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EXECUTIVE SUMMARY 

This report focuses on the spectrum considerations for Unmanned Aerial Systems (UAS) in public 
safety and Unmanned Aircraft System Traffic Management (UTM). As UAS usage grows in 
various sectors, ensuring efficient, scalable, and reliable wireless communications is crucial. This 
research aimed to address critical gaps in spectrum management for safe UAS operations. The goal 
of this research was to identify current and future spectrum needs for UAS operations, assess the 
availability of spectrum resources, and develop dynamic spectrum sharing solutions. The research 
also assessed interference challenges in unlicensed bands and proposed optimization algorithms to 
ensure reliable data transmission. 

The research yielded several important findings. In relation to spectrum shortfalls, the research 
revealed that current spectrum allocations and technologies (e.g., unlicensed bands) are 
insufficient to meet the needs of UAS operations, especially as UAV density under BVLOS 
increases in the airspace. Both public safety and commercial UAS operations will face challenges 
unless new spectrum resources, supported by algorithmic innovations, are developed. On the topic 
of collaborative spectrum sensing and sharing, spectrum sensing can be used to efficiently allocate 
underutilized spectrum bands. Introducing collaborative sensing technologies can further improve 
accuracy. By using ML/AI-driven solutions, UAVs can autonomously detect and share 
underutilized spectrum resources. Additionally, when considering the optimization of 
communication systems, newly developed algorithms significantly enhance communication 
performance in interference-heavy environments. The implementation of such algorithms for 
video and data transmission by UAVs resulted in higher throughput and more reliable 
communication even with interference. Finally, a federated learning-based framework allows 
UAV operators to collaboratively learn from decentralized data. This approach enhances data 
privacy and security, while improving the accuracy and efficiency of spectrum sensing and 
allocation decisions across large, multi-cell environments. 

Despite these advancements, several challenges regarding spectrum considerations for safe and 
reliable UAS operations remain. Actions are required in a number of areas. Validation of ML/AI-
driven spectrum management technologies is a challenge, specifically the investment in spectrum 
management frameworks that can dynamically detect and allocate underutilized spectrum bands. 
ML/AI-driven algorithms in UAS communication systems should be experimentally tested, 
verified, and refined, especially in complex operations. Secondly, spectrum policy advocacy poses 
challenges. Collaboration with policymakers and regulatory bodies, such as the Federal 
Communications Commission (FCC) and National Telecommunications and Information 
Administration (NTIA) to ensure proper spectrum allocation for UAS operations, is paramount, 
especially priority access for public safety and first responders. Enhancing public safety operations 
with future-proof technologies is an additional challenge, including investing in advanced 
communication technologies (e.g., equipping UAVs with C-band radio, which is being repurposed 
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by the FCC in August 2024) and spectrum management tools that will enable UAS to operate 
reliably and efficiently in BVLOS.   

1 INTRODUCTION 
Unmanned aerial systems (UAS) have attracted significant interests from communications and 
networking, robotics, and control societies for exploring novel applications such as on-demand 
connectivity, search-and-rescue operations, and situational awareness, to name a few. While such 
efforts are essential, there are gaps in the fundamental research and experimentation of UAS 
platforms. It is clear that the current innovations based on the assumption of visual line-of-sight 
(VLOS) between an aerial vehicle and ground control station is a limiting factor. In order to truly 
unleash the potential of UAS, real-world and commercial deployments will most likely be in the 
form of beyond visual line-of-sight (BVLOS) scenarios, which in turn provide easier access to 
remote or hazardous areas, less human intervention, and reduced cost of operation. Yet, compared 
with the VLOS conditions, BVLOS carries higher safety risks since in the case of automated flights 
there may be no human observations, or the pilot may only be observing potential obstacles or 
other flying objects via a remote camera feed. 
For safe operations of multiple UAS under BVLOS conditions, the Unmanned Aircraft System 
Traffic Management (UTM) system is under development to enable advanced UAS use-cases. 
Given the current state of knowledge, there is an immediate need for thorough assessment, 
analysis, and modeling of spectrum management frameworks for efficient, reliable, and scalable 
deployment of UAS under BVLOS scenarios. In this task, we provide a comprehensive assessment 
of the shortfalls, impact, and needed changes in spectrum management to accommodate the 
predicted levels of UAS operations and the diversity of technology solutions to address challenges 
facing low altitude operations. 

1.1 Research Subtasks 
This research was organized across the following inter-related subtasks. 
1.1.1 Subtask 1: Evaluating the Spectrum Needs for UAS 
This subtask aimed to provide an assessment of current and future spectrum needs for low altitude 
UAS operations, including aircraft and UTM infrastructure. In this subtask, the research team 
presented a methodology to estimate the total spectrum resources needed for each type of wireless 
communication within the UTM system. The aggregated results revealed the required spectrum as 
UAV density increases. This analysis is critical for understanding the scalability of current 
spectrum allocations and predicting future needs as UAV traffic increases. The results offer 
valuable data for spectrum planners and regulators to ensure efficient and reliable communication 
networks are available for increasingly crowded airspaces. 

1.1.2 Subtask 2: Exploring the Spectrum Supplies for UAS 
In this subtask, the research team surveyed existing spectrum allocation in the US to determine 
available, underutilized spectrum or allocated spectrum that can be repurposed for UAS needs. 
This subtask also explored standardization and policy-making opportunities. To assess the 



11 
 

available spectrum resources and related technologies (such as LTE, satellite, WiFi, etc.), the 
research team divided efforts into two parts for this subtask. A simulator that the research tean 
developed was introduced, which integrates wireless and flight simulations. This is a crucial 
component for evaluating the performance of various wireless communication technologies and 
the allocated spectrum for UAV operations. Additionally, this subtask included the investigation 
of policy-making initiatives focused on spectrum licensing mechanisms for UAV operations in the 
U.S., including efforts by the FCC and NTIA to develop a national spectrum strategy. 
1.1.3 Subtask 3: Dynamic Spectrum Sensing and Access 
This subtask encompassed the examination of the requirements for a dynamic spectrum access 
management service to assign and monitor spectrum use within UTM that supports UAS 
operations. A data-driven framework was proposed for collaborative wideband spectrum sensing 
and scheduling for networked UAVs, which act as the secondary users to opportunistically utilize 
detected spectrum holes. To this end, the research team proposed a multi-class classification 
problem for wideband spectrum sensing to detect vacant spectrum spots based on collected RF 
signal samples. To enhance the accuracy of the spectrum sensing module, the outputs from the 
multi-class classification by each individual UAV are fused at a server in the UTM ecosystem to 
achieve collaborative spectrum sensing. In the spectrum scheduling phase, reinforcement learning 
(RL) solutions were leveraged to dynamically allocate the detected spectrum holes to the 
secondary users (i.e., UAVs). To evaluate the proposed methods, a comprehensive simulation 
framework was established that generates a near-realistic synthetic dataset using MATLAB LTE 
toolbox by incorporating LTE base-station (BS) locations in a chosen area of interest, performing 
ray-tracing, and emulating the primary users channel usage in terms of I/Q samples. This 
evaluation methodology provides a flexible framework to generate large spectrum datasets that 
could be used for developing ML/AI-based spectrum management solutions for aerial devices. 
1.1.4 Subtask 4: Saturation and Interference Analysis 
This subtask focused on conducting saturation/interference analysis on the current spectrum used 
by UAS, such as the ISM band. In this subtask, the research team conducted a thorough and in-
depth analysis of UAV communication systems with ground nodes under varying interference 
conditions, focusing on the development of transmission policies to enhance network performance 
in unlicensed spectrum bands. Specifically,  this included modeling and mitigating the impact of 
interference, queuing delay, and buffer overflow on expected throughput. By employing 
distributed optimization algorithms, including methods like coordinate descent and consensus-
based distributed optimizations to find optimal transmission policies, the subtask explores 
techniques for improving the efficiency of packet transmission in complex UAV-ground 
environments. Additionally, video streaming quality was optimized through two-step optimization 
algorithms that maximize metrics such as Peak Signal-to-Noise Ratio (PSNR), balancing video 
encoding rates and transmission policies over all nodes.  

1.1.5 Subtask 5: Spectrum Management Framework for Operators 
Subtask 5 proposed a data-driven framework for collaborative wideband spectrum sensing and 
scheduling across distributed UAV operators. The main goal of the solution is to enable distributed 
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model training, which in turn, provides data privacy and security. In the model training stage, the 
research team explored dataset generation in a multi-cell environment and trained a machine 
learning (ML) model using the federated learning (FL) architecture. Unlike the existing studies on 
FL for wireless that presume datasets are readily available for training, this research proposed a 
novel architecture that directly integrates wireless dataset generation, which involves capturing 
I/Q samples from over-the-air signals in a multi-cell environment, into the FL training process. In 
the traditional FL that employs FedAvg as the aggregating method, each UAV is assigned an equal 
weight during model aggregation. However, due to the disparities in channel conditions in a multi-
cell environment, the FedAvg approach may not generalize effectively for all the UAV locations. 
To address this issue, a proportional weighted federated averaging method (pwFedAvg) was 
utilized, in which the aggregating weights incorporate wireless channel conditions and received 
signal powers at each individual UAV. As such, the proposed method integrates the intrinsic 
properties of wireless datasets into the FL algorithm. This subtask builds upon the results from 
subtask 3.  

2 SUBTASK 1: EVALUATING THE SPECTRUM NEEDS FOR UAS 
2.1 Introduction 
The UTM architecture is being developed to orchestrate safe operation of multiple UAVs. Within 
the concept of operations of the UTM architecture (Kopardekar et al., 2016), the need for spectrum 
resources arises for the wireless communications involved between the UAV, the UAV operator 
and the USS network. Since UAVs operating in UTM are not assigned a particular frequency band, 
it is essential to know what resources are needed for safe operations especially in BVLOS 
conditions. Subtask 1 focuses on a methodology to provide an estimate of the aggregated spectrum 
resources required for each kind of wireless communication within the UTM system. The 
aggregated results indicate how much spectrum is necessary when the density of UAVs increases. 

2.2 Methods 
As shown in Figure 1, the research team followed the methodology adapted from (Kakar, 2015), 
to compute spectrum requirements for a given coverage cell that involves the information 
exchange between the UAVs, the spectrum efficiency, and the density of UAVs. To compute the 
total spectrum required,  the formula multiplies the frequency reuse factor (K). Therefore:  

𝑊𝑊 =
𝐾𝐾.𝐵𝐵.𝑀𝑀.𝑅𝑅
𝑈𝑈.𝐸𝐸

, (2.1) 

where, K is the frequency reuse factor, B is the data rate requirement (kbit/s) for a single UAV, M 
is the UAV density in a single cell, U is the utilization factor (≤ 1), R is the redundancy factor 
(≥ 1) that allows backup links, E is the spectral efficiency (bits/s/Hz). Finally, W (MHz) is the 
aggregate bandwidth requirement. 
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Figure 1. Methodology to compute aggregated spectrum requirements. 

 

2.3 Results 
2.3.1 Remote ID Requirements  
Remote ID is the ability of a drone in flight to broadcast identification and location information 
that can be received by other parties. For safety and security reasons, the FAA has mandated that 
UAVs must broadcast Remote ID.  Remote ID will provide information such as the identity, 
location, and altitude of the UAV and its control station or take-off location. Table 1 summarizes 
the required amount of data rate for broadcasting Remote ID. 

Table 1. RemoteID contents of each UAV. 

 
Given the contents of RemoteID data from Table 1,  Table 2 computes the total spectrum required 
for broadcasting RemoteID when multiple UAVs are in the area using the methodology defined in 
Figure 1. 
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Table 2. Estimated aggregated spectrum requirements for broadcasting RemoteID. 

