Hz) | W (MHz)
5 7 344 2 1 0.75 0.032107
10 7 344 2 1 0.75 0.064213
20 7 344 2 1 0.75 0.128427
50 7 344 2 1 0.75 0.321067
100 7 344 2 1 0.75 0.642133

2.3.2  Requirements for Command and Control (C2) with Video

C2 link plays a major role in delivering command and control information to the UAVs. In
computing the requirements for both uplink (UL) and downlink (DL), the default values mentioned
in the (ITU-R, 2009) were used. Since the requirements for UAVs flying below 400 ft are being
computed, cell type A is used to determine the estimated spectrum requirements for each cell. As
seen in Table 3, it can be clearly observed that as the UAV density (M) increases the total spectrum
requirement increases. Note that the computations consider UAV communications with video for
command and control.

Table 3. Estimated aggregated spectrum requirements for UAV communications with video for C2.

Spectrum requirements for UAV Communication with Video

Cell Type| M K BR/UE (KHz) Spectrum Needed (MHz)
UL DL Overall UL DL Overall
Surface 3 1 | 23.1589 | 437.279 | 460.438 | 0.06948 | 1.31184 | 1.38131
A 5 7 23.1589| 437.279| 460.438 | 0.81056 | 15.3048 | 16.1153
A 10 7 23.1589| 437.279| 460.438 | 1.62112 | 30.6095 | 32.2306
A 20 7 23.1589| 437.279| 460.438 | 3.24224 | 61.2191 | 64.4613
A 50 7 23.1589| 437.279| 460.438 | 8.1056 | 153.048 | 161.153
A 100 7 23.1589| 437.279| 460.438 | 16.2112 | 306.095 | 322.306

2.3.3 Requirements for UAV-UAV Communication

When UAVs operate in areas where manned aircraft are more common, operators are responsible
for ensuring safe separation from all other aircraft. This can be achieved through in-flight de-
confliction services provided by USS, which help detect and notify operators of nearby traffic, or
by using ground-based or airborne technologies such as position-sharing systems, vehicle-to-
vehicle (V2V) communication, ground-based or airborne surveillance data, and collision detection
and avoidance (CDA) capabilities. Table 4 captures an estimate of spectrum requirements for
UAV-UAV communications, where a data rate of 200 kbps is assumed for UAV-UAV
communication.
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Table 4. Estimated aggregated spectrum requirements for UAV-UAV communications.

UAV-UAV Communication

Spectrum
M K B (bps) R U E(bfs/Hz)| needed
(MHz)

5 7 200000 1 1 0.75 0.33333333
10 7 200000 1 1 0.75 18.6666667
15 7 200000 1 1 0.75 28

20 7 200000 1 1 0.75 37.3333333
30 7 200000 1 1 0.75 56

3 SUBTASK 2: EXPLORING THE SPECTRUM SUPPLIES FOR UAS

3.1 Introduction

To evaluate the available spectrum supplies and the performance of corresponding technologies
(such as LTE, satellite, WiFi, etc.), research efforts were divided into two parts in this subtask.
First, the developed simulator that can be used for integrated wireless-flight simulation was
presented. This is a critical aspect of the Task 7 research needed to be addressed to be able to
evaluate the performance of various wireless communication technologies as well as allocated
spectrum for UAV operations. Secondly, the research team explored the policy-making efforts that
are aimed at spectrum licensing mechanism for UAV operations in the U.S. This includes the FCC
and the NTIA efforts to develop a national spectrum strategy.

3.2 Developing a Simulation Framework for UAV Spectrum Studies

To evaluate and investigate various spectrum allocation and sharing for UAS, a reliable and
comprehensive simulation framework is needed. Such a framework should provide the capabilities
to model different subsystems of UAVs, ground control stations, and their communication links.
As such, the research team initially considered MATLAB and its UAV Toolbox in Simulink for
designing, simulating, testing, and deploying UAVs, but found that although MATLAB and UAV
Toolbox provide a powerful simulation framework, there are some limitations, such as challenges
for integrating wireless communication channel models for radio access networks. Two major
requirements for a BVLOS scenario with the UAV simulator are wireless communication channel
modeling between different entities and simulation of multiple UAVs in the same environment.
To select a simulation framework that fit the research requirements, the research team also
considered several open-source simulators. In particular, the functionalities and limitations of
FlyNetSim, UTSim, Airsim, ROS+Unity were considered. After thorough investigations, the
conclusion was that the existing open-source simulators have several limitations, as follows:

1) No air-to-ground wireless channel modeling,

2) Not compatible with required features according to UTM architecture,
3) Lack of mission planning functionality,

4) Not considering the underlying network traffic,

5) Not considering the interference resulted from other devices,

6) No Vehicle-to-Vehicle (V2V) communications feature.
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Therefore, the research team aimed to develop a simulator that addresses the forementioned
aspects as well as some additional ones. To this end, the Task 7 team set two specific goals for the
simulator:

e Goal 1: To be able to model various public safety scenarios in the simulation tools.
e Goal 2: To investigate the performance of various spectrum supplies and their
access/allocation policies.

To achieve these goals, the approach consisted of integrating two popular simulators, namely NS-
3 and ArduPilot. This approach enabled the implementation of reference public safety scenarios
in NS-3, which is a popular open-source network simulator. Furthermore, NS-3 is capable of
modeling various wireless protocols (LTE, 5G, WiFi, LEO sat.).

Figure 2 shows the overall system architecture of the simulator. In this case, multiple UAVs are
simulated via Ardupilot, and each UAV has a corresponding ghost node in the NS-3 simulator.
Each UAYV can be controlled by a UAS operator through the network. Furthermore, each UAV
sends telemetry data to its UAS operator through the network.

ARDU ns-3

UAV 1 /' Ghostuav1i \
Mavlink , -W
— —
|
Ghost UAV 2

UAV 2 |
Mavlink _
w ™ w

Maviink |

»

Ghost UAV n
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Figure 2. Overall system architecture of the simulator.

A main focus of subtask 2 consisted of cellular technology as the main spectrum supply to provide
wireless communications to the UAVs. The simulator developed provides several key features:

o Feature 1: Flexibility to define UAV operations. UAVs can be launched from different
locations and different missions can be defined using Mavlink standard structure.
Furthermore, it is possible to define/assign a specific mission for each UAV such as
wildfire monitoring, road monitoring, etc.

o Feature 2: Flexibility to define the cellular network. Given that the main focus was on
cellular (LTE) technology to provide wireless links to UAVs, this simulator enables to the
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user to define the LTE base stations (BS) at specific locations and heights. Furthermore,
each BS can be configured independently, in terms of operating uplink/downlink
frequency, allocated spectrum bandwidth, etc. For evaluation purposes, configuration
information was incorporated from real LTE base stations, which can be extracted from
available open sources, such as: specmap.sequence-omega.net.

o Feature 3: Full flexibility to define the type of messages. Each UAV is configured in terms
of the type of transmitted messages, frequency of transmission, message lengths, etc. Each
UAV sends telemetry info (e.g., location, velocity, battery level, etc.) to the corresponding
operator through the cellular network.

o Feature 4: Implementation for Air-to-Ground Wireless Channel Model. 3GPP-based
channel models were incorporated (from release-15 of the standard) for air-to-ground
wireless communications under different scenarios, such as urban vs. rural areas.

To demonstrate the effectiveness of the developed simulator, a sample set of results is presented.
To simulate a public safety scenario, the researchers modeled a wildfire in California, Los Padres
National Forest, which is the third largest National Forest encompassing about 1.75 million acres.
The Alisal wildfire incident occurred in 2021, and Figure 3 summarizes the key information about
the incident.

Alisal Fire Incident

1 © & &

16,970 Acres Contained Finalized 1 County

Last Updated 12/03/21 8:34 AM

Date Started

Z30PM
Date Contained 11/20/21 8:34AM

Lecation Northwest of Refugio Canyon near Hwy 101 along the
Information Gaviota Coast

Lat/Long [34.553, -120.136]

Administrative Unified C
Unit Padres N

Santa Barbara County Fire and Los

Cause Under Investigation

Externalincident  https://inciweb.mweg gov/incident/T862/ =
Link

Figure 3. Alisal fire incident key details. This scenario is used to demonstrate the functionality of the
simulator for UAV operation in public safety scenarios.

To establish a cellular network around the incident area, LTE base station locations were extracted
from cellmapper.net website, as shown in Figure 4.
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Figure 4. Location of LTE base station in the wildfire incident area.

Next, the team defined a mission path for the UAV to monitor a hill for any potential fire hazard.
The UAV was sending back video streams to the GCS over the cellular network. Figure 5 shows

the mission path with respect to the surrounding LTE base stations, which are denoted by blue
circles.

Figure 5. UAV mission path and LTE base station locations in the Alisal wildfire incident area.

Furthermore, Figure 6 shows a “zoomed-in” version of the mission path that can be defined in the
simulator.
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Figure 6. Defined mission path for the UAV that monitors any potential fire incidents in the Alisal area.

Once the LTE network and UAV mission were defined, the network performance was investigated
as various parameters, such as spectrum operation frequency, allocated bandwidth, and video
quality, etc., change. For example, Figure 7 shows the throughput performance of the streaming
service as the video resolution (streamed by the UAV) is set to 1280x720 or 800x600. The LTE
network is configured to operate at 700 MHz, and the allocated bandwidth is 6 MHz.
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Figure 7. Throughput performance results as a function of the video resolutions.

From the results, a smaller gap between transmission and reception rates can be observed when
using lower video resolutions. On the other hand, with higher resolutions, the gap increases. This
suggests that a 6 MHz bandwidth allocation may not be sufficient to support such video streaming
in that scenario.
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In addition to the video resolution, the developed simulator allows configuration of the operating
frequency band and allocated bandwidth. Figure 8shows a comparison of throughput performance
for streaming 800x600 video resolution, while the allocated bandwidth is configured to be either
3 MHz or 20 MHz. The operating frequency is also either 700 MHz or 2,600 MHz.

O 5 B 700 MHz, BW: 3 MHz

| == 700 MHz, BW: 20 MHz
2600 MHz, BW: 3 MHz
. 2600 MHz, BW: 20 MHz
0.4
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Figure 8. Throughout performance as a function of operating frequency and allocated bandwidth.

From the results, researchers observed that as the allocated bandwidth and spectrum supply
increases, a greater number of users are supported simultaneously.

Overall, these results demonstrate that the developed simulator can be an effective tool to evaluate
various spectrum allocation policies and investigate the performance of public safety scenarios
under diverse conditions.

3.3 Policy Efforts for UAV Spectrum Allocations

Regarding the second action item, the researchers investigated ongoing policy efforts revolving
around national spectrum strategy and spectrum allocations for UAV operations. The main purpose
of such policy efforts is to assign licensed spectrum bands for UAV operations. BVLOS flight
operations of UAVs within the national airspace (NAS) and in close proximity to people,
buildings, and other aircraft inherently entail risks and require real-time monitoring by air traffic
control and the pilot in command. This control and non-payload communication (CNPC) link is
critical for ensuring safety and demands an interference-protected aviation-grade spectrum.
Unlicensed spectrum is not viable because it lacks interference protection and is heavily used,
especially in urban areas. In fact, in Subtask 4, the team investigated the impact of interference on
UAYV communication performance. Furthermore, while there have been significant interests in the
airborne use of flexible-use spectrum and existing mobile networks, there is no licensed spectrum
in the U.S. for UAV communications, leading operators to rely on unlicensed or experimental
licenses without protection from harmful interference. In January 2023, the FCC issued a Notice
of Proposed Rulemaking (NPRM) for spectrum rules and policies for the operation of UAS
command and control in the C-band (5030 — 5091 MHz) (FCC, 2023).
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Subsequently, in March 2024, the NTIA published the National Spectrum Strategy Implementation
Plan that includes action items to explore repurposing this band for non-federal and commercial
airborne uses (NTIA, 2024).

The goal of the FCC’s NPRM was to seek comments on service rules for the C-band that will
provide UAS operators with access to licensed spectrum with the reliability necessary to support
safety-critical UAS communications links. The diagram in Figure 9 shows a proposed band-plan
that considers two types of operations for UAS:

1) Non-Networked Access (NNA) that involves flights within a sufficiently localized area
that can rely on direct wireless links between the UAS operator’s controller and the UAV
and therefore do not require any supporting network infrastructure. Such operations may
include, for example, tower or other site inspections, public safety operations, or localized
surveillance.

2) Network-Supported Service (NSS) that relies on deployed network infrastructure, such as
cell towers and sites, to relay information between the operator and the UAV and may
therefore extend far beyond the range of direct wireless links between operator and UAV.

5030 5035  5040.5 5050.5 5060.5 5070.5 5080.5 5086 5091
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3 3
=1
3 g
< g Permanent use — NSS a =
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Figure 9. The envisioned band plan for 5030-5091 MHz (FCC, 2023).

In response to the NPRM, more than 70 comments from the UAS community (including Telecom
companies AT&T, Verizon, T-Mobile; UAS operators; and UAS users) were submitted.

In this subtask, the researchers presented an in-depth discussion on the FCC’s NPRM document,
covering (i) the proposed band plan for allocating spectrum to NSS and NNA applications, (ii) a
high-level overview of the dynamic frequency management system (DFMS) for this band,
detailing its benefits, expected functionalities, responsibilities, and limitations, (iii) comparing the
DFMS with existing frequency management systems in other bands, such as CBRS in the 3.5 GHz
band, highlighting the challenges and difference, and (iv) other potential spectrum bands, such as
the existing cellular and mobile networks (the so-called flexible-use spectrum bands), which can
be used for UAV operations.
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3.3.1 Repurposing the 5030-5091 MHz Band for UAS
The recent initiatives by the FCC and NTIA are aimed at repurposing the 5030-5091 MHz band

for UAS and UTM system operations. This band is primarily allocated for Aeronautical Mobile
(Route) Service (AM(R)S) and Aeronautical Mobile Service (AMS). Microwave Landing Systems
are incumbents in this band, providing precision radio-based guidance to aircraft for approach and
landing, especially in challenging environments where traditional Instrument Landing Systems
might be inadequate. According to the NTIA and FAA, MLS installations are not widespread in
the U.S. However, the Air Force uses the MLS at military bases for precision landing guidance to
military aircraft. Furthermore, NASA “operates active sensor systems in the 5030-5150 MHz band
on a non-interference basis” (NTIA, 2021). In addition to these incumbent users, there are other
services operating in adjacent bands, including:
e Radionavigation-satellite service (RNSS) (space-to-earth) downlink at 5010-5030 MHz;
e Aecronautical mobile telemetry (AMT) downlink to support flight testing at 5091-5150
MHz;
e Acronautical Mobile Airport Communications System (AeroMACS) in the 5000-5030
MHz and 5091-5150 MHz bands, which enables communications for surface operations in
airports between aircrafts and other vehicles and assets.

3.3.2 Dynamic Frequency Management System (DFMS)
Given the scarcity of spectrum and the exponential growth of UAS operations, it is necessary to

develop dynamic frequency management systems tailored for aerial operations. The U.S. has been
at the forefront of developing innovative spectrum management techniques across various
frequency bands such as TV White Space, the CBRS (Citizens Broadband Radio Service) in 3.5
GHz, and the 6 GHz band with Automated Frequency Coordination (AFC). However, these
frameworks are not directly applicable to UAS due to several factors. For example, there is a lack
of sensing frameworks for aerial systems’ spectrum. In addition to authorized service parameters
such as transmitted power profile and duty-cycles, it is necessary to know actual spectrum usage,
either through measurements or improved data reporting. Furthermore, to improve sharing, typical
deployment scenarios need to be considered. For example, the CBRS environmental sensing
capabilities (ESC) that were developed to protect Navy radars will not be suitable for protecting
incumbent and primary aeronautical licensees at 5030-5091 MHz. Therefore, the FCC document
proposes developing a novel spectrum management solution, called dynamic frequency
management system (DFMS), to improve spectrum utilization in this band.

To address the complexities of coordinating shared interference-protected access to the 5030-5091
MHz band, DFMS will be used for frequency coordination as well as providing dynamic, efficient,
and automated (non-manual) access for two categories of users: NNA and NSS. The NNA services
involve localized flights where the UAV communicates directly with the ground controller via
wireless links, eliminating the need for network infrastructure. These operations are licensed-by-
rules, which can be utilized for purposes such as public safety, localized surveillance, and
tower/site inspections. On the other hand, NSS refers to network-based operations that rely on a
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deployed network infrastructure for information relaying between the ground controller and UAV.
The NSS operations enable services with an extended range, such as package delivery, search and
rescue, mapping, etc.

The FCC proposes allocating 10 MHz of spectrum for NNA operations, 40 MHz of spectrum for
NSS operations (4 licensed blocks of 10 MHz each) and making the remaining 11 MHz available
for multi-purpose use by NNA or NSS licensees (FCC, 2023). Multi-purpose allocation will enable
dynamic spectrum allocation and access such that the NSS licensees may receive a temporary
assignment to supplement their spectrum capacity for a particular operation at a specific time and
geographic location. Furthermore, the NNA users, besides having a dedicated spectrum for their
operations, can opportunistically access the frequencies in a dedicated NSS block in geographic
areas where the NSS licensee has not yet deployed an operating network or they do not have
ongoing flight operations, thereby allowing for the opportunistic use of unused spectrum sub-
bands. These coordination activities for the NSS and NNA operators will be performed with the
DFMS across the entire band. The DFMS will assign time- and location-based licenses within the
requested operation area and timeframe, after which the frequencies would be available in that
area for assignment to another UAS operator. This will enable efficient and intensive use of the
spectrum band, while providing interference-protected and reliable CNPC channels for both NNA
and NSS users. Potentially, there will be multiple DFMS service providers, establishing a
decentralized market structure.

In addition to the proposed band plan (Figure 9), the FCC document provides further details on (1)
the scope of permissible services and eligibility conditions, (2) NNA and NSS service rules, (3)
equipment authorization, (4) protection of other in-band and out-of-band services, and (5) need for
international coordination (with Canada and Mexico) for near-to-border operations.

3.3.3 DFMS Requirements
To design an efficient DFMS, there are several requirements that need to be satisfied: (i) those

UAS operators, who operate consistent with their assignment, should be protected from harmful
interference, (i) UAS operators should have flight authorization from the responsible parties
within the UTM system (e.g., UAS service supplier (USS)), (iii) UAS operators should follow
their assignment and do not cause harmful interference to other protected operations in the band
and adjacent bands, and (iv) the DFMS entities should participate in decentralized markets to
accommodate time- and location-based reservation requests, as well as setting associated spectrum
access fees to improve spectrum utilization and avoid spectrum warehousing. Satisfying these
requirements could introduce significant technical challenges that cannot be addressed using
existing models. For instance, in CBRS, the spectrum access system (SAS) oversees fixed stations,
enabling dynamic adjustments in transmit power or complete transmit cessation. However, unlike
fixed stations, UAS operators under DFMS control cannot automatically cease operations mid-
flight due to safety concerns. Additionally, dynamic frequency management approaches for the 6
GHz and TV bands rely on database queries for unlicensed access to unused spectrum sub-bands,
lacking interference protection.
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3.3.4 Using Flexible-Use Spectrum Bands for UAV Operations
In addition to the 5030-5091 MHz band, the FCC’s NPRM document includes discussions on

airborne use of flexible-use spectrum, which refers to services or spectrum bands for which the
FCC’s rules do not prescribe specific uses or applications. For instance, there is significant interest
in utilizing existing terrestrial mobile networks (Muruganathan et al., 2021) for UAS command
and control, telemetry, and payload communications due to their coverage, low latency, high
throughput, and secure links. However, these networks were not designed for aerial operations,
leading to potential harmful interference to adjacent licensees in nearby geographies and frequency
bands. Therefore, the integration of UAS into terrestrial mobile networks may not be a seamless
transition. In this study, researchers reviewed the impacts of UAS on mobile networks due to the
high altitude and mobility, such that the interference impact increases with the altitude at which
UAS are operating. It was concluded that the use of flexible-use spectrum by UAS can raise the
risk of harmful interference on adjacent channel, adjacent band, or adjacent market operations.