 
2.3.2 Requirements for Command and Control (C2) with Video 
C2 link plays a major role in delivering command and control information to the UAVs. In 
computing the requirements for both uplink (UL) and downlink (DL), the default values mentioned 
in the (ITU-R, 2009) were used. Since the requirements for UAVs flying below 400 ft are being 
computed, cell type A is used to determine the estimated spectrum requirements for each cell. As 
seen in Table 3, it can be clearly observed that as the UAV density (M) increases the total spectrum 
requirement increases. Note that the computations consider UAV communications with video for 
command and control. 

Table 3. Estimated aggregated spectrum requirements for UAV communications with video for C2. 

 
2.3.3 Requirements for UAV-UAV Communication 
When UAVs operate in areas where manned aircraft are more common, operators are responsible 
for ensuring safe separation from all other aircraft. This can be achieved through in-flight de-
confliction services provided by USS, which help detect and notify operators of nearby traffic, or 
by using ground-based or airborne technologies such as position-sharing systems, vehicle-to-
vehicle (V2V) communication, ground-based or airborne surveillance data, and collision detection 
and avoidance (CDA) capabilities. Table 4 captures an estimate of spectrum requirements for 
UAV-UAV communications, where a data rate of 200 kbps is assumed for UAV-UAV 
communication. 
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Table 4. Estimated aggregated spectrum requirements for UAV-UAV communications. 

 

3 SUBTASK 2: EXPLORING THE SPECTRUM SUPPLIES FOR UAS 
3.1 Introduction 
To evaluate the available spectrum supplies and the performance of corresponding technologies 
(such as LTE, satellite, WiFi, etc.), research efforts were divided into two parts in this subtask. 
First, the developed simulator that can be used for integrated wireless-flight simulation was 
presented. This is a critical aspect of the Task 7 research needed to be addressed to be able to 
evaluate the performance of various wireless communication technologies as well as allocated 
spectrum for UAV operations. Secondly, the research team explored the policy-making efforts that 
are aimed at spectrum licensing mechanism for UAV operations in the U.S. This includes the FCC 
and the NTIA efforts to develop a national spectrum strategy. 

3.2 Developing a Simulation Framework for UAV Spectrum Studies 
To evaluate and investigate various spectrum allocation and sharing for UAS, a reliable and 
comprehensive simulation framework is needed. Such a framework should provide the capabilities 
to model different subsystems of UAVs, ground control stations, and their communication links. 
As such, the research team initially considered MATLAB and its UAV Toolbox in Simulink for 
designing, simulating, testing, and deploying UAVs, but found that although MATLAB and UAV 
Toolbox provide a powerful simulation framework, there are some limitations, such as challenges 
for integrating wireless communication channel models for radio access networks. Two major 
requirements for a BVLOS scenario with the UAV simulator are wireless communication channel 
modeling between different entities and simulation of multiple UAVs in the same environment. 
To select a simulation framework that fit the research requirements, the research team also 
considered several open-source simulators. In particular, the functionalities and limitations of 
FlyNetSim, UTSim, Airsim, ROS+Unity were considered. After thorough investigations, the 
conclusion was that the existing open-source simulators have several limitations, as follows:  

1) No air-to-ground wireless channel modeling,  
2) Not compatible with required features according to UTM architecture,  
3) Lack of mission planning functionality,  
4) Not considering the underlying network traffic,  
5) Not considering the interference resulted from other devices,  
6) No Vehicle-to-Vehicle (V2V) communications feature.  
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Therefore, the research team aimed to develop a simulator that addresses the forementioned 
aspects as well as some additional ones. To this end, the Task 7 team set two specific goals for the 
simulator: 

• Goal 1: To be able to model various public safety scenarios in the simulation tools. 
• Goal 2: To investigate the performance of various spectrum supplies and their 

access/allocation policies.  

To achieve these goals, the approach consisted of integrating two popular simulators, namely NS-
3 and ArduPilot. This approach enabled the implementation of reference public safety scenarios 
in NS-3, which is a popular open-source network simulator. Furthermore, NS-3 is capable of 
modeling various wireless protocols (LTE, 5G, WiFi, LEO sat.). 

Figure 2 shows the overall system architecture of the simulator. In this case, multiple UAVs are 
simulated via Ardupilot, and each UAV has a corresponding ghost node in the NS-3 simulator. 
Each UAV can be controlled by a UAS operator through the network. Furthermore, each UAV 
sends telemetry data to its UAS operator through the network. 

 
Figure 2. Overall system architecture of the simulator. 

A main focus of subtask 2 consisted of cellular technology as the main spectrum supply to provide 
wireless communications to the UAVs. The simulator developed provides several key features: 

• Feature 1: Flexibility to define UAV operations. UAVs can be launched from different 
locations and different missions can be defined using Mavlink standard structure. 
Furthermore, it is possible to define/assign a specific mission for each UAV such as 
wildfire monitoring, road monitoring, etc. 

• Feature 2: Flexibility to define the cellular network. Given that the main focus was on 
cellular (LTE) technology to provide wireless links to UAVs, this simulator enables to the 
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user to define the LTE base stations (BS) at specific locations and heights. Furthermore, 
each BS can be configured independently, in terms of operating uplink/downlink 
frequency, allocated spectrum bandwidth, etc. For evaluation purposes, configuration 
information was incorporated from real LTE base stations, which can be extracted from 
available open sources, such as: specmap.sequence-omega.net. 

• Feature 3: Full flexibility to define the type of messages. Each UAV is configured in terms 
of the type of transmitted messages, frequency of transmission, message lengths, etc. Each 
UAV sends telemetry info (e.g., location, velocity, battery level, etc.) to the corresponding 
operator through the cellular network. 

• Feature 4: Implementation for Air-to-Ground Wireless Channel Model. 3GPP-based 
channel models were incorporated (from release-15 of the standard) for air-to-ground 
wireless communications under different scenarios, such as urban vs. rural areas. 

To demonstrate the effectiveness of the developed simulator, a sample set of results is presented. 
To simulate a public safety scenario, the researchers modeled a wildfire in California, Los Padres 
National Forest, which is the third largest National Forest encompassing about 1.75 million acres. 
The Alisal wildfire incident occurred in 2021, and Figure 3 summarizes the key information about 
the incident. 

 
Figure 3. Alisal fire incident key details. This scenario is used to demonstrate the functionality of the 

simulator for UAV operation in public safety scenarios. 

To establish a cellular network around the incident area,  LTE base station locations were extracted 
from cellmapper.net website, as shown in Figure 4. 

https://specmap.sequence-omega.net/
http://cellmapper.net/
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Figure 4. Location of LTE base station in the wildfire incident area. 

Next, the team defined a mission path for the UAV to monitor a hill for any potential fire hazard. 
The UAV was sending back video streams to the GCS over the cellular network. Figure 5 shows 
the mission path with respect to the surrounding LTE base stations, which are denoted by blue 
circles. 

 
Figure 5. UAV mission path and LTE base station locations in the Alisal wildfire incident area. 

Furthermore, Figure 6 shows a “zoomed-in” version of the mission path that can be defined in the 
simulator. 
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Figure 6. Defined mission path for the UAV that monitors any potential fire incidents in the Alisal area. 

Once the LTE network and UAV mission were defined, the network performance was investigated 
as various parameters, such as spectrum operation frequency, allocated bandwidth, and video 
quality, etc., change. For example, Figure 7 shows the throughput performance of the streaming 
service as the video resolution (streamed by the UAV) is set to 1280x720 or 800x600. The LTE 
network is configured to operate at 700 MHz, and the allocated bandwidth is 6 MHz. 

 
Figure 7. Throughput performance results as a function of the video resolutions. 

From the results, a smaller gap between transmission and reception rates   can be observed when 
using lower video resolutions. On the other hand, with higher resolutions, the gap increases. This 
suggests that a 6 MHz bandwidth allocation may not be sufficient to support such video streaming 
in that scenario. 
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In addition to the video resolution, the developed simulator allows configuration of the operating 
frequency band and allocated bandwidth. Figure 8shows a comparison of throughput performance 
for streaming 800x600 video resolution, while the allocated bandwidth is configured to be either 
3 MHz or 20 MHz. The operating frequency is also either 700 MHz or 2,600 MHz. 

 
Figure 8. Throughout performance as a function of operating frequency and allocated bandwidth. 

From the results, researchers observed that as the allocated bandwidth and spectrum supply 
increases, a greater number of users are supported simultaneously.  

Overall, these results demonstrate that the developed simulator can be an effective tool to evaluate 
various spectrum allocation policies and investigate the performance of public safety scenarios 
under diverse conditions. 

3.3 Policy Efforts for UAV Spectrum Allocations 
Regarding the second action item, the researchers investigated ongoing policy efforts revolving 
around national spectrum strategy and spectrum allocations for UAV operations. The main purpose 
of such policy efforts is to assign licensed spectrum bands for UAV operations. BVLOS flight 
operations of UAVs within the national airspace (NAS) and in close proximity to people, 
buildings, and other aircraft inherently entail risks and require real-time monitoring by air traffic 
control and the pilot in command. This control and non-payload communication (CNPC) link is 
critical for ensuring safety and demands an interference-protected aviation-grade spectrum. 
Unlicensed spectrum is not viable because it lacks interference protection and is heavily used, 
especially in urban areas. In fact, in Subtask 4, the team investigated the impact of interference on 
UAV communication performance. Furthermore, while there have been significant interests in the 
airborne use of flexible-use spectrum and existing mobile networks, there is no licensed spectrum 
in the U.S. for UAV communications, leading operators to rely on unlicensed or experimental 
licenses without protection from harmful interference. In January 2023, the FCC issued a Notice 
of Proposed Rulemaking (NPRM) for spectrum rules and policies for the operation of UAS 
command and control in the C-band (5030 – 5091 MHz) (FCC, 2023). 
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Subsequently, in March 2024, the NTIA published the National Spectrum Strategy Implementation 
Plan that includes action items to explore repurposing this band for non-federal and commercial 
airborne uses (NTIA, 2024). 

The goal of the FCC’s NPRM was to seek comments on service rules for the C-band that will 
provide UAS operators with access to licensed spectrum with the reliability necessary to support 
safety-critical UAS communications links. The diagram in Figure 9 shows a proposed band-plan 
that considers two types of operations for UAS:  

1) Non-Networked Access (NNA) that involves flights within a sufficiently localized area 
that can rely on direct wireless links between the UAS operator’s controller and the UAV 
and therefore do not require any supporting network infrastructure. Such operations may 
include, for example, tower or other site inspections, public safety operations, or localized 
surveillance.  

2) Network-Supported Service (NSS) that relies on deployed network infrastructure, such as 
cell towers and sites, to relay information between the operator and the UAV and may 
therefore extend far beyond the range of direct wireless links between operator and UAV. 

 

Figure 9. The envisioned band plan for 5030-5091 MHz (FCC, 2023). 

In response to the NPRM, more than 70 comments from the UAS community (including Telecom 
companies AT&T, Verizon, T-Mobile; UAS operators; and UAS users) were submitted. 

In this subtask, the researchers presented an in-depth discussion on the FCC’s NPRM document, 
covering (i) the proposed band plan for allocating spectrum to NSS and NNA applications, (ii) a 
high-level overview of the dynamic frequency management system (DFMS) for this band, 
detailing its benefits, expected functionalities, responsibilities, and limitations, (iii) comparing the 
DFMS with existing frequency management systems in other bands, such as CBRS in the 3.5 GHz 
band, highlighting the challenges and difference, and (iv) other potential spectrum bands, such as 
the existing cellular and mobile networks (the so-called flexible-use spectrum bands), which can 
be used for UAV operations. 
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3.3.1 Repurposing the 5030-5091 MHz Band for UAS 
The recent initiatives by the FCC and NTIA are aimed at repurposing the 5030-5091 MHz band 
for UAS and UTM system operations. This band is primarily allocated for Aeronautical Mobile 
(Route) Service (AM(R)S) and Aeronautical Mobile Service (AMS). Microwave Landing Systems 
are incumbents in this band, providing precision radio-based guidance to aircraft for approach and 
landing, especially in challenging environments where traditional Instrument Landing Systems 
might be inadequate. According to the NTIA and FAA, MLS installations are not widespread in 
the U.S. However, the Air Force uses the MLS at military bases for precision landing guidance to 
military aircraft. Furthermore, NASA “operates active sensor systems in the 5030-5150 MHz band 
on a non-interference basis” (NTIA, 2021). In addition to these incumbent users, there are other 
services operating in adjacent bands, including: 

• Radionavigation-satellite service (RNSS) (space-to-earth) downlink at 5010-5030 MHz; 
• Aeronautical mobile telemetry (AMT) downlink to support flight testing at 5091-5150 

MHz; 
• Aeronautical Mobile Airport Communications System (AeroMACS) in the 5000-5030 

MHz and 5091-5150 MHz bands, which enables communications for surface operations in 
airports between aircrafts and other vehicles and assets. 