4 SUBTASK 3: DYNAMIC SPECTRUM SENSING AND ACCESS

4.1 Introduction

Existing terrestrial mobile networks (e.g., 4G and 5G) provide significant wireless coverage with
relatively low latency, high throughput, and low cost. This, in turn, makes the cellular network a
good candidate for the operation of UAVs in BVLOS scenarios. However, the proliferation of new
wireless services and the demand for higher cellular data rates have significantly exacerbated the
spectrum crunch that cellular providers are already experiencing. Therefore, developing dynamic
spectrum management services to sense, assign, and monitor spectrum usage within the UTM
architecture is of utmost importance in order to enable advanced UAV use cases in BVLOS
(Rimjha and Trani, 2021).

In this subtask, the team proposed a data-driven model for joint wideband spectrum sensing and
scheduling across several UAVs, which act as secondary users (SUs) to opportunistically utilize
detected spectrum holes. The proposed system model presents a unified framework that is
compatible with the UTM deployment models with centralized controlling and monitoring entities
(e.g., UAS service suppliers). To make development more concrete and grounded, the problem of
joint spectrum sensing and sharing is formulated as an energy efficiency (EE) maximization in a
wideband multi-UAV network scenario. Then, the EE optimization problem is transformed into a
Markov Decision Process (MDP) to maximize the overall throughput of the SUs. To enable
spectrum sensing, researchers developed a multi-label classification framework to identify vacant
spectrum resources, from here on referred to as spectrum holes, based on observed I/Q samples.
To enhance the accuracy of the spectrum sensing module, the outputs from the multi-label
classification by each individual UAV are fused at the UTM server. In the spectrum scheduling
phase, several RL algorithms are developed and implemented, including the standard Q-learning
methods to dynamically allocate underutilized spectrum sub-channels to multiple UAVs.
Researchers further investigated the performance of the “vanilla” deep Q-Network (DQN) and its
variations, including double DQN (DDQN) and DDQN with soft-update.
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Furthermore, one of the primary challenges of using machine learning (ML) methods for spectrum
management is the need for large amounts of training data. The lack of available spectral data in
many cases is a significant obstacle, especially for UAV networks that introduce additional
complexity for large-scale experimental data collection. To address this gap, and evaluate the
proposed methods, the team developed a comprehensive framework for spectrum dataset
generation, which accurately models LTE waveform generation and propagation in any
environment of interest for UTM-enabled UAV applications. This platform enables modeling
cooperative spectrum sensing and sharing for wideband multi-UAV network scenarios and can be
used for scalable generation of large spectrum datasets within an area of interest.

In summary, the key contributions of this subtask are as follows:

1) A joint spectrum sensing and access framework using raw LTE I/Q data was developed.

2) The developed spectrum sensing module identifies multiple spectrum holes in a wideband
multi-channel setting.

3) RL-based techniques (i.e., DQN and its variations) were utilized to allocate the identified
spectrum holes to multiple UAVs.

4) The developed solution is evaluated using realistic channel modeling between several LTE
BSs and UAVs.

4.2 Methods

4.1.1.1 Network Model and Communication Protocol.

Consider a set of UAVs denoted by K (|K| = K) where each UAV can perform wideband sensing
over M orthogonal primary spectrum resources (sub-channels) independently. Due to the highly
dynamic environment in which UAVs operate, it may not be feasible for all the UAVs to observe
every vacant sub-channel. Therefore, researchers leveraged collaborative spectrum sensing by the
UAVs and perform spectrum fusion at some servers located in the UTM architecture to increase
the reliability of spectrum hole detection. Identified spectrum holes are allocated to the UAVs.
Therefore, the overall system model is divided into two major components: (i) collaborative
spectrum sensing and fusion policies, (i1) spectrum allocation and access policies.

To coordinate the spectrum sensing, fusion, and access steps, researchers assume that each time
slot is divided into four consecutive sub-slots: UAV resource request (tyeq) , spectrum sensing

(ts), broadcasting to server (t;), and channel access (t,) as shown in Figure 10.

Request Sensing Broadcasting Access
(treq) (ts) (t») (ta)

One time slot (T)

Figure 10. Time slot format.
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Specifically, at the beginning of each time slot, the UAVs that require PU resources request the
server for resource allocation. In the subsequent sub-slot of sensing (t;), the UAVs perform
spectrum sensing and broadcast the sensed channel information in the following sub-slot (¢;). The
server then applies fusion rules and assigns spectrum holes to the requesting UAVs. The UAVs
transmit on the allocated spectrum holes in the access sub-slot (t,).

4.1.1.2 Collaborative Spectrum Sensing and Fusion Policies

Each individual UAV captures the raw I/Q samples over the air signals and predicts the availability
of spectrum holes across M sub-channels. An associated spectrum sensing cost for each UAV k
involved in sensing at time slot t is assumed. The spectrum sensing cost is the energy consumed
for sensing the spectrum and is proportional to the voltage V¢ of the receiver, the system
bandwidth is B, and the duration allotted for sensing is t; (Zhang and Shin, 2012). Therefore, the
spectrum sensing cost is defined as SCym (t) = tsVé:Bm. Upon the completion of sensing phase,
the UAV k has a predicted spectrum occupancy vector hy (t) = [hk,l(t), oy DM (t)] such that
hg m(t) = 0 if the m-th sub-channel is detected vacant at time t, and hy, ,,(t) = 1 otherwise. This
problem can be considered as a multi-class classification problem, and the research team leveraged
deep neural network (DNN) at each UAYV to identify the spectrum holes and outputs the prediction
vector hy (t).

The server receives multiple copies of spectrum holes detected by individual UAVs and applies
fusion rules that result in aggregated spectrum holes. The n-out-of-K fusion rule is defined as
follows:

0, I{hym(t) = 0} = n;
fm(@) = ,;C e et (4.1)

1, Otherwise.

where I {.} is an indicator function. In this case, f(t) = [f;(t), ..., fu(t)] is the fused prediction of
all the M sub-channels at the UTM server. Note that when n=1, the n-out-of-K rule is equivalent
to the “OR” rule, and n=K is the same as the “AND” rule.

4.1.1.3 Collaborative Spectrum Sensing and Fusion Policies

Based on the aggregated fusion result, the server then allocates sub-channels to the requesting
UAVs. The UAVs then transmit data on the sub-channels allocated to them by the server in the
next time step. The transmission energy consumption is denoted by ACy, (t). The access cost is
the energy consumed for data transmission and is defined as ACy, (t) = t Py, where, P is the
transmit power and t, is the time allotted to transmission. Furthermore, the transmission utility is
the amount of data transmitted on the allocated sub-channel and is defined as follows:

Rim(t) = taBmlogz (1 + SINRym (1)), (4.2)
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where By, is the sub-channel bandwidth allocated for data transmission and SINRy,, is the signal-
to-interference-plus-noise ratio observed on the link between UAV and its receiver over sub-
channel m.

Since it is a delayed transmission, the UAVs transmit on the spectrum holes in the current step that
are detected vacant in the previous time step. Spectrum collision occurs when the previously
detected spectrum holes are no longer available at the current time step. The true state of sub-
channel m is denoted by f,, (t) is assumed. To capture this, the spectrum access collision indicator
Tm(t) is defined as follows:

1, if £,,(t) =0and f,(t —1) = 0;
Tem(£) =4 =1, i f,(t) # 0and f,,(t — 1) = 0; (4.3)
0, Otherwise.

4.1.1.4 Joint Spectrum Sensing and Access Problem Formulation

Given the presented model, the research team cast the problem of joint spectrum sensing and access
as an energy efficiency optimization for the UAVs. The overall system model of collaborative
spectrum sensing and access is shown in Figure 11. The overall algorithm described is shown in

Figure 12.
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Figure 11. Proposed system model for joint spectrum sensing and spectrum scheduling.
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Algorithm 1 Collaborative Spectrum Sensing and Access

Phase 1 — Spectrum Sensing and Broadcasting

I: for each UAV in K do

: Capture N I/Q samples from over the air signal,
where. X € CN*2,

Feed 1/Q samples to the pre trained ML model that
predicts the spectrum holes s.t f: X — h.

12

4 Broadcast the individual spectrum hole observations
h € {0,1}'*™ to the fusion center.
5: end for

Phase 2 — Spectrum Fusion and Access

6: Apply fusion rule to predict spectrum holes f(2).

7: Allocate a single spectrum hole to each requesting UAV
using pre trained RL algorithm, yy,,, (), s.t. the constraints
in Eq. (4) are satisfied.

8: UAVs transmit on the sub-channel allocated in the previ-
ous allocated time slot.

9: Given the spectrum allocation ¥, (1) and spectrum access
collision indicator ry,, (), compute the total utility U(t).

Figure 12. Algorithm for collaborative spectrum sensing and access.

4.2.1.1.1 Energy Efficiency Optimization

Let yim(t) = 1if UAV £ is scheduled to use sub-channel m at time ¢, and yy,,,(t) = 0 otherwise.
Given that the spectrum holes are allocated to the requesting SUs based on the sub-channel
availability, sensing and access cost is incorporated to maximize the overall energy efficiency (EE)
of the system. Researchers formulated the EE problem as an optimization problem as follows:

max
im0} Yiem () ACm (t) + SCkm(t)}

E( Z Yiern (O)Tjerm () Ry ()
tkm

~dSubjectto: Y yvim(t) < 1, Vk =123, ... K

Y Viem(®) €1, Vm =123,...M (4.4)
2imYim(t) < M —|£(¢)],
_ Yiem () € {0,13where Ry, (t), SCym(t), ACym(t) are the

amount of data transmitted, the sensing cost, and transmission cost by the SU k on sub-band m
simultaneously. The constraints guarantee that each UAV is scheduled to use at most one sub-
channel, while the total number of scheduled UAVs is at most equal to the number of detected
spectrum holes at time t , which is M — [f(t)] .

The above optimization problem is a fractional integer programming problem, which is NP-hard
in general. If considering the maximization of the numerator alone, which is the total utility of the
UAVs over all sub-channels, the problem will become an integer programming problem. In this
case, the utility would depend on the spectrum usage pattern by the PUs, which is captured by
r'rm (1), as well as the channel condition between the BSs and UAVs that determine the amounts
of transmitted data Ry, (t). To tackle this utility optimization problem, the channel occupancy
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f,,(t) is modeled as a Markov process, which enables the use of a Markov decision process (MDP)
formulation to solve this problem and develop a dynamic spectrum allocation policy to the SUs
(Sutton and Barto, 2018).

4.2.1.1.2 Dynamic Spectrum Allocation Using RL
An assumption is that there exists M sub-channels in the system, each sub-channel can be modeled

as an independent two-state Markov chain. The transition probability function P can then be
viewed as a set of transition probability matrices {P; } for each sub-channel that capture the
randomness in the assumed multi-user multi-channel environment. Hence, researchers can
formulate the total utility of the SUs into a traditional MDP which is governed by the tuple (S, A,
{P; }, U, v ), consisting of the set of states S, set of actions A, a transition probability function {P;
}, a reward function U, and a discount factor y. To solve an MDP using RL, an agent learns to
make decisions in an uncertain environment by maximizing a cumulative reward over a sequence
of actions. Specifically, the agent interacts with an environment by taking actions that transition
the system from one state to another, and the agent receives a reward that is commensurate with
the merit of the action. The discount factor determines the relative importance of immediate and
future rewards. One of the most popular RL methods is Q-learning (Sutton and Barto, 2018).

The classical Q-learning is table-based, i.e. the values of the Q-function are stored in a table of
size | § |x|A|. However, when the size of the state and action spaces get large, the complexity of
tabular Q-learning becomes cumbersome. For example, with M = 16 sub-channels, the Q-table
will be of size 65,537 X 17.

4.2.1.1.3 DDQN-Based Spectrum Allocation
To address the complexity issue, the deep Q-learning approach is used to approximate the Q-

function by a neural network Qg called Double Deep Q-Network (DDQN) and train its weights 0
using experience replay. As the name suggest, there are two networks when using DDQN where,
Qg is called the primary network and Qy is called the target network and the weights of the target
network are updated periodically. In the original DDQN, the weights of target network are directly
copied from the primary network every few episodes. In DDQN-soft, the target networks are
updated using POLY AK averaging to smoothly update the weights (“soft-update’) (Hasselt et al.,
2016).

The input to the DDQN agent is a state s of size 1 X M . The output of the network is a vector of
size 1 X (M + 1) that contains the values of the Q-function with respect to state s and each of the
M + 1 actions. In all the hidden layers, researchers used the rectified linear unit (ReLU) as an
activation function. Given the neural networks input-output dimensions, the overall DDQN
architecture and its interaction with the environment is shown in Figure 13, where the major
components are a primary network, a target network, experience replay and the interaction with
the environment to pick an action.

To train the DDQN agent, the experiences are initially stored in the memory using e-greedy policy
i.e., for a state si, an action a, is taken randomly with probability €, or taken greedily with
probability 1 — €; from the current state of the DDQN network. Then, when there are sufficient
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samples in the memory, a mini-batch of B experiences {(s;, a;, 1j, ;) }; € B, are randomly sampled
from the memory for every time step tto train the neural networks. Here, B, is the set of
experiences currently available in the memory. Based on the mini-batch selected, the weights 6 of
the primary network Qg that minimize the loss function L.(0) are computed and updated.

4.1.1.5 Raw I/Q Dataset Generation

Previously, the research team described the role of DDQN in allocating spectrum holes to the SUs
as such that the overall utility is maximized. However, each SU must first send in their spectrum
hole detection results based on observed I/Q samples. Implementing a data-driven ML model for
such wideband sensing demands large amounts of raw I/Q data.

While it is desirable to capture over-the-air raw I/Q signals using actual hardware, it is challenging
to accomplish this goal due to the intricate nature of flying multiple UAVs within a specific
environment for collaborative sensing implementation. Hence, the team resorted to generating
synthetic datasets that accurately resemble collecting datasets via experimentation. To this end,
MATLAB's LTE toolbox is used as outlined in (Chintareddy et al., 2023; Uvaydov et al., 2021)
which extended the dataset generation to incorporate UAV specifics. The dataset is generated by
incorporating the LTE base-stations and UAVs locations, as well as the 3D environment including
buildings and vegetation for performing ray-tracing.

Environment

Action (a)

Store the transition
! (s,a,r,s')

DDQN Agent

Random sample Brmaiznes
(s. a) (r,s")

Target Network

Primary Network

—————— -I Update the weights (8’) periodicallyl———-»

Loss = [r+Y max Qp(s’,a’) - Qg(s,a) |*
a

Target value Action value

T
i Optimize loss and update weights (e)i

Figure 13. DDQN for spectrum allocation.

As shown in Figure 14, three neighboring cells are assumed. To perform ray-tracing experiments,
the maps required are downloaded from OpenStreetMap.
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Figure 14. Ray-tracing simulation setup used for dataset generation. The plot illustrates the received
signal paths at UAV location 1 from all three base-stations.

The simulation area considered is of 3 km X 3 km width with buildings and vegetation located in
the Kansas City metro area. The location of the base stations is obtained from Cellmapper, an open
crowd sourced cellular tower and coverage mapping service. Base-stations are defined as the
transmitter sites and UAV locations as the receiver sites. Furthermore, the research team
considered three UAVs and three base stations in the region of interest and use MATLAB's ray-
tracer to find the channel between UAV and base-station locations. Figure 15 shows the cell-
mapper tool as well as the propagation environment extracted from OpenStreetMap. Note that this
scenario can be easily extended to any number of LTE cells and UAVs. It is important to emphasize
that the UAVs are hovering in one location. Nevertheless, by executing the ray-tracing engine
multiple times for different locations, a flight trajectory is effectively simulated.

| = e = AR, S NS
Cell-Mapper (open-source) to Extract OpenStreetMap with buildings and vegetation
LTE Network Information to use in ray-tracing

Figure 15. Extracting LTE towers configurations from Cell-Mapper open-source tool. Capturing the
wireless signal propagation environment from OpenStreetMap to be used in ray-tracing.

Next, MATLAB's LTE Toolbox generates an LTE-M waveform. The entire cell bandwidth of /0
MHz (50 resource blocks) is assumed to be split into /6 sub-channels each of size three resource
blocks. In general, the base station can allocate a single sub-channel or multiple sub-channels to a
PU to transfer user specific data on the downlink shared channel, and they can also use multiple
access techniques for transmitting data to different PUs. However, when generating the dataset, an
assumption made is that the base station partitions the bandwidth into separate sub-channels. While
generating the downlink waveform of the base station, no UE specific reference signals are
generated. Additionally, the broadcast channels are not corrupted with user-specific data. The
appropriate indices are found and used to embed the data samples into the downlink shared
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channel. As mentioned, the cell bandwidth is partitioned into /6 sub-channels, considering each
combination as a label. The base station can generate 21° labels, ranging from no sub-channel
allocation to a fully busy cell site.

Since the research team assumed all SUs are capable of wideband sensing, each SU samples the
RF signal and stores I/Q samples. The noise variance is adjusted such that the effective SINR
varies from -/0 dB to 20 dB in steps of /0 dB. Since UAVs fly at an altitude, each UAV receives
a signal from more than one base station which is modeled using the ray-tracing setup. The total
received signal is modeled as a superposition of the signals received at each UAV as shown in
Figure 14.

4.3 Results

4.3.1 Collaborative Spectrum Sensing Results

As mentioned previously, identifying spectrum holes falls into the realm of classical multi-label
classification problem. Precision, Recall, and F1-score are considered as the metrics to assess the
performance of such a classifier. These metrics are defined as follows:

TP TP 2(Precison.Recall)
,  Recall = , F1 — score = ( - ,
TP+FP TP+FN Precison+Recall

Precision =

©)

where TP, FN, FP account for the number of true positives, false negatives, and false positives,
respectively. To concretely capture the performance of spectrum sensing across 16 sub-channels,
the micro-averages for Precision, Recall, and F1-Score are computed.

The data obtained by different UAV locations are aggregated at a central server to train a central
model that can be deployed on all UAVs. For this purpose, 70% of the samples generated are used
to train the DNN while the rest of samples are used for testing and validation purposes. It was
observed that the performance metrics improve as the SNR improves. Specifically, for UAV
locations 2 and 3, shown in Figure 15 (a) and Figure 15 (b), the spectrum sensing performance
metrics are greater than 90% for the SNR values above /0 dB. However, for UAV location 1, the
overall performance metrics are worse than locations 2 and 3. As shown in Figure 15 (a), the
performance metrics are about 80 % at /0 dB SNR. This is due to weaker received signal strength
in location 1, leading to noisier I/Q samples. Hence, the ML model was not able to predict the
spectrum holes accurately, thereby making the rationale for exploring collaborative sensing more
apparent.
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Figure 16. Performance metrics obtained at (a) Location 1, (b) Location 2, (c) Location 3.

Using spectrum fusion results, it is noted that incorporating predictions from all the UAV locations
significantly improved the spectrum prediction performance at the central server. For comparison,
the fusion results are shown at the central server against location / in Figure 16.
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Figure 17. Comparison of F1-Score at location 1 with and without fusion.

4.3.2 Resource Allocation and Spectrum Access Results

Q-learning methods were used for allocating spectrum resources to the UAVs. In Figure 17 (a),
training performance of three variants of Q-learning methods are compared for allocating a sub-
channel to a single UAV whenever the fusion rule detects at least a single spectrum hole. It is
observed that DDQN with soft update performs slightly better and converges earlier than DDQN
and vanilla-DQN.

Next, the model is extended to allocate spectrum holes to two UAVs. In this case, the researchers
have augmented the DDQN algorithm with soft update to generate two best actions. From the
results in Figure 17 (b), it is observed that the utility performance with two SUs is slightly less
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than two times of the performance with a single SU. It is further noted that this work explores the
possibility of integrating spectrum sensing and sharing by making use of existing RL algorithms.
Though Q-learning techniques were explored, different RL algorithms can be integrated into the
proposed framework.
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Figure 18. Training results for allocating spectrum holes to (a) one UAV, (b) two UAVs.