 
3.3.2 Dynamic Frequency Management System (DFMS) 
Given the scarcity of spectrum and the exponential growth of UAS operations, it is necessary to 
develop dynamic frequency management systems tailored for aerial operations. The U.S. has been 
at the forefront of developing innovative spectrum management techniques across various 
frequency bands such as TV White Space, the CBRS (Citizens Broadband Radio Service) in 3.5 
GHz, and the 6 GHz band with Automated Frequency Coordination (AFC). However, these 
frameworks are not directly applicable to UAS due to several factors. For example, there is a lack 
of sensing frameworks for aerial systems’ spectrum. In addition to authorized service parameters 
such as transmitted power profile and duty-cycles, it is necessary to know actual spectrum usage, 
either through measurements or improved data reporting. Furthermore, to improve sharing, typical 
deployment scenarios need to be considered. For example, the CBRS environmental sensing 
capabilities (ESC) that were developed to protect Navy radars will not be suitable for protecting 
incumbent and primary aeronautical licensees at 5030-5091 MHz. Therefore, the FCC document 
proposes developing a novel spectrum management solution, called dynamic frequency 
management system (DFMS), to improve spectrum utilization in this band. 

To address the complexities of coordinating shared interference-protected access to the 5030-5091 
MHz band, DFMS will be used for frequency coordination as well as providing dynamic, efficient, 
and automated (non-manual) access for two categories of users: NNA and NSS. The NNA services 
involve localized flights where the UAV communicates directly with the ground controller via 
wireless links, eliminating the need for network infrastructure. These operations are licensed-by-
rules, which can be utilized for purposes such as public safety, localized surveillance, and 
tower/site inspections. On the other hand, NSS refers to network-based operations that rely on a 
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deployed network infrastructure for information relaying between the ground controller and UAV. 
The NSS operations enable services with an extended range, such as package delivery, search and 
rescue, mapping, etc.  

The FCC proposes allocating 10 MHz of spectrum for NNA operations, 40 MHz of spectrum for 
NSS operations (4 licensed blocks of 10 MHz each) and making the remaining 11 MHz available 
for multi-purpose use by NNA or NSS licensees (FCC, 2023). Multi-purpose allocation will enable 
dynamic spectrum allocation and access such that the NSS licensees may receive a temporary 
assignment to supplement their spectrum capacity for a particular operation at a specific time and 
geographic location. Furthermore, the NNA users, besides having a dedicated spectrum for their 
operations, can opportunistically access the frequencies in a dedicated NSS block in geographic 
areas where the NSS licensee has not yet deployed an operating network or they do not have 
ongoing flight operations, thereby allowing for the opportunistic use of unused spectrum sub-
bands. These coordination activities for the NSS and NNA operators will be performed with the 
DFMS across the entire band. The DFMS will assign time- and location-based licenses within the 
requested operation area and timeframe, after which the frequencies would be available in that 
area for assignment to another UAS operator. This will enable efficient and intensive use of the 
spectrum band, while providing interference-protected and reliable CNPC channels for both NNA 
and NSS users. Potentially, there will be multiple DFMS service providers, establishing a 
decentralized market structure. 

In addition to the proposed band plan (Figure 9), the FCC document provides further details on (1) 
the scope of permissible services and eligibility conditions, (2) NNA and NSS service rules, (3) 
equipment authorization, (4) protection of other in-band and out-of-band services, and (5) need for 
international coordination (with Canada and Mexico) for near-to-border operations. 

3.3.3 DFMS Requirements 
To design an efficient DFMS, there are several requirements that need to be satisfied: (i) those 
UAS operators, who operate consistent with their assignment, should be protected from harmful 
interference, (ii) UAS operators should have flight authorization from the responsible parties 
within the UTM system (e.g., UAS service supplier (USS)), (iii) UAS operators should follow 
their assignment and do not cause harmful interference to other protected operations in the band 
and adjacent bands, and (iv) the DFMS entities should participate in decentralized markets to 
accommodate time- and location-based reservation requests, as well as setting associated spectrum 
access fees to improve spectrum utilization and avoid spectrum warehousing. Satisfying these 
requirements could introduce significant technical challenges that cannot be addressed using 
existing models. For instance, in CBRS, the spectrum access system (SAS) oversees fixed stations, 
enabling dynamic adjustments in transmit power or complete transmit cessation. However, unlike 
fixed stations, UAS operators under DFMS control cannot automatically cease operations mid-
flight due to safety concerns. Additionally, dynamic frequency management approaches for the 6 
GHz and TV bands rely on database queries for unlicensed access to unused spectrum sub-bands, 
lacking interference protection. 
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3.3.4 Using Flexible-Use Spectrum Bands for UAV Operations 
In addition to the 5030-5091 MHz band, the FCC’s NPRM document includes discussions on 
airborne use of flexible-use spectrum, which refers to services or spectrum bands for which the 
FCC’s rules do not prescribe specific uses or applications. For instance, there is significant interest 
in utilizing existing terrestrial mobile networks (Muruganathan et al., 2021) for UAS command 
and control, telemetry, and payload communications due to their coverage, low latency, high 
throughput, and secure links. However, these networks were not designed for aerial operations, 
leading to potential harmful interference to adjacent licensees in nearby geographies and frequency 
bands. Therefore, the integration of UAS into terrestrial mobile networks may not be a seamless 
transition. In this study, researchers reviewed the impacts of UAS on mobile networks due to the 
high altitude and mobility, such that the interference impact increases with the altitude at which 
UAS are operating. It was concluded that the use of flexible-use spectrum by UAS can raise the 
risk of harmful interference on adjacent channel, adjacent band, or adjacent market operations.  

4 SUBTASK 3: DYNAMIC SPECTRUM SENSING AND ACCESS 
4.1 Introduction 
Existing terrestrial mobile networks (e.g., 4G and 5G) provide significant wireless coverage with 
relatively low latency, high throughput, and low cost. This, in turn, makes the cellular network a 
good candidate for the operation of UAVs in BVLOS scenarios. However, the proliferation of new 
wireless services and the demand for higher cellular data rates have significantly exacerbated the 
spectrum crunch that cellular providers are already experiencing. Therefore, developing dynamic 
spectrum management services to sense, assign, and monitor spectrum usage within the UTM 
architecture is of utmost importance in order to enable advanced UAV use cases in BVLOS 
(Rimjha and Trani, 2021). 

In this subtask, the team proposed a data-driven model for joint wideband spectrum sensing and 
scheduling across several UAVs, which act as secondary users (SUs) to opportunistically utilize 
detected spectrum holes. The proposed system model presents a unified framework that is 
compatible with the UTM deployment models with centralized controlling and monitoring entities 
(e.g., UAS service suppliers). To make development more concrete and grounded, the problem of 
joint spectrum sensing and sharing is formulated as an energy efficiency (EE) maximization in a 
wideband multi-UAV network scenario. Then, the EE optimization problem is transformed into a 
Markov Decision Process (MDP) to maximize the overall throughput of the SUs. To enable 
spectrum sensing, researchers developed a multi-label classification framework to identify vacant 
spectrum resources, from here on referred to as spectrum holes, based on observed I/Q samples. 
To enhance the accuracy of the spectrum sensing module, the outputs from the multi-label 
classification by each individual UAV are fused at the UTM server. In the spectrum scheduling 
phase, several RL algorithms are developed and implemented, including the standard Q-learning 
methods to dynamically allocate underutilized spectrum sub-channels to multiple UAVs. 
Researchers further investigated the performance of the “vanilla” deep Q-Network (DQN) and its 
variations, including double DQN (DDQN) and DDQN with soft-update. 
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Furthermore, one of the primary challenges of using machine learning (ML) methods for spectrum 
management is the need for large amounts of training data. The lack of available spectral data in 
many cases is a significant obstacle, especially for UAV networks that introduce additional 
complexity for large-scale experimental data collection. To address this gap, and evaluate the 
proposed methods, the team developed a comprehensive framework for spectrum dataset 
generation, which accurately models LTE waveform generation and propagation in any 
environment of interest for UTM-enabled UAV applications. This platform enables modeling 
cooperative spectrum sensing and sharing for wideband multi-UAV network scenarios and can be 
used for scalable generation of large spectrum datasets within an area of interest. 

In summary, the key contributions of this subtask are as follows: 

1) A joint spectrum sensing and access framework using raw LTE I/Q data was developed. 
2) The developed spectrum sensing module identifies multiple spectrum holes in a wideband 

multi-channel setting.  
3) RL-based techniques (i.e., DQN and its variations) were utilized to allocate the identified 

spectrum holes to multiple UAVs. 
4) The developed solution is evaluated using realistic channel modeling between several LTE 

BSs and UAVs. 

4.2 Methods 
4.1.1.1 Network Model and Communication Protocol. 
Consider a set of UAVs denoted by 𝒦𝒦 (|𝒦𝒦| = 𝐾𝐾) where each UAV can perform wideband sensing 
over 𝑀𝑀 orthogonal primary spectrum resources (sub-channels) independently. Due to the highly 
dynamic environment in which UAVs operate, it may not be feasible for all the UAVs to observe 
every vacant sub-channel. Therefore, researchers leveraged collaborative spectrum sensing by the 
UAVs and perform spectrum fusion at some servers located in the UTM architecture to increase 
the reliability of spectrum hole detection. Identified spectrum holes are allocated to the UAVs. 
Therefore, the overall system model is divided into two major components: (i) collaborative 
spectrum sensing and fusion policies, (ii) spectrum allocation and access policies. 

To coordinate the spectrum sensing, fusion, and access steps, researchers assume that each time 
slot is divided into four consecutive sub-slots: UAV resource request (treq) , spectrum sensing 
(𝑡𝑡𝑠𝑠), broadcasting to server (𝑡𝑡𝑏𝑏), and channel access (𝑡𝑡𝑎𝑎) as shown in Figure 10. 

 

Figure 10. Time slot format. 
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Specifically, at the beginning of each time slot, the UAVs that require PU resources request the 
server for resource allocation. In the subsequent sub-slot of sensing (𝑡𝑡𝑠𝑠), the UAVs perform 
spectrum sensing and broadcast the sensed channel information in the following sub-slot (𝑡𝑡𝑏𝑏). The 
server then applies fusion rules and assigns spectrum holes to the requesting UAVs. The UAVs 
transmit on the allocated spectrum holes in the access sub-slot (𝑡𝑡𝑎𝑎). 

4.1.1.2 Collaborative Spectrum Sensing and Fusion Policies 
Each individual UAV captures the raw I/Q samples over the air signals and predicts the availability 
of spectrum holes across 𝑀𝑀 sub-channels. An associated spectrum sensing cost for each UAV 𝑘𝑘 
involved in sensing at time slot 𝑡𝑡 is assumed. The spectrum sensing cost is the energy consumed 
for sensing the spectrum and is proportional to the voltage VCC of the receiver, the system 
bandwidth is 𝐵𝐵, and the duration allotted for sensing is 𝑡𝑡𝑠𝑠 (Zhang and Shin, 2012). Therefore, the 
spectrum sensing cost is defined as SCkm(t)  = tsVCC2 Bm. Upon the completion of sensing phase, 
the UAV 𝑘𝑘 has a predicted spectrum occupancy vector 𝐡𝐡k(t) = �hk,1(t), … , hk,M(t)�  such that 
hk,m(t) = 0 if the 𝑚𝑚-th sub-channel is detected vacant at time 𝑡𝑡, and ℎ𝑘𝑘,𝑚𝑚(𝑡𝑡) = 1 otherwise. This 
problem can be considered as a multi-class classification problem, and the research team leveraged 
deep neural network (DNN) at each UAV to identify the spectrum holes and outputs the prediction 
vector 𝐡𝐡𝑘𝑘(𝑡𝑡). 

The server receives multiple copies of spectrum holes detected by individual UAVs and applies 
fusion rules that result in aggregated spectrum holes. The n-out-of-K fusion rule  is defined as 
follows: 

                                                        𝑓𝑓𝑚𝑚(𝑡𝑡) = �
0, � 𝕀𝕀{ℎ𝑘𝑘,𝑚𝑚(𝑡𝑡) = 0} ≥ 𝑛𝑛;

𝑘𝑘∈𝒦𝒦
1, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

                            (4.1) 

 

where 𝕀𝕀 {.} is an indicator function. In this case, f(𝑡𝑡) = [𝑓𝑓1(𝑡𝑡), … , 𝑓𝑓𝑀𝑀(𝑡𝑡)] is the fused prediction of 
all the M sub-channels at the UTM server. Note that when n=1, the n-out-of-K rule is equivalent 
to the “OR” rule, and n=K is the same as the “AND” rule. 

4.1.1.3 Collaborative Spectrum Sensing and Fusion Policies 
Based on the aggregated fusion result, the server then allocates sub-channels to the requesting 
UAVs. The UAVs then transmit data on the sub-channels allocated to them by the server in the 
next time step. The transmission energy consumption is denoted by ACkm(t). The access cost is 
the energy consumed for data transmission and is defined as ACkm(t) = taPtx, where, Ptx is the 
transmit power and ta is the time allotted to transmission. Furthermore, the transmission utility is 
the amount of data transmitted on the allocated sub-channel and is defined as follows: 

𝑅𝑅𝑘𝑘,𝑚𝑚(𝑡𝑡) = taBm log2 �1 + SINRk,m(t)� , (4.2) 
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where 𝐵𝐵𝑚𝑚 is the sub-channel bandwidth allocated for data transmission and SINRkm is the signal-
to-interference-plus-noise ratio observed on the link between UAV and its receiver over sub-
channel m. 

Since it is a delayed transmission, the UAVs transmit on the spectrum holes in the current step that 
are detected vacant in the previous time step. Spectrum collision occurs when the previously 
detected spectrum holes are no longer available at the current time step. The true state of sub-
channel m is denoted by fm���(t) is assumed. To capture this, the spectrum access collision indicator 
𝑟𝑟𝑘𝑘,𝑚𝑚(𝑡𝑡) is defined as follows: 

𝑟𝑟𝑘𝑘𝑘𝑘(𝑡𝑡) = �
1,             if  𝑓𝑓𝑚𝑚���(𝑡𝑡) = 0 and 𝑓𝑓𝑚𝑚(𝑡𝑡 − 1)  = 0;
−1,          if  𝑓𝑓𝑚𝑚����(𝑡𝑡) ≠ 0 and 𝑓𝑓𝑚𝑚(𝑡𝑡 − 1) = 0;
0,                                                       Otherwise.

(4.3) 

4.1.1.4 Joint Spectrum Sensing and Access Problem Formulation 
Given the presented model, the research team cast the problem of joint spectrum sensing and access 
as an energy efficiency optimization for the UAVs. The overall system model of collaborative 
spectrum sensing and access is shown in Figure 11. The overall algorithm described is shown in 
Figure 12. 

 
Figure 11. Proposed system model for joint spectrum sensing and spectrum scheduling. 
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Figure 12. Algorithm for collaborative spectrum sensing and access. 

4.2.1.1.1 Energy Efficiency Optimization 
Let 𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡) = 1 if UAV k is scheduled to use sub-channel m at time t, and 𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡) = 0 otherwise. 
Given that the spectrum holes are allocated to the requesting SUs based on the sub-channel 
availability, sensing and access cost is incorporated to maximize the overall energy efficiency (EE) 
of the system. Researchers formulated the EE problem as an optimization problem as follows: 

 

max
{𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡)}

        Ε{ �
𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡)𝑟𝑟𝑘𝑘𝑘𝑘(𝑡𝑡)𝑅𝑅𝑘𝑘𝑘𝑘(𝑡𝑡)

𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡)𝐴𝐴𝐶𝐶𝑘𝑘𝑘𝑘(𝑡𝑡) + 𝑆𝑆𝐶𝐶𝑘𝑘𝑘𝑘(𝑡𝑡)
}

𝑡𝑡,𝑘𝑘,𝑚𝑚

 

Subject to:     ∑ 𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡)  ≤  1,𝑚𝑚  ∀ 𝑘𝑘 = 1,2,3, … …𝐾𝐾 

                                                   ∑ 𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡)  ≤  1,𝑘𝑘  ∀ 𝑚𝑚 = 1,2,3, … …𝑀𝑀                    (4.4) 

      ∑ 𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡)  ≤  𝑀𝑀 − |𝐟𝐟(𝑡𝑡)|,𝑘𝑘,𝑚𝑚   

                                                                   𝑦𝑦𝑘𝑘𝑘𝑘(𝑡𝑡) ∈ {0,1}where Rkm(t), SCkm(t), ACkm(t) are the 
amount of data transmitted, the sensing cost, and transmission cost by the SU k on sub-band m 
simultaneously. The constraints guarantee that each UAV is scheduled to use at most one sub-
channel, while the total number of scheduled UAVs is at most equal to the number of detected 
spectrum holes at time t , which is M − |𝐟𝐟(t)| . 

The above optimization problem is a fractional integer programming problem, which is NP-hard 
in general. If considering the maximization of the numerator alone, which is the total utility of the 
UAVs over all sub-channels, the problem will become an integer programming problem. In this 
case, the utility would depend on the spectrum usage pattern by the PUs, which is captured by 
rkm(t), as well as the channel condition between the BSs and UAVs that determine the amounts 
of transmitted data Rkm(t). To tackle this utility optimization problem, the channel occupancy 
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fm���(t)  is modeled as a Markov process, which enables the use of a Markov decision process (MDP) 
formulation to solve this problem and develop a dynamic spectrum allocation policy to the SUs 
(Sutton and Barto, 2018).  

4.2.1.1.2 Dynamic Spectrum Allocation Using RL 
An assumption is that there exists M sub-channels in the system, each sub-channel can be modeled 
as an independent two-state Markov chain. The transition probability function 𝐏𝐏 can then be 
viewed as a set of transition probability matrices {𝐏𝐏i } for each sub-channel that capture the 
randomness in the assumed multi-user multi-channel environment. Hence, researchers can 
formulate the total utility of the SUs into a traditional MDP which is governed by the tuple (𝒮𝒮, 𝒜𝒜, 
{𝐏𝐏i }, U, 𝛾𝛾 ), consisting of the set of states 𝒮𝒮, set of actions 𝒜𝒜, a transition probability function {𝐏𝐏i 
}, a reward function U, and a discount factor γ. To solve an MDP using RL, an agent learns to 
make decisions in an uncertain environment by maximizing a cumulative reward over a sequence 
of actions. Specifically, the agent interacts with an environment by taking actions that transition 
the system from one state to another, and the agent receives a reward that is commensurate with 
the merit of the action. The discount factor determines the relative importance of immediate and 
future rewards.  One of the most popular RL methods is Q-learning (Sutton and Barto, 2018). 

The classical Q-learning is table-based, i.e. the values of the Q-function are stored in a table of 
size | 𝒮𝒮 |×|𝒜𝒜|. However, when the size of the state and action spaces get large, the complexity of 
tabular Q-learning becomes cumbersome. For example, with M = 16 sub-channels, the Q-table 
will be of size 65,537 × 17. 

4.2.1.1.3 DDQN-Based Spectrum Allocation  
To address the complexity issue, the deep Q-learning approach is used to approximate the Q-
function by a neural network Qθ called Double Deep Q-Network (DDQN) and train its weights θ  
using experience replay. As the name suggest, there are two networks when using DDQN where, 
Qθ  is called the primary network and Qθ

′  is called the target network and the weights of the target 
network are updated periodically. In the original DDQN, the weights of target network are directly 
copied from the primary network every few episodes. In DDQN-soft, the target networks are 
updated using POLYAK averaging to smoothly update the weights (“soft-update”) (Hasselt et al., 
2016). 

The input to the DDQN agent is a state 𝒔𝒔 of size 1 × 𝑀𝑀 . The output of the network is a vector of 
size 1 × (𝑀𝑀 + 1) that contains the values of the Q-function with respect to state 𝒔𝒔 and each of the 
𝑀𝑀 + 1 actions. In all the hidden layers, researchers used the rectified linear unit (ReLU) as an 
activation function. Given the neural networks input-output dimensions, the overall DDQN 
architecture and its interaction with the environment is shown in Figure 13, where the major 
components are a primary network, a target network, experience replay and the interaction with 
the environment to pick an action. 

To train the DDQN agent, the experiences are initially stored in the memory using ϵ-greedy policy 
i.e., for a state st, an action 𝑎𝑎𝑡𝑡 is taken randomly with probability ϵt or taken greedily with 
probability 1 − ϵt  from the current state of the DDQN network. Then, when there are sufficient 



30 
 

samples in the memory, a mini-batch of B experiences {(𝐬𝐬i,𝐚𝐚i, ri, 𝐬𝐬i′)}i ∈ ℬ𝓉𝓉 are randomly sampled 
from the memory for every time step t to train the neural networks. Here, ℬ𝓉𝓉 is the set of 
experiences currently available in the memory. Based on the mini-batch selected, the weights θ of 
the primary network Qθ that minimize the loss function Lt(θ) are computed and updated. 

4.1.1.5 Raw I/Q Dataset Generation 
Previously, the research team described the role of DDQN in allocating spectrum holes to the SUs 
as such that the overall utility is maximized. However, each SU must first send in their spectrum 
hole detection results based on observed I/Q samples. Implementing a data-driven ML model for 
such wideband sensing demands large amounts of raw I/Q data. 

While it is desirable to capture over-the-air raw I/Q signals using actual hardware, it is challenging 
to accomplish this goal due to the intricate nature of flying multiple UAVs within a specific 
environment for collaborative sensing implementation. Hence, the team resorted to generating 
synthetic datasets that accurately resemble collecting datasets via experimentation. To this end,  
MATLAB's LTE toolbox is used as outlined in (Chintareddy et al., 2023; Uvaydov et al., 2021) 
which extended the dataset generation to incorporate UAV specifics. The dataset is generated by 
incorporating the LTE base-stations and UAVs locations, as well as the 3D environment including 
buildings and vegetation for performing ray-tracing. 

 
Figure 13. DDQN for spectrum allocation. 

As shown in Figure 14, three neighboring cells are assumed. To perform ray-tracing experiments, 
the maps required are downloaded from OpenStreetMap. 

https://www.openstreetmap.org/
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Figure 14. Ray-tracing simulation setup used for dataset generation. The plot illustrates the received 

signal paths at UAV location 1 from all three base-stations. 

The simulation area considered is of 3 km × 3 km width with buildings and vegetation located in 
the Kansas City metro area. The location of the base stations is obtained from Cellmapper, an open 
crowd sourced cellular tower and coverage mapping service. Base-stations are defined as the 
transmitter sites and UAV locations as the receiver sites. Furthermore, the research team 
considered three UAVs and three base stations in the region of interest and use MATLAB's ray-
tracer to find the channel between UAV and base-station locations. Figure 15 shows the cell-
mapper tool as well as the propagation environment extracted from OpenStreetMap. Note that this 
scenario can be easily extended to any number of LTE cells and UAVs. It is important to emphasize 
that the UAVs are hovering in one location. Nevertheless, by executing the ray-tracing engine 
multiple times for different locations, a flight trajectory is effectively simulated. 