S SUBTASK 4: SATURATION AND INTERFERENCE ANALYSIS

5.1 Introduction

UAVs provide excellent communication links with ground and aerial nodes, are easily deployable,
and possess a high probability of establishing Line-of-Sight (LoS) communication channels. This
makes them ideal for applications like video streaming in areas with limited infrastructure,
disaster-affected regions or during emergency services where live video feeds are crucial for real-
time decision-making (Khan et al., 2024).

UAV communications utilize both licensed and unlicensed spectrum. While licensed spectrum
grants exclusive access to the channel, unlicensed spectrum, being shared, makes communication
nodes more susceptible to interference from other users (FCC, 2023).This poses significant
challenges for reliable and robust communication, particularly when UAVs are required to
communicate delay-sensitive data, such as command-and-control (C2) information or real-time
video streams. Addressing these challenges requires sophisticated transmission policies that
account for interference, queuing delays, and buffer management in unlicensed spectrum bands.

In this subtask, the initial focus is on modeling the expected throughput for UAV communications
in unlicensed spectrum bands such as ISM bands. A comprehensive system model was developed
as shown in Figure 19 that captures the effects of interference, buffer overflow, and queuing delays.
Specifically, two sources of packet loss were considered:

1) At the transmitter queue, where packets may be dropped due to buffer overflow or
excessive queuing delay.
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2) After transmission, where interference-related errors occur due to low Signal-to-
Interference-plus-Noise Ratio (SINR).

Researchers analyzed the transmission error probability between source nodes and UAVs in the
presence of interference from other nodes, accounting for both LoS and Non-LoS (NLoS)
communication. By investigating Rayleigh (NLoS) and Rician (LoS) channel conditions, the team
provided insights into optimizing throughput through the adjustment of channel fading thresholds
(Ghazikor et al., 2023).
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Figure 19. System model consists of ground\aerial nodes operating in unlicensed bands.

Building on the initial model, the research team then concentrated on developing distributed
transmission policies for UAV networks. A framework is proposed that considers both queue and
interference levels to optimize expected throughput in unlicensed spectrum bands. Two key
transmission algorithms were introduced (Ghazikor et al., 2024a):

1) Interference-Aware Transmission Control (IA-TC), which optimizes the channel
fading threshold for a single source node in response to interference from other
ground and aerial nodes.

2) Interference-Aware Distributed Transmission Control (IA-DTC), which enables
each node to adjust its channel fading threshold through consensus-based
distributed optimization.

Researchers demonstrated how UAVs and ground nodes can achieve optimal transmission policies
in a distributed manner, improving expected throughput in interference-prone environments.

Finally, the scope of the research was extended to address real-time video streaming over UAV
networks as depicted in Figure 20, particularly in emergency and public safety applications where
live video feeds are essential. In such cases, both reliable communication and high-quality video
streaming are crucial. The team introduced distributed policies that jointly optimize channel fading
threshold and video encoding rate to maximize Peak Signal-to-Noise Ratio (PSNR) that measures
the video quality, by considering packet loss due to interference, queuing delays, and buffer
overflow, as well as video distortion caused by lossy compression.

To address these challenges, two novel algorithms were proposed (Ghazikor et al., 2024b):
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1) Distributed Transmission Control (DTC), which determines the optimal channel fading
threshold to maximize the expected throughput across all nodes.

2) Joint Distributed Video Transmission and Encoder Control (JDVT-EC), which optimizes
the video encoding rate and channel fading threshold as a transmission policy to maximize
video quality, measured by PSNR, while balancing trade-offs in the packet loss and video

distortions.
o LoS Transmission Link e Enqueuing Video Packets
== ') NLoS Transmission Link == ') Enqueuing Packets
e Interference Link e Storing Video Packets
E Streamer UAV Interferer UAV

Figure 20. System model that includes video streaming scenario in unlicensed bands.

Through extensive simulations, the effectiveness of the algorithms in achieving optimal expected
throughput and PSNR performance is demonstrated, outperforming several baseline policies. This
study offers a comprehensive cross-layer framework that incorporates buffer management,
interference mitigation, and video encoding control, providing a solution for UAV-enabled video
streaming in unlicensed spectrum bands.

Altogether, this subtask addresses the key challenges of interference, enqueuing packets, and video
encoding rate in UAV communication systems. By progressively developing models and
optimization algorithms, this research contributes solutions for enhancing UAV network
performance, particularly in high-demand applications like video streaming and public safety
operations. The outcome of this subtask provides an optimization framework that ensures both
high expected throughput for C2 packets and PSNR for experiencing higher video quality in UAV-
enabled wireless communication.

5.2 Framework and Distributed Optimization Algorithms

To have a comprehensive framework, an LoS probability model was initially employed alongside
a single-slope path loss model to calculate probability of establishing a LoS link and signal
attenuation between ground users and UAVs (Azari et al., 2018). Accordingly, the team used an
angle-based LoS probability model which is based on elevation angle, but then adopted a more
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complete distance-based LoS probability model to support all channel types, including Air-to-Air
(A2A), Ground-to-Air (G2A), Air-to-Ground (A2G), and Ground-to-Ground (G2G) (Kim and
Lee, 2019). For all scenarios, LoS and NLoS channels were modeled using the Rician and Rayleigh
distributions, respectively.

By providing channel models, an M/M/1 queue model was employed to analyze packet loss due
to queuing delays and buffer overflow. This model accounted for:

1) Time threshold model: UAVs may communicate delay-sensitive data such as C2
messages. In this case, it is critical to ensure that data packets are delivered to their
intended destination in a specified timeout value. Accordingly, if the source node
is unable to transmit packets due to poor channel conditions (e.g., low SINR), any
packet with a waiting time greater than a time threshold is discarded (Guan et al.,
2016). Therefore, the probability of packet drop is given by:

2) P (Ba) = Pb(T, > i) = exp (= (H222 2, ) ") .

Tsit
2) Buffer overflow model: In addition to time threshold model that captures time-

sensitivity of data traffics, assume that queues have limited buffer sizes as well.
Therefore, there are chances that new packet arrivals are inadmissible due to buffer
overflow, and thus they are dropped (Ghazikor et al., 2023) with probability:

(1 - pn(ﬁn)) exp (_Bnnn(l - pn(ﬁn)))
1- pn(ﬁn) exp (_Bnnn(l - pn(ﬁn))) .

BYY(Bn) = z Py = (5.2)
=0

As indicated in Egs. (5.1) and (5.2), closed-form expressions were derived to calculate the
probabilities of these two packet loss events.

Interference modeling was first done using Gamma distribution with SINR to quantify the quality
of the communication link (Guan et al., 2016). Then, the interference model was refined using log-
normal distribution, which better represents real-world interference scenarios (Tian et al., 2016).
Using the interference model, the outage probability represented in Eq. (5.3) was calculated as the
probability that the SINR falls below a threshold, resulting in packet transmission error.
Researchers call this event an outage that has the following probability:
~ 12

i n (h’{; ) xz

R (8) = Phir < yu) = [ PH(R = ), —otp|dx 63)

n

Closed-form expressions for the outage probability were developed as indicated above, allowing
computation of the overall packet loss by combining the time threshold, buffer overflow, and
outage probabilities.
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Altogether, the expected throughput was calculated by combining the three packet loss
probabilities (time threshold, buffer overflow, and outage probability) as follows (Ghazikor et al.,
2023):

Rn(B) = Mu[1 — BB (B)] = An[1 = B (Bn) — POV (By) — B“(B)]. (5.4)

The expected throughput measure was used to assess the performance of UAV communication
systems operating in unlicensed spectrum bands. Accordingly, two algorithms for optimizing the
expected throughput were developed (Ghazikor et al., 2024a).

5.2.1 Interference-Aware Transmission Control (IA-TC)
This algorithm focuses on maximizing the expected throughput for the source node as indicated in

Figure 21. This uses a coordinate descent algorithm to iteratively adjust the channel fading
threshold to achieve optimal throughput only for the source node. At each step, it updates the
channel fading threshold to maximize the expected throughput. Specifically, the algorithm
optimizes the channel fading thresholds for the interferer nodes and the source node. The algorithm
uses a coordinate descent approach, where the channel fading thresholds for the interferer nodes
including Rayleigh interferers and Rician interferers and the source node are considered as three
coordinate axes. Initially, the channel fading threshold for the source node and Rayleigh interferer
are set as fixed parameters, and the Rician interferer threshold is varied by a step size to identify
the best expected throughput in the specified coordinate. Then, the same procedure is repeated,
alternating between the channel fading thresholds, allowing the algorithm to adjust each channel
fading threshold iteratively until it converges to an optimal solution that maximizes the expected
throughput.

Importantly, the IA-TC algorithm constantly tries to increase the channel fading thresholds for the
interferer nodes until it reaches a maximum expected throughput, as the interferer nodes send fewer
packets and the level of interference on the main link decreases. Furthermore, as the source node's
channel fading threshold increases, the source node enqueues more packets. Thus, while packet
loss in the queue rises, packet loss due to transmission error decreases. As the number of iterations
of the IA-TC algorithm increases, the channel fading thresholds for the interferer nodes increase,
and the source node's channel fading threshold decreases. Therefore, the source node has more
transmission opportunities, while the transmission attempts by the interferer nodes are reduced.
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Algorithm 1 Interference-Aware Transmission Control (LA-TC)

function IA-TC(3™, glice, gRwy - stp. maziter)

1:

2 ,ﬁ — ,8””, .Rflest — Rn(ﬁ)

3 for iter in range maxiter do

4: ffﬂrm‘ — 1{?)(‘51

5: if IRice € m and S + stp,, < gice then
6: nﬂ* R:’:‘M{ = Cs(ﬁrn: StPm., RE’:‘&," ’3”-)

7 end if

8 if IRay € m and 319 + stp,, < SR then
o B, Rt = CS(B,, stpo, I, 3,)

10: end if

11: B, Rbest = CS(Bn, stpn, REE, B3,,)

12: if |RPrev — RUest| < ¢ then

13: break

14: end if

15: end for

. best
16: return 3, ;¢
17: end function

Figure 21. Interference-aware transmission control (IA-TC) algorithm.