 

Figure 15. Extracting LTE towers configurations from Cell-Mapper open-source tool. Capturing the 
wireless signal propagation environment from OpenStreetMap to be used in ray-tracing.   

Next, MATLAB's LTE Toolbox generates an LTE-M waveform. The entire cell bandwidth of 10 
MHz (50 resource blocks) is assumed to be split into 16 sub-channels each of size three resource 
blocks. In general, the base station can allocate a single sub-channel or multiple sub-channels to a 
PU to transfer user specific data on the downlink shared channel, and they can also use multiple 
access techniques for transmitting data to different PUs. However, when generating the dataset, an 
assumption made is that the base station partitions the bandwidth into separate sub-channels. While 
generating the downlink waveform of the base station, no UE specific reference signals are 
generated. Additionally, the broadcast channels are not corrupted with user-specific data. The 
appropriate indices are found and used to embed the data samples into the downlink shared 

http://cellmapper.net/
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channel. As mentioned, the cell bandwidth is partitioned into 16 sub-channels, considering each 
combination as a label. The base station can generate 216  labels, ranging from no sub-channel 
allocation to a fully busy cell site. 

Since the research team assumed all SUs are capable of wideband sensing, each SU samples the 
RF signal and stores I/Q samples. The noise variance is adjusted such that the effective SINR 
varies from -10 dB to 20 dB in steps of 10 dB. Since UAVs fly at an altitude, each UAV receives 
a signal from more than one base station which is modeled using the ray-tracing setup. The total 
received signal is modeled as a superposition of the signals received at each UAV as shown in 
Figure 14. 

4.3 Results 
4.3.1 Collaborative Spectrum Sensing Results 
As mentioned previously, identifying spectrum holes falls into the realm of classical multi-label 
classification problem. Precision, Recall, and F1-score are considered as the metrics to assess the 
performance of such a classifier. These metrics are defined as follows: 

Precision = TP
TP+FP

,  Recall = TP
TP+FN   

,   𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2(Precison.Recall)
Precison+Recall

,          (5) 

where TP, FN, FP account for the number of true positives, false negatives, and false positives, 
respectively. To concretely capture the performance of spectrum sensing across 16 sub-channels, 
the micro-averages for Precision, Recall, and F1-Score are computed. 

The data obtained by different UAV locations are aggregated at a central server to train a central 
model that can be deployed on all UAVs. For this purpose, 70% of the samples generated are used 
to train the DNN while the rest of samples are used for testing and validation purposes. It was 
observed that the performance metrics improve as the SNR improves. Specifically, for UAV 
locations 2 and 3, shown in Figure 15 (a) and Figure 15 (b), the spectrum sensing performance 
metrics are greater than 90% for the SNR values above 10 dB. However, for UAV location 1, the 
overall performance metrics are worse than locations 2 and 3. As shown in Figure 15 (a), the 
performance metrics are about 80 % at 10 dB SNR. This is due to weaker received signal strength 
in location 1, leading to noisier I/Q samples. Hence, the ML model was not able to predict the 
spectrum holes accurately, thereby making the rationale for exploring collaborative sensing more 
apparent. 
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Figure 16. Performance metrics obtained at (a) Location 1, (b) Location 2, (c) Location 3. 

Using spectrum fusion results, it is noted that incorporating predictions from all the UAV locations 
significantly improved the spectrum prediction performance at the central server. For comparison, 
the fusion results are shown at the central server against location 1 in Figure 16. 

 
Figure 17. Comparison of F1-Score at location 1 with and without fusion. 

4.3.2 Resource Allocation and Spectrum Access Results 
Q-learning methods were used for allocating spectrum resources to the UAVs. In Figure 17 (a), 
training performance of three variants of Q-learning methods are compared for allocating a sub-
channel to a single UAV whenever the fusion rule detects at least a single spectrum hole. It is 
observed that DDQN with soft update performs slightly better and converges earlier than DDQN 
and vanilla-DQN. 

Next, the model is extended to allocate spectrum holes to two UAVs. In this case, the researchers 
have augmented the DDQN algorithm with soft update to generate two best actions. From the 
results in Figure 17 (b), it is observed that the utility performance with two SUs is slightly less 
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than two times of the performance with a single SU.  It is further noted that this work explores the 
possibility of integrating spectrum sensing and sharing by making use of existing RL algorithms. 
Though Q-learning techniques were explored, different RL algorithms can be integrated into the 
proposed framework. 

 
Figure 18. Training results for allocating spectrum holes to (a) one UAV, (b) two UAVs. 

 

5 SUBTASK 4: SATURATION AND INTERFERENCE ANALYSIS 
5.1 Introduction 
UAVs provide excellent communication links with ground and aerial nodes, are easily deployable, 
and possess a high probability of establishing Line-of-Sight (LoS) communication channels. This 
makes them ideal for applications like video streaming in areas with limited infrastructure, 
disaster-affected regions or during emergency services where live video feeds are crucial for real-
time decision-making (Khan et al., 2024). 

UAV communications utilize both licensed and unlicensed spectrum. While licensed spectrum 
grants exclusive access to the channel, unlicensed spectrum, being shared, makes communication 
nodes more susceptible to interference from other users (FCC, 2023).This poses significant 
challenges for reliable and robust communication, particularly when UAVs are required to 
communicate delay-sensitive data, such as command-and-control (C2) information or real-time 
video streams. Addressing these challenges requires sophisticated transmission policies that 
account for interference, queuing delays, and buffer management in unlicensed spectrum bands. 

In this subtask, the initial focus is on modeling the expected throughput for UAV communications 
in unlicensed spectrum bands such as ISM bands. A comprehensive system model was developed 
as shown in Figure 19 that captures the effects of interference, buffer overflow, and queuing delays. 
Specifically, two sources of packet loss were considered: 

1) At the transmitter queue, where packets may be dropped due to buffer overflow or 
excessive queuing delay. 
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2) After transmission, where interference-related errors occur due to low Signal-to-
Interference-plus-Noise Ratio (SINR). 

Researchers analyzed the transmission error probability between source nodes and UAVs in the 
presence of interference from other nodes, accounting for both LoS and Non-LoS (NLoS) 
communication. By investigating Rayleigh (NLoS) and Rician (LoS) channel conditions, the team 
provided insights into optimizing throughput through the adjustment of channel fading thresholds 
(Ghazikor et al., 2023). 

 
Figure 19. System model consists of ground\aerial nodes operating in unlicensed bands. 

Building on the initial model, the research team then concentrated on developing distributed 
transmission policies for UAV networks. A framework is proposed that considers both queue and 
interference levels to optimize expected throughput in unlicensed spectrum bands. Two key 
transmission algorithms were introduced (Ghazikor et al., 2024a): 

1) Interference-Aware Transmission Control (IA-TC), which optimizes the channel 
fading threshold for a single source node in response to interference from other 
ground and aerial nodes. 

2) Interference-Aware Distributed Transmission Control (IA-DTC), which enables 
each node to adjust its channel fading threshold through consensus-based 
distributed optimization. 

Researchers demonstrated how UAVs and ground nodes can achieve optimal transmission policies 
in a distributed manner, improving expected throughput in interference-prone environments. 

Finally, the scope of the research was extended to address real-time video streaming over UAV 
networks as depicted in Figure 20, particularly in emergency and public safety applications where 
live video feeds are essential. In such cases, both reliable communication and high-quality video 
streaming are crucial. The team introduced distributed policies that jointly optimize channel fading 
threshold and video encoding rate to maximize Peak Signal-to-Noise Ratio (PSNR) that measures 
the video quality, by considering packet loss due to interference, queuing delays, and buffer 
overflow, as well as video distortion caused by lossy compression. 

To address these challenges, two novel algorithms were proposed (Ghazikor et al., 2024b): 
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1) Distributed Transmission Control (DTC), which determines the optimal channel fading 
threshold to maximize the expected throughput across all nodes. 

2) Joint Distributed Video Transmission and Encoder Control (JDVT-EC), which optimizes 
the video encoding rate and channel fading threshold as a transmission policy to maximize 
video quality, measured by PSNR, while balancing trade-offs in the packet loss and video 
distortions. 

 
Figure 20. System model that includes video streaming scenario in unlicensed bands. 

Through extensive simulations, the effectiveness of the algorithms in achieving optimal expected 
throughput and PSNR performance is demonstrated, outperforming several baseline policies. This 
study offers a comprehensive cross-layer framework that incorporates buffer management, 
interference mitigation, and video encoding control, providing a solution for UAV-enabled video 
streaming in unlicensed spectrum bands. 

Altogether, this subtask addresses the key challenges of interference, enqueuing packets, and video 
encoding rate in UAV communication systems. By progressively developing models and 
optimization algorithms, this research contributes solutions for enhancing UAV network 
performance, particularly in high-demand applications like video streaming and public safety 
operations. The outcome of this subtask provides an optimization framework that ensures both 
high expected throughput for C2 packets and PSNR for experiencing higher video quality in UAV-
enabled wireless communication. 

5.2 Framework and Distributed Optimization Algorithms 
To have a comprehensive framework, an LoS probability model was initially employed alongside 
a single-slope path loss model to calculate probability of establishing a LoS link and signal 
attenuation between ground users and UAVs (Azari et al., 2018). Accordingly, the team used an 
angle-based LoS probability model which is based on elevation angle, but then adopted a more 
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complete distance-based LoS probability model to support all channel types, including Air-to-Air 
(A2A), Ground-to-Air (G2A), Air-to-Ground (A2G), and Ground-to-Ground (G2G) (Kim and 
Lee, 2019). For all scenarios, LoS and NLoS channels were modeled using the Rician and Rayleigh 
distributions, respectively. 

By providing channel models, an M/M/1 queue model was employed to analyze packet loss due 
to queuing delays and buffer overflow. This model accounted for: 

1) Time threshold model: UAVs may communicate delay-sensitive data such as C2 
messages. In this case, it is critical to ensure that data packets are delivered to their 
intended destination in a specified timeout value. Accordingly, if the source node 
is unable to transmit packets due to poor channel conditions (e.g., low SINR), any 
packet with a waiting time greater than a time threshold is discarded (Guan et al., 
2016). Therefore, the probability of packet drop is given by:  

2) 𝑃𝑃𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑(𝛽𝛽𝑛𝑛) = 𝑃𝑃𝑃𝑃(𝑇𝑇𝑛𝑛 > 𝑇𝑇𝑛𝑛𝑡𝑡ℎ) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝜇𝜇𝑛𝑛(𝛽𝛽𝑛𝑛)

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
− 𝜆𝜆𝑛𝑛�𝑇𝑇𝑛𝑛𝑡𝑡ℎ� . (5.1) 

2) Buffer overflow model: In addition to time threshold model that captures time-
sensitivity of data traffics, assume that queues have limited buffer sizes as well. 
Therefore, there are chances that new packet arrivals are inadmissible due to buffer 
overflow, and thus they are dropped (Ghazikor et al., 2023) with probability:  

𝑃𝑃𝑛𝑛𝑜𝑜𝑜𝑜(𝛽𝛽𝑛𝑛) ≈�𝑃𝑃𝑖𝑖,𝑖𝑖+1𝜋𝜋𝑖𝑖

∞

𝑖𝑖=0

=
�1 − 𝜌𝜌𝑛𝑛(𝛽𝛽𝑛𝑛)� exp �−𝐵𝐵𝑛𝑛𝜂𝜂𝑛𝑛�1 − 𝜌𝜌𝑛𝑛(𝛽𝛽𝑛𝑛)��

1 − 𝜌𝜌𝑛𝑛(𝛽𝛽𝑛𝑛) exp �−𝐵𝐵𝑛𝑛𝜂𝜂𝑛𝑛�1 − 𝜌𝜌𝑛𝑛(𝛽𝛽𝑛𝑛)��
. (5.2) 

As indicated in Eqs. (5.1) and (5.2), closed-form expressions were derived to calculate the 
probabilities of these two packet loss events. 