5.2.2 Interference-Aware Distributed Transmission Control (IA-DTC)
Figure 22 shows the IA-DTC algorithm. The objective of this algorithm is to implement a

distributed transmission policy that maximizes the expected throughput across all links, while
recognizing that each link could potentially serve as the main link. Unlike IA-TC algorithm,
increasing the channel fading threshold for interferer nodes is no longer optimal because any
interferer node could also act as a main link. In this case, nodes must coordinate to converge on a
transmission policy that benefits all nodes, rather than just one. To achieve this, consensus-based
distributed optimization is employed (Berahas et al., 2019), where multiple nodes collaborate to
reach a consensus on the optimal channel fading threshold. Each node uses its local information
and objective function to iteratively communicate with its neighbors, working together to find the
optimal channel fading threshold and maximize the overall expected throughput.

In this algorithm, the goal is to determine the optimal set of channel fading thresholds for all nodes.
Initially, all nodes are set to their maximum channel fading thresholds, allowing each node to
selfishly identify its best channel fading threshold based on the results from the IA-TC algorithm.
During each iteration, if the difference between the updated channel fading threshold and the
previous one exceeds a tolerance level, nodes exchange information with each other to
collaboratively refine their channel fading thresholds and ultimately converge on the optimal
value. Moreover, the Local Coordinate Search (LCS) function determines the best channel fading
threshold for each node while having access to the channel fading thresholds of the interferer
nodes. This function explores a coordinate until it identifies the optimal value that yields the
highest expected throughput for the node.
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Algorithm 2 Interference-Aware Distributed Transmission Control

(IA-DTC)
1: function IA-DTC(3™"", m, stp, maxiter)
2: mP™ «— m, B+ g
3 for n in range m do
4 Bn + B[n], m + m — {n}
5 phest = LOS(maxiter, stp, B, B,,)
6: B [n] « Bbest, < mPreY
7 end for
8 for iter in range maxiter do
9 ﬁ F B(‘(l”
10: for n in range m do
11: B « Bln], m + m — {n}
12: Rjiter|[n] + R.(B.,B,,)
13: Bbest — LC'S(mawiter, stp, By, B,,)
14: B [n] « BLest, 1 mprev
15: end for
16: if |3 — 3°"| < € then
17’ ﬁl — ﬁ('ﬂﬂ
18: break
19: end if
20 end for
21: return 3%, R

22: end function

Figure 22. Interference-aware distributed transmission control (IA-DTC) algorithm.

In addition to the expected throughput maximization, researchers introduced video quality
optimization by considering overall video distortion due to both lossy video compression distortion
and packet loss distortion as follows (Tian et al., 2016):

6o

Di(Ep B) = Dy () + Dy (B) = Do + 7

+ 5,55 (B). (5.5)
The key metric for video quality is PSNR, which was formulated based on the overall video

distortion in Eq. (5.6) by incorporating the channel fading threshold and video encoding rate
(Ghazikor et al., 2024b):

D,En ) ©6
Correspondingly, researchers proposed the Joint Distributed Video Transmission and Encoder
Control (JDVT-EC) algorithm shown in Figure 23. The goal is to maximize the average PSNR for
streamer nodes in the environment by optimizing two key parameters: the video encoding rate and
the channel fading threshold for each node. The optimization problem is divided into two sub-
problems, where each parameter is solved individually.

(5m)
:Pn(Emﬁ) = 10 loglO .

At each iteration, the JDVT-EC algorithm identifies the optimal channel fading threshold and the
optimal video encoding rate using the DVTC and DVEC sub-algorithms, respectively. It then
compares these optimal values with the previous channel fading threshold and video encoding rate.
If the difference between the current and previous values is smaller than a predefined threshold,
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the algorithm returns the optimal values. The algorithm also includes a counter that tracks the
number of iterations, and it terminates if a maximum iteration limit is reached.

Algorithm 2 Joint Distributed Video Transmission and En-
coder Control (JDVT-EC)

1: function JDVT-EC(E'™, 3", m, stp, itr, 3"")
2 E*’ (7 EZTLE, 6* <7 6171'1,
3 for ctr in range itr do EP™ «— E*, 37"V « 3"
4 B3* « DVTC(E*, 3%, m, stp, itr, ctr, 3M")
5 E* < DVEC(E*, 3*,n, stp, ctr)
6: if |[3""" — 3%| < ¢ and |E’"" — E*| < ¢ then
7 break
8 end if
9 end for
10 return E*, 8*

11: end function

Figure 23. Joint distributed video transmission and encoder control (JDVT-EC) algorithm.

As mentioned, the JDVT-EC algorithm involved a two-step optimization process (Ghazikor et al.,
2024b).

5.2.3 Distributed Video Transmission Control (DVTC)

In this algorithm shown in Figure 24, distributed communication nodes collaborate to achieve an
optimal distributed transmission strategy that benefits all nodes, if each link can serve as a main
link. All nodes work together to reach a consensus on the channel fading threshold set, while they
keep the video encoding rate constant. Each node processes its local information and
communicates iteratively with its neighboring nodes to determine the optimal channel fading
threshold. DVTC algorithm aims to determine the optimal fading threshold for all nodes. In each
iteration, if the difference between the updated channel fading threshold set and the previous one
exceeds a specified tolerance, the nodes exchange information about their channel fading
thresholds to recalculate the optimal set.
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Algorithm 3 Distributed Video Transmission Control (DVTC)

1: function DVTC(E*, 8*, 1h, stp, itr, ctr, 3™)

2 mP™ «— m

3 for 7 in range itr do 3 + 3

4 for n in range 1 do

5: E, < E*[n], Bn < B[n], m < m — {n}
6

,

8

bst < P[2ctr][i][n] < Pn(Exn, B)
B*[n] < LCS(Ex, B, stp, bst, 3%, 0)

: m < mP"
9: end for
10: if |3 — 3%| < € then
11: break
12: end if
13: end for
14: return (3*

15: end function

Figure 24. Distributed video transmission control (DVTC) algorithm.

5.2.4 Distributed Video Encoder Control (DVEC)
This algorithm illustrated in Figure 25 aims to find the optimal video encoding rates for streamer

nodes using the LCS algorithm. Unlike the DVTC algorithm, each source node’s video encoding
rate does not affect the video encoding rates of other nodes. Thus, the video encoding rates do not
need to be determined iteratively. In this algorithm, each node can be a source node and find its
optimal values independently, storing it in the optimal video encoding rate set. Finally, the
algorithm returns the optimal video encoding rates, which are used in conjunction with the channel
fading thresholds in the JDVT-EC algorithm.

The LCS is developed to find the optimal values for each node at each iteration. In this process, a
switch is used to select the decision variable including channel fading threshold and video
encoding rate, while flags manage the search direction, step size, and stopping criteria. The step
parameters consist of two key elements: the step divider, which adjusts the step size proportionally
during the search, and the step accuracy, which controls the precision of the decision variable and
stops the algorithm once the step size reaches a desired threshold. These parameters ensure that
the algorithm effectively refines the decision variables while maintaining control over accuracy
and efficiency. Detailed algorithm implementation is provided in a research paper (Ghazikor et
al., 2024b).
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Algorithm 4 Distributed Video Encoder Control (DVEC)

1: function DVEC(E™, B8*, m, stp, ctr)

2 mP™ +—m, B+ 3*

3 for n in range m do

4 E,. «+ E*[n], 8, + B[n], m <« m — {n}
5: bst < P|[2ctr + 1][0][n] < Pn(En, 8)

6: E*[n| <~ LCS(E,, 3, stp, bst, 0, 1)
7

8

9

0:

m «— mr"
end for
return E*

10: end function

Figure 25. Distributed video encoder control (DVEC) algorithm.

In conclusion, in this subtask, the team initially computed the overall packet loss probability by
combining time threshold model due to queuing delays, buffer overflow model due to limited
buffer capacity, and outage model due to interference. These packet loss probabilities were used
to calculate the expected throughput, providing a comprehensive metric to assess the performance
of UAV communication systems under different interference and queuing conditions. Then, the
overall packet loss also contributed to the calculation of PSNR, enabling a cross-layer analysis for
video streaming optimization in the presence of interference. Ultimately, optimization algorithms
were developed to maximize the expected throughput and PSNR under different scenarios.

5.3 Numerical Results

In evaluations, it was examined that the performance of the proposed framework and optimization
algorithms across various setups by adjusting multiple parameters to observe their impact on UAV
communications.

In the first setup, researchers assessed a scenario involving one UAV and several ground nodes,
where the main communication link was between one ground node and the UAV, with other
ground nodes acting as interferers. All nodes were distributed according to a Poisson distribution.
The research team evaluated the expected throughput by varying the channel fading threshold for
both the source and interferer nodes, demonstrating how changes in the fading threshold affect
performance. Additionally, the impact of transmission power and the number of interferer nodes
on expected throughput were explored. Then, the outage probability was evaluated for different
SINR thresholds and number of interferers. Finally, researchers illustrated the packet loss
probability in the queue as a function of time slot duration and channel fading threshold as
indicated in Figure 26.
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Figure 26. Behavior of different packet loss probabilities.

With these evaluations, researchers numerically analyzed the effects of key parameters such as
transmission power and node density on the expected throughput and overall UAV communication
performance in the presence of interference.

In the second setup, the performance of two proposed optimization algorithms was evaluated: [A-
TC and IA-DTC. In this configuration, 10 nodes were considered, consisting of one main UAV,
an interferer UAV, and 8 ground nodes. The main communication link was established between a
source node and the main UAV, while other ground nodes acted as interferers communicating with
the interferer UAV. For the IA-TC algorithm in Figure 27, researchers examined how changing
the altitude of the interferer UAV impacted the channel fading threshold and expected throughput
for the source node over IA-TC iterations.
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Figure 27. Fading threshold and throughput for the source node by IA-TC.

For the IA-DTC algorithm, researchers varied the number of nodes and SINR thresholds to observe
how the optimal fading threshold changed for the main link. The results of the algorithms with
different baseline policies were compared, including:

e Random policy: nodes select their channel fading thresholds randomly between zero and
the upper bound.

e Aggressive policy: nodes aim to minimize packet loss from queues due to buffer overflow
or time threshold by encouraging packet transmission even under poor channel conditions,
potentially increasing interference.
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e Selfish policy: nodes operate independently by finding selfish channel fading threshold and
treating other nodes as sources of interference without coordination, which can lead to
suboptimal performance.

e Conservative policy: nodes set their channel fading thresholds close to the upper bound to
minimize outage probability, reducing packet loss from transmission errors but potentially

increasing packet loss in the queue due to buffer overflow or time threshold.

The results are shown in Figure 28, which demonstrate the performance gains of the method. The
numerical results confirmed that both IA-TC and IA-DTC consistently achieved optimal solutions.
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Figure 28. Fading threshold and throughput for different policies by IA-DTC.

The third step involved expanding the analysis to include a more complex network with 10 ground

and aerial nodes. The key simulation parameters are summarized in Table 5.

Table 5. Key simulation parameters for video streaming setup.

Definition Notation & Value
Communication Area 100 x 100 m?
Environmental Parameters (=20,v=3x 104, p=0.5
Path Loss Exponent arp =2, ay = 3.5
Reference Distance dp =10 m
Number of Sub-Channels |F| =14
Rician Factor Kp =15 Ky =1
Time Threshold TEh = 80 ms
Time Slot Duration TsH =5 ms
Normalized Buffer Capacity by, = 100
Transmission Power P,=02W
SINR Threshold Yep = 10
Operating Frequency f =24 GHz
Noise Temperature T =290 K
Bandwidth W = 100 MHz
Boltzmann Constant kE=1.38 x 10-23 JJK
Sensitivity Parameter sn = 30
Average Video Packet Length L, =3.04 Kb
Rate-Distortion Parameters Do = 1.18, Ep = 0.67, 6y = 858
Video Pixel Bit-Depth p=2~8

Fading Threshold Step stpg = {0.5,0.01}
Incoming Packet Rate Step stp, ={0.5,1}

Figure 29 consists of a streamer UAV, an interferer UAV, and 8 ground nodes, where the streamer
and interferer UAVs stream video to their associated ground nodes.
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For the DTC algorithm, researchers presented detailed results showing how the optimal expected
throughput and optimal channel fading threshold changed with varying SINR thresholds, number
of sub-channels, and different transmission policies. This also depicted the behavior of packet loss
probabilities throughout the DTC algorithm iterations.

For the JDVT-EC algorithm, the team provided comprehensive results for PSNR, channel fading
threshold, and video encoding rate (see for example Table 6). Individual and joint optimizations
were explored, demonstrating that optimizing both the fading threshold and encoding rate led to
the best results. Furthermore, researchers illustrated the impact of varying the sensitivity parameter
and SINR threshold on the optimal PSNR, optimal fading threshold, and optimal encoding rate.

Table 6. PSNR and video encoding rate values achieved with different encoding schemes.

Encoding Rate | Streamer UAV  Interferer UAV Node 3 Node 4 Node 5 | Average P
Low 38.93 - 158.08  40.67 - 203.68 3890 - 179.36  38.92 - 191.52  40.05 - 167.20 39.49 dB
Medium 40.35 - 325.28 41.86-297.92 4142 -307.04 39.11 - 331.36  41.68 - 273.60 40.88 dB
Optimal 40.37 - 310.08  42.51 - 407.36  41.70 - 373.92  39.50 - 279.68  42.62 - 410.40 41.34 dB
High 37.00 - 431.68  42.34 - 44384 4130 - 425.60  35.66 - 407.36  42.42 - 449.92 39.74 dB

Moreover, the heatmap in Figure 30 show the spatial variations in these metrics with respect to the
streamer UAV location. The numerical results confirmed the efficacy of the DTC and JDVT-EC
algorithms, consistently yielding optimal results across various scenarios. Detailed results are also
available in the team’s research paper (Ghazikor et al., 2024b).
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6 SUBTASK 5: SPECTRUM MANAGEMENT FRAMEWORK FOR
OPERATORS

6.1 Introduction

Continuing development in subtask 3, Figure 31 shows a simplified form of the UTM architecture,
highlighting the separation between FAA and industry development and deployment
responsibilities for the necessary infrastructure, services, and entities that interact within the UTM
ecosystem. In this subtask, the main focus was on the hierarchical structure between multiple
operators and the UAS service supplier (USS), which assists multiple operators in meeting UTM
operational requirements, ensuring safe and efficient utilization of the airspace.

The concept of operations within the UTM architecture highlights the need for spectrum resources
to facilitate wireless communications between UAVs, UAV operators, and the USS network. Due
to the proliferation of new wireless services and the demand for higher data rates, there are
spectrum shortages to support various services. Therefore, it is essential to develop dynamic
spectrum sensing, inference, and sharing solutions for UAV operations in existing licensed and
unlicensed spectrum (Rimjha and Trani, 2021).
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Figure 31. Simplified UTM architecture showing the separation between different entities.

There exists a multitude of prior works on spectrum management frameworks for ground users
that propose deep learning-based wideband spectrum sensing to dynamically detect “spectrum
holes” (Ahmad et al., 2020; Cui et al., 2020). Few works propose reinforcement learning (RL)
techniques for spectrum sharing, assuming that spectrum sensing results are readily available
(Nguyen et al., 2018). While these data-driven spectrum management frameworks for ground users
are available, they are not directly applicable for UTM-enabled UAV operations, due to several
factors, such as the widely different wireless channel models and the overall system architecture.
In the context of UAV spectrum sharing systems, spatial spectral sensing (SSS) based methods are
developed for efficient spectrum sharing policies for UAV communications aimed at improving
the overall spectral efficiency (SE) (Kakar and Marojevic, 2017; Shang et al., 2020). However, the
SSS models do not consider the spectrum usage pattern of users under realistic scenarios (e.g.,
ignoring the I/Q level samples), and/or they consider only a single primary user (PU) or secondary
user (SU). Moreover, the problem of joint multi-channel wideband spectrum sensing and
scheduling among several SUs has not been fully investigated.

In this subtask, the researchers proposed a unified and data-driven spectrum sensing and
scheduling framework to enable UAVs to effectively share the spectrum with existing primary
users. At the spectrum sensing stage, it is noted that the inherent hierarchical nature of the UTM
architecture with USS (shown in Figure 31) is a good match for federated learning (FL)-based
model training, which achieves spectrum sensing. Specific to the spectrum sensing stage, an FL-
based cooperative wideband spectrum sensing across multiple UAVs was proposed. Researchers
developed a multi-label classification framework to identify spectrum holes based on the observed
I/Q samples. Each UAV trains their respective local models using the locally collected datasets
and transmits the local model parameters to the central server. Furthermore, the team proposed a
novel proportional weighted federated averaging (pwFedAvg) method that incorporates the power
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level received at each UAV into the FL aggregation algorithm, thereby integrating the dataset
generation plane with the FL model training plane, as shown in Figure 32.
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Figure 32. Envisioned FL system model in a multi-cell wireless network with multiple UAVs.

Given the simplified UTM architecture, and the basic principles of FL, researchers envision two
scenarios for deploying FL-based spectrum sensing in the context of UTM architecture. These two
cases are shown in Figure 33. In scenario 1, each UAS operator has its own FL Server, while in
scenario 2 all operators are coordinated by a central FL server (perhaps, one per USS). Given the
privacy-preserving nature of FL-based machine learning solutions, different operators do not share
any raw wireless/spectrum usage data with other operators. Rather, only ML model parameters are
aggregated at the FL server.
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Figure 33. Envisioned FL scenarios that can be integrated with UTM architecture.

6.2 Methods

6.2.1 Proposed FL-based Model for Spectrum Sensing
An assumption made is that each UAV receives signals from more than one base-station (BS) due

to the fact that they operate at higher altitudes, which increases the chances of signal reception
from multiple BSs, as shown in Figure 32. Furthermore, it is assumed that the cell bandwidth W is
partitioned into M orthogonal sub-channels. Then the total transmitted signal from a BS b across
M orthogonal sub-channels at any time ¢ can be represented by the superposition principle as
follows:

M
50 = Y Iom(©) Vo), VD € B, (6.1)
m=1

where Iy, (t) =1 if the m-th sub-channel of BS b is occupied at time ¢, and 0 otherwise.
Moreover, vj, () represents the waveform on the m-th sub-channel. As a result, s, (t) is the total
transmitted baseband waveform at each BS. Each UAV £ then receives the wideband signal from
multiple BSs in a multi-path propagation environment, which can be expressed as follows:

B
1(© = ) Gin(®) *55(8) + M), Vk € X, (62)
b=1

where g , (t) represents the multi-path channel between BS b and UAV k and 1, (t) denotes the
thermal noise signal observed at UAV k. Therefore, the signal-to-noise ratio observed at UAV £k
can be written as follows:

||Zg=1 Grp(t) * s, ()] |2
o () '

SNR,(t) = Vk € K, (6.3)
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where o (t) represents the noise variance observed at UAV k at time ¢. P (t) is used to denote the
total power received in UAV £ at time ¢, which is directly proportional to the signal generated as
defined in Eq. (6.1). P, (t) will be used for proportional weight scaling in FL training.

To train the DNN models for predicting spectrum holes using raw I/Q samples, it has been shown
that the characteristics of the wireless signal can be captured by observing only a portion of the
signal waveform (Chintareddy et al., 2023; Uvaydov et al., 2021). Hence, from the received
baseband signal 7 (t), capture J I/Q samples are captures and stored locally. Therefore, the
samples from baseband waveform collected at UAV £ are represented as Ry (t) given as follows:

R, (t) = Ry (t) + +71, (), Vk € K (6.4)

where R, (t) represents the J I/Q samples from the first term in Eq. (6.2) and the second term
represents J complex Gaussian noise samples. In addition to the I/Q samples, the true labels are
stored for channel occupancy at each UAV £ at time ¢. The channel occupancy vector hy (t) is an
M-dimensional vector, with each index indicating if a sub-channel m is occupied or free at time ¢
and can be computed as follows:

B
1, ZI t) = 1;

him (8) = - pm(8) (6.5)
0, Otherwise.

Note that h; (t) observed at time 7 would be the true label corresponding to the wideband received
signal 7 (t).The channel occupancy would remain unchanged for the stored J I/Q samples R (t).
(R (t), hy (1)) is stored as an input-output pair that will be used for the training of the FL model.
For the sake of simplicity of notation, the input-output pair is represented as (Ry, hy). Note that
for each M-dimensional channel occupancy vector hy, the input-output pair is treated as one data
sample and the total I/Q dataset collected at UAV £ is denoted as follows:

Dy ={(RL Y, (REBD), .. (RPH, P}, (6.6)

where | D, | represents the total number of samples in the UAV k. These local datasets are used in
FL-based training for spectrum hole detection.