Interference modeling was first done using Gamma distribution with SINR to quantify the quality 
of the communication link (Guan et al., 2016). Then, the interference model was refined using log-
normal distribution, which better represents real-world interference scenarios (Tian et al., 2016). 
Using the interference model, the outage probability represented in Eq. (5.3) was calculated as the 
probability that the SINR falls below a threshold, resulting in packet transmission error. 
Researchers call this event an outage that has the following probability:  

𝑃𝑃𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝛽𝛽) = 𝑃𝑃𝑃𝑃(𝛾𝛾𝑛𝑛 < 𝛾𝛾𝑡𝑡ℎ) = � 𝑃𝑃𝑃𝑃�ℎ�𝑛𝑛
𝑓𝑓 = 𝑥𝑥�𝑣𝑣𝑛𝑛 �

𝑃𝑃𝑛𝑛�ℎ�𝑛𝑛
𝑓𝑓�

2

𝛾𝛾𝑡𝑡ℎ
𝑥𝑥2 − 𝜎𝜎2,𝛽𝛽−𝑛𝑛�𝑑𝑑𝑑𝑑

∞

𝛽𝛽𝑛𝑛
. (5.3) 

Closed-form expressions for the outage probability were developed as indicated above, allowing 
computation of the overall packet loss by combining the time threshold, buffer overflow, and 
outage probabilities. 
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Altogether, the expected throughput was calculated by combining the three packet loss 
probabilities (time threshold, buffer overflow, and outage probability) as follows (Ghazikor et al., 
2023): 

𝑅𝑅𝑛𝑛(𝛽𝛽) = 𝜆𝜆𝑛𝑛[1 − 𝑃𝑃𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽)] ≈ 𝜆𝜆𝑛𝑛�1 − 𝑃𝑃𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑(𝛽𝛽𝑛𝑛) − 𝑃𝑃𝑛𝑛𝑜𝑜𝑜𝑜(𝛽𝛽𝑛𝑛) − 𝑃𝑃𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝛽𝛽)�. (5.4) 

The expected throughput measure was used to assess the performance of UAV communication 
systems operating in unlicensed spectrum bands. Accordingly, two algorithms for optimizing the 
expected throughput were developed (Ghazikor et al., 2024a). 

5.2.1 Interference-Aware Transmission Control (IA-TC) 
This algorithm focuses on maximizing the expected throughput for the source node as indicated in 
Figure 21. This uses a coordinate descent algorithm to iteratively adjust the channel fading 
threshold to achieve optimal throughput only for the source node. At each step, it updates the 
channel fading threshold to maximize the expected throughput. Specifically, the algorithm 
optimizes the channel fading thresholds for the interferer nodes and the source node. The algorithm 
uses a coordinate descent approach, where the channel fading thresholds for the interferer nodes 
including Rayleigh interferers and Rician interferers and the source node are considered as three 
coordinate axes. Initially, the channel fading threshold for the source node and Rayleigh interferer 
are set as fixed parameters, and the Rician interferer threshold is varied by a step size to identify 
the best expected throughput in the specified coordinate. Then, the same procedure is repeated, 
alternating between the channel fading thresholds, allowing the algorithm to adjust each channel 
fading threshold iteratively until it converges to an optimal solution that maximizes the expected 
throughput. 

Importantly, the IA-TC algorithm constantly tries to increase the channel fading thresholds for the 
interferer nodes until it reaches a maximum expected throughput, as the interferer nodes send fewer 
packets and the level of interference on the main link decreases. Furthermore, as the source node's 
channel fading threshold increases, the source node enqueues more packets. Thus, while packet 
loss in the queue rises, packet loss due to transmission error decreases. As the number of iterations 
of the IA-TC algorithm increases, the channel fading thresholds for the interferer nodes increase, 
and the source node's channel fading threshold decreases. Therefore, the source node has more 
transmission opportunities, while the transmission attempts by the interferer nodes are reduced. 
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Figure 21. Interference-aware transmission control (IA-TC) algorithm. 

5.2.2 Interference-Aware Distributed Transmission Control (IA-DTC)  
Figure 22 shows the IA-DTC algorithm. The objective of this algorithm is to implement a 
distributed transmission policy that maximizes the expected throughput across all links, while 
recognizing that each link could potentially serve as the main link. Unlike IA-TC algorithm, 
increasing the channel fading threshold for interferer nodes is no longer optimal because any 
interferer node could also act as a main link. In this case, nodes must coordinate to converge on a 
transmission policy that benefits all nodes, rather than just one. To achieve this, consensus-based 
distributed optimization is employed (Berahas et al., 2019), where multiple nodes collaborate to 
reach a consensus on the optimal channel fading threshold. Each node uses its local information 
and objective function to iteratively communicate with its neighbors, working together to find the 
optimal channel fading threshold and maximize the overall expected throughput. 

In this algorithm, the goal is to determine the optimal set of channel fading thresholds for all nodes. 
Initially, all nodes are set to their maximum channel fading thresholds, allowing each node to 
selfishly identify its best channel fading threshold based on the results from the IA-TC algorithm. 
During each iteration, if the difference between the updated channel fading threshold and the 
previous one exceeds a tolerance level, nodes exchange information with each other to 
collaboratively refine their channel fading thresholds and ultimately converge on the optimal 
value. Moreover, the Local Coordinate Search (LCS) function determines the best channel fading 
threshold for each node while having access to the channel fading thresholds of the interferer 
nodes. This function explores a coordinate until it identifies the optimal value that yields the 
highest expected throughput for the node. 
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Figure 22. Interference-aware distributed transmission control (IA-DTC) algorithm. 

In addition to the expected throughput maximization, researchers introduced video quality 
optimization by considering overall video distortion due to both lossy video compression distortion 
and packet loss distortion as follows (Tian et al., 2016): 

Dn(En,𝛽𝛽) = Dn
cmp(En) + Dn

lss(𝛽𝛽) = 𝐷𝐷0 +
𝜃𝜃0

En − 𝐸𝐸0
+ 𝑠𝑠𝑛𝑛𝑃𝑃𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽). (5.5) 

The key metric for video quality is PSNR, which was formulated based on the overall video 
distortion in Eq. (5.6) by incorporating the channel fading threshold and video encoding rate 
(Ghazikor et al., 2024b):  

𝒫𝒫𝓃𝓃(En,𝛽𝛽) = 10 𝑙𝑙𝑙𝑙𝑙𝑙10 �
(2𝑝𝑝 − 1)2

Dn(En,𝛽𝛽)� . (5.6) 

Correspondingly, researchers proposed the Joint Distributed Video Transmission and Encoder 
Control (JDVT-EC) algorithm shown in Figure 23. The goal is to maximize the average PSNR for 
streamer nodes in the environment by optimizing two key parameters: the video encoding rate and 
the channel fading threshold for each node. The optimization problem is divided into two sub-
problems, where each parameter is solved individually. 

At each iteration, the JDVT-EC algorithm identifies the optimal channel fading threshold and the 
optimal video encoding rate using the DVTC and DVEC sub-algorithms, respectively. It then 
compares these optimal values with the previous channel fading threshold and video encoding rate. 
If the difference between the current and previous values is smaller than a predefined threshold, 
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the algorithm returns the optimal values. The algorithm also includes a counter that tracks the 
number of iterations, and it terminates if a maximum iteration limit is reached. 

 

Figure 23. Joint distributed video transmission and encoder control (JDVT-EC) algorithm. 

As mentioned, the JDVT-EC algorithm involved a two-step optimization process (Ghazikor et al., 
2024b). 

5.2.3 Distributed Video Transmission Control (DVTC) 
In this algorithm shown in Figure 24, distributed communication nodes collaborate to achieve an 
optimal distributed transmission strategy that benefits all nodes, if each link can serve as a main 
link. All nodes work together to reach a consensus on the channel fading threshold set, while they 
keep the video encoding rate constant. Each node processes its local information and 
communicates iteratively with its neighboring nodes to determine the optimal channel fading 
threshold. DVTC algorithm aims to determine the optimal fading threshold for all nodes. In each 
iteration, if the difference between the updated channel fading threshold set and the previous one 
exceeds a specified tolerance, the nodes exchange information about their channel fading 
thresholds to recalculate the optimal set. 



42 
 

 

Figure 24. Distributed video transmission control (DVTC) algorithm. 

5.2.4 Distributed Video Encoder Control (DVEC) 
This algorithm illustrated in Figure 25  aims to find the optimal video encoding rates for streamer 
nodes using the LCS algorithm. Unlike the DVTC algorithm, each source node’s video encoding 
rate does not affect the video encoding rates of other nodes. Thus, the video encoding rates do not 
need to be determined iteratively. In this algorithm, each node can be a source node and find its 
optimal values independently, storing it in the optimal video encoding rate set. Finally, the 
algorithm returns the optimal video encoding rates, which are used in conjunction with the channel 
fading thresholds in the JDVT-EC algorithm. 

The LCS is developed to find the optimal values for each node at each iteration. In this process, a 
switch is used to select the decision variable including channel fading threshold and video 
encoding rate, while flags manage the search direction, step size, and stopping criteria. The step 
parameters consist of two key elements: the step divider, which adjusts the step size proportionally 
during the search, and the step accuracy, which controls the precision of the decision variable and 
stops the algorithm once the step size reaches a desired threshold. These parameters ensure that 
the algorithm effectively refines the decision variables while maintaining control over accuracy 
and efficiency. Detailed algorithm implementation is provided in a  research paper (Ghazikor et 
al., 2024b).  
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Figure 25. Distributed video encoder control (DVEC) algorithm. 

In conclusion, in this subtask, the team initially computed the overall packet loss probability by 
combining time threshold model due to queuing delays, buffer overflow model due to limited 
buffer capacity, and outage model due to interference. These packet loss probabilities were used 
to calculate the expected throughput, providing a comprehensive metric to assess the performance 
of UAV communication systems under different interference and queuing conditions. Then, the 
overall packet loss also contributed to the calculation of PSNR, enabling a cross-layer analysis for 
video streaming optimization in the presence of interference. Ultimately, optimization algorithms 
were developed to maximize the expected throughput and PSNR under different scenarios. 

5.3 Numerical Results 
In evaluations, it was examined that the performance of the proposed framework and optimization 
algorithms across various setups by adjusting multiple parameters to observe their impact on UAV 
communications.  

In the first setup, researchers assessed a scenario involving one UAV and several ground nodes, 
where the main communication link was between one ground node and the UAV, with other 
ground nodes acting as interferers. All nodes were distributed according to a Poisson distribution. 
The research team evaluated the expected throughput by varying the channel fading threshold for 
both the source and interferer nodes, demonstrating how changes in the fading threshold affect 
performance. Additionally, the impact of transmission power and the number of interferer nodes 
on expected throughput were explored. Then, the outage probability was evaluated for different 
SINR thresholds and number of interferers. Finally, researchers illustrated the packet loss 
probability in the queue as a function of time slot duration and channel fading threshold as 
indicated in Figure 26. 



44 
 

 
Figure 26. Behavior of different packet loss probabilities. 

With these evaluations, researchers numerically analyzed the effects of key parameters such as 
transmission power and node density on the expected throughput and overall UAV communication 
performance in the presence of interference. 

In the second setup, the performance of two proposed optimization algorithms was evaluated: IA-
TC and IA-DTC. In this configuration, 10 nodes were considered, consisting of one main UAV, 
an interferer UAV, and 8 ground nodes. The main communication link was established between a 
source node and the main UAV, while other ground nodes acted as interferers communicating with 
the interferer UAV. For the IA-TC algorithm in Figure 27, researchers examined how changing 
the altitude of the interferer UAV impacted the channel fading threshold and expected throughput 
for the source node over IA-TC iterations. 

 
Figure 27. Fading threshold and throughput for the source node by IA-TC. 

For the IA-DTC algorithm, researchers varied the number of nodes and SINR thresholds to observe 
how the optimal fading threshold changed for the main link. The results of the algorithms with 
different baseline policies were compared, including: 

• Random policy: nodes select their channel fading thresholds randomly between zero and 
the upper bound. 

• Aggressive policy: nodes aim to minimize packet loss from queues due to buffer overflow 
or time threshold by encouraging packet transmission even under poor channel conditions, 
potentially increasing interference. 
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• Selfish policy: nodes operate independently by finding selfish channel fading threshold and 
treating other nodes as sources of interference without coordination, which can lead to 
suboptimal performance. 

• Conservative policy: nodes set their channel fading thresholds close to the upper bound to 
minimize outage probability, reducing packet loss from transmission errors but potentially 
increasing packet loss in the queue due to buffer overflow or time threshold. 

The results are shown in Figure 28, which demonstrate the performance gains of the  method. The 
numerical results confirmed that both IA-TC and IA-DTC consistently achieved optimal solutions.  

 
Figure 28. Fading threshold and throughput for different policies by IA-DTC. 

The third step involved expanding the analysis to include a more complex network with 10 ground 
and aerial nodes. The key simulation parameters are summarized in Table 5. 

Table 5. Key simulation parameters for video streaming setup. 

 
Figure 29 consists of a streamer UAV, an interferer UAV, and 8 ground nodes, where the streamer 
and interferer UAVs stream video to their associated ground nodes. 
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Figure 29. Nodes distribution with optimal expected throughput by DTC. 

For the DTC algorithm, researchers presented detailed results showing how the optimal expected 
throughput and optimal channel fading threshold changed with varying SINR thresholds, number 
of sub-channels, and different transmission policies. This also depicted the behavior of packet loss 
probabilities throughout the DTC algorithm iterations. 

For the JDVT-EC algorithm, the team provided comprehensive results for PSNR, channel fading 
threshold, and video encoding rate (see for example Table 6).  Individual and joint optimizations 
were explored, demonstrating that optimizing both the fading threshold and encoding rate led to 
the best results. Furthermore, researchers illustrated the impact of varying the sensitivity parameter 
and SINR threshold on the optimal PSNR, optimal fading threshold, and optimal encoding rate. 

Table 6. PSNR and video encoding rate values achieved with different encoding schemes. 

 
Moreover, the heatmap in Figure 30 show the spatial variations in these metrics with respect to the 
streamer UAV location. The numerical results confirmed the efficacy of the DTC and JDVT-EC 
algorithms, consistently yielding optimal results across various scenarios. Detailed results are also 
available in the team’s research paper (Ghazikor et al., 2024b).  
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Figure 30. Optimal PSNR heatmap for different streamer UAV location by JDVT-EC. 

6 SUBTASK 5: SPECTRUM MANAGEMENT FRAMEWORK FOR 
OPERATORS 

6.1 Introduction 
Continuing development in subtask 3, Figure 31 shows a simplified form of the UTM architecture, 
highlighting the separation between FAA and industry development and deployment 
responsibilities for the necessary infrastructure, services, and entities that interact within the UTM 
ecosystem. In this subtask, the main focus was on the hierarchical structure between multiple 
operators and the UAS service supplier (USS), which assists multiple operators in meeting UTM 
operational requirements, ensuring safe and efficient utilization of the airspace. 

The concept of operations within the UTM architecture highlights the need for spectrum resources 
to facilitate wireless communications between UAVs, UAV operators, and the USS network. Due 
to the proliferation of new wireless services and the demand for higher data rates, there are 
spectrum shortages to support various services. Therefore, it is essential to develop dynamic 
spectrum sensing, inference, and sharing solutions for UAV operations in existing licensed and 
unlicensed spectrum (Rimjha and Trani, 2021). 
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Figure 31. Simplified UTM architecture showing the separation between different entities. 

There exists a multitude of prior works on spectrum management frameworks for ground users 
that propose deep learning-based wideband spectrum sensing to dynamically detect “spectrum 
holes” (Ahmad et al., 2020; Cui et al., 2020). Few works propose reinforcement learning (RL) 
techniques for spectrum sharing, assuming that spectrum sensing results are readily available 
(Nguyen et al., 2018). While these data-driven spectrum management frameworks for ground users 
are available, they are not directly applicable for UTM-enabled UAV operations, due to several 
factors, such as the widely different wireless channel models and the overall system architecture. 
In the context of UAV spectrum sharing systems, spatial spectral sensing (SSS) based methods are 
developed for efficient spectrum sharing policies for UAV communications aimed at improving 
the overall spectral efficiency (SE) (Kakar and Marojevic, 2017; Shang et al., 2020). However, the 
SSS models do not consider the spectrum usage pattern of users under realistic scenarios (e.g., 
ignoring the I/Q level samples), and/or they consider only a single primary user (PU) or secondary 
user (SU). Moreover, the problem of joint multi-channel wideband spectrum sensing and 
scheduling among several SUs has not been fully investigated. 

In this subtask, the researchers proposed a unified and data-driven spectrum sensing and 
scheduling framework to enable UAVs to effectively share the spectrum with existing primary 
users. At the spectrum sensing stage, it is noted that the inherent hierarchical nature of the UTM 
architecture with USS (shown in Figure 31) is a good match for federated learning (FL)-based 
model training, which achieves spectrum sensing. Specific to the spectrum sensing stage, an FL-
based cooperative wideband spectrum sensing across multiple UAVs was proposed. Researchers 
developed a multi-label classification framework to identify spectrum holes based on the observed 
I/Q samples. Each UAV trains their respective local models using the locally collected datasets 
and transmits the local model parameters to the central server. Furthermore, the team proposed a 
novel proportional weighted federated averaging (pwFedAvg) method that incorporates the power 
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level received at each UAV into the FL aggregation algorithm, thereby integrating the dataset 
generation plane with the FL model training plane, as shown in Figure 32. 

 
Figure 32. Envisioned FL system model in a multi-cell wireless network with multiple UAVs. 

Given the simplified UTM architecture, and the basic principles of FL, researchers envision two 
scenarios for deploying FL-based spectrum sensing in the context of UTM architecture. These two 
cases are shown in Figure 33. In scenario 1, each UAS operator has its own FL Server, while in 
scenario 2 all operators are coordinated by a central FL server (perhaps, one per USS). Given the 
privacy-preserving nature of FL-based machine learning solutions, different operators do not share 
any raw wireless/spectrum usage data with other operators. Rather, only ML model parameters are 
aggregated at the FL server.     
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Figure 33. Envisioned FL scenarios that can be integrated with UTM architecture. 

6.2 Methods 
6.2.1 Proposed FL-based Model for Spectrum Sensing 
An assumption made is that each UAV receives signals from more than one base-station (BS) due 
to the fact that they operate at higher altitudes, which increases the chances of signal reception 
from multiple BSs, as shown in Figure 32. Furthermore, it is assumed that the cell bandwidth W is 
partitioned into M orthogonal sub-channels. Then the total transmitted signal from a BS b across 
M orthogonal sub-channels at any time t can be represented by the superposition principle as 
follows: 

𝑠𝑠𝑏𝑏(𝑡𝑡) = � 𝐼𝐼𝑏𝑏,𝑚𝑚(𝑡𝑡)
𝑀𝑀

𝑚𝑚=1

𝑣𝑣𝑏𝑏,𝑚𝑚(𝑡𝑡),∀𝑏𝑏 ∈ ℬ, (6.1) 

where  Ib,m(t) = 1  if the m-th sub-channel of BS b is occupied at time t, and 0 otherwise. 
Moreover, v𝑏𝑏,𝑚𝑚(t) represents the waveform on the m-th sub-channel. As a result,  sb(t) is the total 
transmitted baseband waveform at each BS. Each UAV k then receives the wideband signal from 
multiple BSs in a multi-path propagation environment, which can be expressed as follows: 

𝑟𝑟𝒌𝒌(𝑡𝑡) = �𝒈𝒈𝑘𝑘,𝑏𝑏(𝑡𝑡)
𝐵𝐵

𝑏𝑏=1

∗ 𝒔𝒔𝑏𝑏(𝑡𝑡) + 𝛈𝛈𝑘𝑘(𝑡𝑡),∀𝑘𝑘 ∈ 𝒦𝒦, (6.2) 

where 𝒈𝒈𝑘𝑘,𝑏𝑏(𝑡𝑡) represents the multi-path channel between BS b and UAV k and 𝜼𝜼𝑘𝑘(𝑡𝑡) denotes the 
thermal noise signal observed at UAV k. Therefore, the signal-to-noise ratio observed at UAV k 
can be written as follows: 

SNR𝑘𝑘(𝑡𝑡) =
��∑ 𝒈𝒈𝑘𝑘,𝑏𝑏(𝑡𝑡)𝐵𝐵

𝑏𝑏=1 ∗ 𝒔𝒔𝑏𝑏(𝑡𝑡)��
2

σ𝑘𝑘2(𝑡𝑡)
,∀𝑘𝑘 ∈ 𝒦𝒦, (6.3) 
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where 𝜎𝜎𝑘𝑘2(𝑡𝑡) represents the noise variance observed at UAV k at time t. Pk(t) is used to denote the 
total power received in UAV k at time t, which is directly proportional to the signal generated as 
defined in Eq. (6.1).  𝑃𝑃𝑘𝑘(𝑡𝑡) will be used for proportional weight scaling in FL training. 

To train the DNN models for predicting spectrum holes using raw I/Q samples, it has been shown 
that the characteristics of the wireless signal can be captured by observing only a portion of the 
signal waveform (Chintareddy et al., 2023; Uvaydov et al., 2021). Hence, from the received 
baseband signal 𝒓𝒓𝒌𝒌(𝑡𝑡), capture J I/Q samples are captures and stored locally. Therefore, the 
samples from baseband waveform collected at UAV k are represented as 𝑹𝑹𝒌𝒌(𝑡𝑡) given as follows: 

𝑹𝑹𝑘𝑘(𝑡𝑡) = 𝑹𝑹�𝒌𝒌(𝑡𝑡) + +𝜼𝜼�𝒌𝒌(𝑡𝑡),∀𝑘𝑘 ∈ 𝒦𝒦 (6.4) 

where 𝑹𝑹�𝒌𝒌(𝑡𝑡) represents the J I/Q samples from the first term in Eq. (6.2) and the second term 
represents J complex Gaussian noise samples. In addition to the I/Q samples, the true labels are 
stored for channel occupancy at each UAV k at time t. The channel occupancy vector 𝒉𝒉𝑘𝑘(𝑡𝑡) is an 
M-dimensional vector, with each index indicating if a sub-channel m is occupied or free at time t 
and can be computed as follows: 

                                          ℎ𝑘𝑘,𝑚𝑚(𝑡𝑡) = �1, �𝐼𝐼𝑏𝑏,𝑚𝑚(𝑡𝑡)
𝐵𝐵

𝑏𝑏=1

  ≥  1;

0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

                                                  (6.5)  

Note that 𝒉𝒉𝑘𝑘(𝑡𝑡) observed at time t would be the true label corresponding to the wideband received 
signal 𝒓𝒓𝒌𝒌(𝑡𝑡).The channel occupancy would remain unchanged for the stored J I/Q samples 𝑹𝑹𝒌𝒌(𝑡𝑡). 
(𝑹𝑹𝒌𝒌(𝑡𝑡),𝒉𝒉𝑘𝑘(𝑡𝑡)) is stored as an input-output pair that will be used for the training of the FL model. 
For the sake of simplicity of notation, the input-output pair is represented as (𝑹𝑹𝒌𝒌,𝒉𝒉𝑘𝑘). Note that 
for each M-dimensional channel occupancy vector  𝒉𝒉𝑘𝑘, the input-output pair is treated as one data 
sample and the total I/Q dataset collected at UAV k is denoted as follows: 

𝐷𝐷𝑘𝑘 = �(𝑅𝑅𝑘𝑘1,ℎ𝑘𝑘1), (𝑅𝑅𝑘𝑘2,𝒉𝒉𝑘𝑘2), … �𝑅𝑅𝑘𝑘
|𝐷𝐷𝑘𝑘|,ℎ𝑘𝑘

|𝐷𝐷𝑘𝑘|�� , (6.6) 

where |𝑫𝑫𝑘𝑘| represents the total number of samples in the UAV k. These local datasets are used in 
FL-based training for spectrum hole detection. 