In the FL setting, each UAYV £ trains a local wideband spectrum sensing model whose parameters
are denoted by wy. Hence, the primary objective of the local model is to find a mathematical
function f (wy, Ry), that maps input I/Q samples Ry, to hy, i.e.,

f(0r, Ri): R = hy (6.7)

To this end, using the raw I/Q samplesR, each UAV £ trains a local model that detects vacant sub-
channels, such that the local loss function Ly (w) minimizes the error between the true labels hy,
and the predicted labels hy , as defined below:
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[Dgl

Lk(w) = l(f(wk' R}c ),h;(), (68)

IDI

where /(.) is the loss function for computing the prediction loss in the supervised machine learning
setting. Furthermore, f{.,.) represents the predicted label for the sample (R}'c , }c ) and wy
represents the local model parameters during training.

Given the system model, a framework for wideband spectrum sensing is introduced where multiple
UAVs collaboratively participate in the FL. In such a distributed learning environment, the aim is
to learn a global statistical model at the central server. Given that each UAV £ trains a local model
to identify the spectrum holes by minimizing the local loss function Ly (®), in the context of FL,
the aggregated global loss function L(w) should be minimized, as follows:

K
min {L(w) 2 Z lTLk(w)}, (6.9)
k=1

where D = Y'K_,|D,| is the total size of data samples across the UAVs.

To solve the global loss function Eq. (6.9), the authors in (McMahan et al., 2023) proposed
FedAvg, an iterative aggregation algorithm where the global model aggregates the local model
gradients and redistributes the global model weights to the local models. However, when the

datasets of each UAV £ are of equal size, FedAvg assigns equal scaling factor of % for all local

gradients. However, in the considered multi-cell environment, the signal received at different UAV
locations experiences different channel conditions, and the signal power received at different
locations varies significantly. Hence, by assigning equal scaling weights for the local model
gradients, the performance metrics at UAV locations with strong signal deteriorate. To compensate
for this effect and improve performance at locations that receive better signal power, a proportional
weight scaling aggregation method for FL (pwFedAvg) is proposed that intuitively assigns smaller
weights to UAVs with lower received signal power (i.e., poor channel conditions), and larger
weights to those UAVs with higher received signal power.

Using the pwFedAvg, the central server aggregates the local gradients by assigning a weight
proportional to their received signals as follows:
K ot

VL) = ) ETL (0l 8, (6.10)

k=1

/—t ’—t —t . .
where af, = [Py and of = Y K_; .|P). Here, P, represents the average received signal power at

UAV k for the batch of samples &, . Note that during the FL training process at time ¢, @}, and
wtdenote the local and global model weights, respectively. Upon computing the global model
gradient based on Eq. 6.10, the global model weights are updated as follows:
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o't = wt — y'VL(w?), (6.11)

where y* is the learning rate of the global model. The updated global model weights are sent to
the clients to update their local model weights. Once the training process is completed, all UAVs
have an updated global model that predicts spectrum holes. However, it is inevitable that different
UAVs located at different places perform differently. To effectively estimate spectrum holes and
manage the spectrum efficiently, a spectrum fusion model is proposed that fuses or aggregates all
the spectrum holes predicted from different UAVs. The spectrum fusion is assumed to be part of
the central server within the UTM ecosystem. The overall process of FL-based model training
using the pwFedAvg approach is outlined in Algorithm shown in Figure 33.

Algorithm 1 Channel-Aware FL-Based Training

1: Initialize the global model parameters w and local model
Wi, VE € K:; T : Communication rounds.

2: for ¢t in 17" do

3: for UAV k in K do

4: Choose a batch of 1/Q samples &}, € Dy.

5: Train the local model for E epochs.

6: end for

7: Send the gradients V Ly (w}; €}.) to the central server.
8: Aggregate local gradients at the server.

9: Update the global model at the server.

10: Update local models using the global model, i.e.,

wﬁ_ﬂ = ottl

11: end for

Figure 34. Algorithm for channel-aware FL-based training.

6.3 Results

As previously stated, the researchers modelled wideband spectrum sensing, aiming to identify
spectrum holes from the given I/Q samples as inputs to the ML model. The same evaluation
scenario as in subtask 3 is used here, in which 3 UAVs in 3 different locations are emulated in
simulation environment. The team used 70% of the dataset to train the model using federated
learning (FL) and 30% for spectrum inference purposes. To investigate FL performance, the
FedAvg algorithm was implemented, and the results are presented in Figures 34 through Figure
36. From the results, it is noted that FedAvg achieves good performance only for the UAV
locations 2 and 3 (Figure 35 (a) and Figure 36 (a)). Given the heterogeneous dataset collected at
different UAV locations, the overall performance of FedAvg is limited by the UAV(s) that
performs the worst. This is because FedAvg scales the weights of all local models equally. To
reduce the impact of UAV locations with poor performance, the proposed pwFedAvg algorithm
scales the weights of local models according to the received signal power. As shown in Figure 35
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(b) and Figure 36 (b), the proportional weighting scheme can improve the F-1 score performance
at locations 2 and 3.
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Figure 35. Comparison of performance metrics at location 1: (a) FL-FedAvg, (b) FL-pwFedAvg.
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Figure 36. Comparison of performance metrics at location 2: (a) FL-FedAvg, (b) FL-pwFedAvg.
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Figure 37. Comparison of performance metrics at location 3: (a) FL-FedAvg, (b) FL-pwFedAvg.

(b) FL-pwFedAvg: location 3

Additionally, centralized learning (CL) was performed as another baseline. CL is a technique in
which it is assumed that all the data collected at different locations are aggregated at one central
server and are readily available to train the ML model. Furthermore, to have a fair comparison, the
F1-score is plotted for CL, FL-FedAvg and FL-pwFedAvg as shown in Figure 37 (a), (b), (c). With
the proposed aggregating scheme (pwFedAvg), the performance metrics are improved at UAV
locations 2 (Figure 37 (b)) and 3 (Figure 37 (c)), without significantly affecting location 1 (Figure

37 (a)) performance.
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Figure 38. F1-Score comparison for CL, FL-FedAvg, FL-pwFedAvg: (a) Location1, (b) Location 2, (¢)

Location 3.
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It is observed from the results in Figure 37 that individual sensing performance might fluctuate
at different locations, in both the CL and FL settings. However, by applying fusion rules, the
overall performance is significantly improved, as shown by the results in Figure 38. From these
results, researchers noticed that the overall performance of all methods is significantly
improved by fusion. Furthermore, the proposed pwFedAvg algorithm outperforms FedAvg,
while achieving comparable results with respect to the CL method without the need to transfer
all datasets to a central location.
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Figure 39. F1-Score comparison at location 1 with and without fusion.

7 CONCLUSION

This research on spectrum management for Unmanned Aerial Systems (UAS) in public safety and
Beyond Visual Line of Sight (BVLOS) operations presents several technical findings and
contributions. The study focused on several major subtasks: spectrum needs and supplies, dynamic
spectrum sharing, interference analysis, and spectrum management frameworks. Each subtask
provides insight into current limitations and future opportunities for UAS communication systems.

When considering spectrum demands and shortages, the projected increase in UAS density under
BVLOS conditions requires more spectrum resources to enable safe and reliable operations. Both
public safety and commercial UAS operations will struggle to maintain communication quality
using unlicensed bands (e.g., WiFi). The use of cellular networks for BVLOS operations, while
promising, is limited by bandwidth constraints and potential interference since those networks are
not designed and implemented for UAS applications.

On the topic of collaborative spectrum sharing and dynamic allocation, it can be concluded that
introducing collaborative spectrum sensing and ML/Al-driven solutions has proven effective in
improving spectrum utilization. This research demonstrates that UAS can autonomously detect
and share underutilized spectrum, so that the spectrum efficiency is enhanced. Dynamic allocation
strategies using Reinforcement Learning (RL) methods such as Double Deep Q-Networks
(DDQN), showed performance gains by optimizing spectrum usage across distributed UAVs.
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In terms of interference mitigation in unlicensed bands and optimization of communication
systems, the developed interference-aware distributed transmission control algorithms are
effective to manage interference in unlicensed spectrum bands. These algorithms effectively
adjusted transmission policies based on wireless channel conditions and interference levels,
thereby increasing throughput and reducing message errors in UAS communications.

Federated learning (FL) frameworks were investigated to enhance spectrum management for UAS.
The FL-based approaches provide a decentralized solution that maintains data privacy while
improving spectrum allocation decisions. The proposed proportional weighted federated averaging
(pwFedAvg) algorithm incorporates wireless channel conditions into the model aggregation
process to improve the performance of standard FL models.

Despite these advancements, several key challenges remain in regard to policy and regulation,
real-world validation of solutions, and infrastructure enhancement,

Current spectrum policies do not sufficiently address the specific requirements of UAS operations.
The lack of dedicated spectrum for UAS operations, particularly in public safety contexts, creates
a significant bottleneck. The FCC’s recent NPRM and subsequent regulations on the 5030-5091
MHz band (C-band) represent a step in the right direction, but more coordinated efforts are needed
to establish reliable and interference-protected spectrum access for UAS. Priority spectrum access
for public safety applications should be incorporated into the regulations.

While the proposed ML/Al-driven spectrum management solutions performed well in simulations,
real-world testing is required to validate their robustness, scalability, and adaptability in dynamic
environments. Experimental trials in urban and rural environments, with varying levels of UAV
density and spectrum availability, are essential for refining these solutions.

The use of existing cellular infrastructure for UAS communications poses potential challenges,
particularly in terms of interference. Investing in communication technologies and further studies
that are future-proof, such as C-band radio for licensed spectrum access for UAS, will be critical
to ensuring reliable and safe BVLOS operations.

In conclusion, addressing the spectrum needs of UAS for public safety and other applications will
require a combination of innovative technologies, robust policy support, and infrastructure
investment. These steps are essential to unlocking the full potential of UAS in complex and high-
density environments.
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