In the FL setting, each UAV k trains a local wideband spectrum sensing model whose parameters 
are denoted by ω𝑘𝑘.  Hence, the primary objective of the local model is to find a mathematical 
function 𝑓𝑓(𝝎𝝎𝑘𝑘,𝑹𝑹𝑘𝑘), that maps input I/Q samples 𝑹𝑹𝑘𝑘 to 𝒉𝒉𝑘𝑘, i.e., 

𝑓𝑓(ω𝑘𝑘,𝑅𝑅𝑘𝑘):𝑅𝑅𝑘𝑘 → ℎ𝑘𝑘 (6.7) 

To this end, using the raw I/Q samples𝑹𝑹𝑘𝑘 each UAV k trains a local model that detects vacant sub-
channels, such that the local loss function Lk(ω) minimizes the error between the true labels 𝒉𝒉𝑘𝑘 
and the predicted labels hk� , as defined below: 
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𝐿𝐿𝑘𝑘(𝝎𝝎) ≜
1

|𝑫𝑫𝒌𝒌|�𝑙𝑙�𝑓𝑓�𝝎𝝎𝑘𝑘,𝑹𝑹𝑘𝑘 
𝑖𝑖 �;𝒉𝒉𝑘𝑘 

𝑖𝑖 �
|𝑫𝑫𝒌𝒌|

𝑖𝑖=1

, (6.8) 

where l(.) is the loss function for computing the prediction loss in the supervised machine learning 
setting. Furthermore, f(.,.) represents the predicted label for the sample (𝑹𝑹𝑘𝑘 

𝑖𝑖 , 𝒉𝒉𝑘𝑘 
𝑖𝑖 ) and 𝝎𝝎𝑘𝑘 

represents the local model parameters during training. 

Given the system model, a framework for wideband spectrum sensing is introduced where multiple 
UAVs collaboratively participate in the FL. In such a distributed learning environment, the aim is 
to learn a global statistical model at the central server. Given that each UAV k trains a local model 
to identify the spectrum holes by minimizing the local loss function 𝐿𝐿𝑘𝑘(𝝎𝝎), in the context of FL, 
the aggregated global loss function L(ω) should be minimized, as follows: 

min
𝝎𝝎

�𝐿𝐿(𝝎𝝎) ≜�
|𝑫𝑫𝑘𝑘|
𝐷𝐷

𝐾𝐾

𝑘𝑘=1

𝐿𝐿𝑘𝑘(𝝎𝝎)� , (6.9) 

where D = ∑ |D𝑘𝑘|K
k=1  is the total size of data samples across the UAVs. 

To solve the global loss function Eq. (6.9), the authors in (McMahan et al., 2023) proposed 
FedAvg, an iterative aggregation algorithm where the global model aggregates the local model 
gradients and redistributes the global model weights to the local models. However, when the 
datasets of each UAV k are of equal size, FedAvg assigns equal scaling factor of 1

K
 for all local 

gradients. However, in the considered multi-cell environment, the signal received at different UAV 
locations experiences different channel conditions, and the signal power received at different 
locations varies significantly. Hence, by assigning equal scaling weights for the local model 
gradients, the performance metrics at UAV locations with strong signal deteriorate. To compensate 
for this effect and improve performance at locations that receive better signal power, a proportional 
weight scaling aggregation method for FL (pwFedAvg) is proposed that intuitively assigns smaller 
weights to UAVs with lower received signal power (i.e., poor channel conditions), and larger 
weights to those UAVs with higher received signal power. 

Using the pwFedAvg, the central server aggregates the local gradients by assigning a weight 
proportional to their received signals as follows: 

∇𝐿𝐿(ω𝑡𝑡) = �
α𝑘𝑘𝑡𝑡

α𝑡𝑡

𝐾𝐾

𝑘𝑘=1

∇𝐿𝐿𝑘𝑘(ω𝑘𝑘
𝑡𝑡 ; ξ𝑘𝑘𝑡𝑡 ), (6.10) 

where αkt = �𝑃𝑃𝑘𝑘
𝑡𝑡
 and αt = ∑ �𝑃𝑃𝑘𝑘

𝑡𝑡
.𝐾𝐾

𝑘𝑘=1   Here, 𝑃𝑃𝑘𝑘
𝑡𝑡

 represents the average received signal power at 

UAV k for the batch of samples 𝝃𝝃𝑘𝑘𝑡𝑡  . Note that during the FL training process at time t, 𝝎𝝎𝑘𝑘
𝑡𝑡  and 

𝝎𝝎𝑡𝑡denote the local and global model weights, respectively. Upon computing the global model 
gradient based on Eq. 6.10, the global model weights are updated as follows: 
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ω𝑡𝑡+1 = 𝝎𝝎𝑡𝑡 − γ𝑡𝑡∇𝐿𝐿(𝝎𝝎𝑡𝑡), (6.11) 

where 𝛾𝛾𝑡𝑡 is the learning rate of the global model. The updated global model weights are sent to 
the clients to update their local model weights. Once the training process is completed, all UAVs 
have an updated global model that predicts spectrum holes. However, it is inevitable that different 
UAVs located at different places perform differently. To effectively estimate spectrum holes and 
manage the spectrum efficiently, a spectrum fusion model is proposed that fuses or aggregates all 
the spectrum holes predicted from different UAVs. The spectrum fusion is assumed to be part of 
the central server within the UTM ecosystem. The overall process of FL-based model training 
using the pwFedAvg approach is outlined in Algorithm shown in Figure 33. 

 

Figure 34. Algorithm for channel-aware FL-based training. 

6.3 Results 
As previously stated, the researchers modelled wideband spectrum sensing, aiming to identify 
spectrum holes from the given I/Q samples as inputs to the ML model. The same evaluation 
scenario as in subtask 3 is used here, in which 3 UAVs in 3 different locations are emulated in 
simulation environment.  The team used 70% of the dataset to train the model using federated 
learning (FL) and 30% for spectrum inference purposes. To investigate FL performance, the 
FedAvg algorithm was implemented, and the results are presented in Figures 34 through Figure 
36. From the results, it is noted that FedAvg achieves good performance only for the UAV 
locations 2 and 3 (Figure 35 (a) and Figure 36 (a)). Given the heterogeneous dataset collected at 
different UAV locations, the overall performance of FedAvg is limited by the UAV(s) that 
performs the worst. This is because FedAvg scales the weights of all local models equally. To 
reduce the impact of UAV locations with poor performance, the proposed pwFedAvg algorithm 
scales the weights of local models according to the received signal power. As shown in Figure 35 
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(b) and Figure 36 (b), the proportional weighting scheme can improve the F-1 score performance 
at locations 2 and 3.  

 
Figure 35. Comparison of performance metrics at location 1: (a) FL-FedAvg, (b) FL-pwFedAvg. 

 
Figure 36. Comparison of performance metrics at location 2: (a) FL-FedAvg, (b) FL-pwFedAvg. 
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Figure 37. Comparison of performance metrics at location 3: (a) FL-FedAvg, (b) FL-pwFedAvg. 

Additionally, centralized learning (CL) was performed as another baseline. CL is a technique in 
which it is assumed that all the data collected at different locations are aggregated at one central 
server and are readily available to train the ML model. Furthermore, to have a fair comparison, the 
F1-score is plotted for CL, FL-FedAvg and FL-pwFedAvg as shown in Figure 37 (a), (b), (c). With 
the proposed aggregating scheme (pwFedAvg), the performance metrics are improved at UAV 
locations 2 (Figure 37 (b)) and 3 (Figure 37 (c)), without significantly affecting location 1 (Figure 
37 (a)) performance. 

 
Figure 38. F1-Score comparison for CL, FL-FedAvg, FL-pwFedAvg: (a) Location1, (b) Location 2, (c) 

Location 3. 
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It is observed from the results in Figure 37 that individual sensing performance might fluctuate 
at different locations, in both the CL and FL settings. However, by applying fusion rules, the 
overall performance is significantly improved, as shown by the results in Figure 38. From these 
results, researchers noticed that the overall performance of all methods is significantly 
improved by fusion. Furthermore, the proposed pwFedAvg algorithm outperforms FedAvg, 
while achieving comparable results with respect to the CL method without the need to transfer 
all datasets to a central location. 

 
Figure 39. F1-Score comparison at location 1 with and without fusion. 

7 CONCLUSION 
This research on spectrum management for Unmanned Aerial Systems (UAS) in public safety and 
Beyond Visual Line of Sight (BVLOS) operations presents several technical findings and 
contributions. The study focused on several major subtasks: spectrum needs and supplies, dynamic 
spectrum sharing, interference analysis, and spectrum management frameworks. Each subtask 
provides insight into current limitations and future opportunities for UAS communication systems. 

When considering spectrum demands and shortages, the projected increase in UAS density under 
BVLOS conditions requires more spectrum resources to enable safe and reliable operations. Both 
public safety and commercial UAS operations will struggle to maintain communication quality 
using unlicensed bands (e.g., WiFi). The use of cellular networks for BVLOS operations, while 
promising, is limited by bandwidth constraints and potential interference since those networks are 
not designed and implemented for UAS applications.  

On the topic of collaborative spectrum sharing and dynamic allocation, it can be concluded that 
introducing collaborative spectrum sensing and ML/AI-driven solutions has proven effective in 
improving spectrum utilization. This research demonstrates that UAS can autonomously detect 
and share underutilized spectrum, so that the spectrum efficiency is enhanced. Dynamic allocation 
strategies using Reinforcement Learning (RL) methods such as Double Deep Q-Networks 
(DDQN), showed performance gains by optimizing spectrum usage across distributed UAVs. 
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In terms of interference mitigation in unlicensed bands and optimization of communication 
systems, the developed interference-aware distributed transmission control algorithms are 
effective to manage interference in unlicensed spectrum bands. These algorithms effectively 
adjusted transmission policies based on wireless channel conditions and interference levels, 
thereby increasing throughput and reducing message errors in UAS communications.  

Federated learning (FL) frameworks were investigated to enhance spectrum management for UAS. 
The FL-based approaches provide a decentralized solution that maintains data privacy while 
improving spectrum allocation decisions. The proposed proportional weighted federated averaging 
(pwFedAvg) algorithm incorporates wireless channel conditions into the model aggregation 
process to improve the performance of standard FL models. 

Despite these advancements, several key challenges remain in regard to policy and regulation, 
real-world validation of solutions, and infrastructure enhancement, 

Current spectrum policies do not sufficiently address the specific requirements of UAS operations. 
The lack of dedicated spectrum for UAS operations, particularly in public safety contexts, creates 
a significant bottleneck. The FCC’s recent NPRM and subsequent regulations on the 5030-5091 
MHz band (C-band) represent a step in the right direction, but more coordinated efforts are needed 
to establish reliable and interference-protected spectrum access for UAS. Priority spectrum access 
for public safety applications should be incorporated into the regulations. 

While the proposed ML/AI-driven spectrum management solutions performed well in simulations, 
real-world testing is required to validate their robustness, scalability, and adaptability in dynamic 
environments. Experimental trials in urban and rural environments, with varying levels of UAV 
density and spectrum availability, are essential for refining these solutions. 

The use of existing cellular infrastructure for UAS communications poses potential challenges, 
particularly in terms of interference. Investing in communication technologies and further studies 
that are future-proof, such as C-band radio for licensed spectrum access for UAS, will be critical 
to ensuring reliable and safe BVLOS operations. 

In conclusion, addressing the spectrum needs of UAS for public safety and other applications will 
require a combination of innovative technologies, robust policy support, and infrastructure 
investment. These steps are essential to unlocking the full potential of UAS in complex and high-
density environments. 
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